50ct2004 :1308 AR AR232-PA45-28.tex XMLPublish®™2004/0224)  PI:JRX
: AR REVIEWS IN ADVANCEI0. | 1 96/annurev.pharmtox.44. 101802121444

DRUG-DRUG INTERACTION INVOLVING TRANSPORTERS 703

where Lys and I, are the inhibitor concentration in the circulating blood and portal
vein, respectively; f, is the blood protein unbound fraction; vy is the absorption
rate from the intestine to the portal vein; and Qy is the hepatic blood flow. When
the intestinal absorption is described by a first-order rate constant, this equation
becomes (123, 124)

F.D.k, ekt F.-D-k\-
Iu:fu'(lsys+_—_“‘—e)Sfu'(lsys+m“—)’ (]3)
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where Fis the fraction absorbed from the gastrointestinal tract, D is the dose, and
K, is the absorption rate constant. To avoid a false negative prediction, the unbound
inhibitor concentration should be estimated by £, - (L + F—-—“i) for 2 drug-drug
interaction based on a hepatic transporter-mediated process.

To date, there are many published inhibition studies of renal and hepatic uptake
transporters: OATs and OATPs. In this section, the inhibitory effects of therapeutic
drugs on these transporters are evaluated using K; values, comparing them with
the therapeutic concentrations.

OAT-Mediated Drug-Drug Interactions

In the kidney, the OAT family transporters are involved in the uptake of organic
anions with relatively low molecular weights into the renal tubules, although OAT?
and 5 are localized in the liver and OAT4 is expressed in the brush border mem-
brane of the kidney and may be involved in efflux from the renal tubules into the
urine (21-24). These OAT farnily transporters are inhibited by several compounds,
including therapeutic drugs (Supplemental Table 1, Follow the Supplemental Ma-
terial link from the Annual Reviews home page at http://www.annualreviews.org).
Supplemental Table I gives a partial list of therapeutic drugs that interact with
OAT family transporters, together with their maximum plasma concentration and
maximum plasma unbound concentration in a clinical situation and R value,

The calculated R values suggest that many inbibitor drugs of OAT family trans-
porters do not cause a serious drug-drug interaction because of the relatively low
plasma concentrations compared with their K; values (Supplemental Table 1).
However, some cephalosporin antibiotics and probenecid exhibited low R values
and, therefore, may lead to clinically relevant drug-drug interactions (Supplemen-
tal Table 1). These results suggest that the concomitant use of these drugs with OAT
substrate drugs, which are mainly excreted in the urine, should be very carefully
monitored. Such use may cause at least a partial reduction in the intrinsic clearance
for renal secretion, possibly leading to an increase in plasma concentration.

OATP-Mediated Drug-Drug Interactions

Among OATP family transporters, OATP-B [OATP2B1], OATP-C/QATP2
[OATP1B1], and OATPS [OATP1B3] are expressed in the human liver and are
involved in the hepatic uptake of several compounds, including therapeutic drugs
(54-58). Although, in rats, some Oatp family transporters, such as Oatp1 [Qatplal],
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Oat-k1 [Oatpla3], and k2, are reported to be expressed in the kidney (126-130),
their human counterparts have not been characterized. As shown in Supplemental
Table 2 (Follow the Supplemental Material link from the Annual Reviews home
page at htip://www.annualreviews.org), several therapentic drugs are reported to
inhibit OATP family transporters. Because they are hepatic uptake transporters, R
values were calculated based on not only the maximum inhibitor unbound ther-
apeutic concentration in the circulating blood but also that in the inlet to the
liver, calculated by Equation 13 (123, 124). Values calculated based on the un-
bound concentration in the inlet to the liver are given as R’. Inhibitors of OATP
family transporters consist of bulky compounds, including anions, neutral com-
pounds, and even cations (Supplemental Table 2). In Supplemental Table 2, only
cyclosporin A and rifampicin exhibited relatively low R and R’ values and may
lead to clinically relevant drug-drug interactions. On the other hand, pravastatin,
an HMG-CoA reductase inhibitor, is not a cause of a severe drug-drug interaction
based on OATP-mediated hepatic uptake because of its low plasma unbound con-
centration. As pravastatin is a potent HMG-CoA reductase inhibitor and is highly
distributed to the liver, its target organ, a low plasma concentration is sufficient
for its pharmacological effect, leading to a low risk of inhibition of transporter
function (132). A small number of inhibitors with relatively low R values may be
due to a lack of inhibition studies involving human OATP family transporters, and
further studies may provide other inhibitors that cause clinically relevant drug-drug
interactions. More inhibition studies on human OATP transporters are needed to
allow the quantitative prediction of transporter-mediated drug-drug interactions.

MDR-Mediated Drug-Drug Interactions

MDRI1 is expressed in the liver and kidney (7, 8, 15). Therefore, MDR 1-mediated
drug-drug interactions result in a reduction in renal and hepatobiliary excretion. It
is also expressed in the intestine and the blood-brain barrier and, therefore, MDR 1 -
mediated transport affects intestinal absorption and even distribution to the brain
(7). MDRI-mediated drug-drug interactions cause complex effects. MDR1 has a
broad substrate specificity and is inhibited by a large number of compounds. Quini-
dine is one MDR1 inhibitor (35). As the K, value of quinidine for ATP-dependent
efflux via MDR1 is approximately 5 uM (32), its K; value for MDR1 can be
assumed to be 5 uM. The therapeutic steady-state concentration of quinidine is
approximately 4.5 uM and its unbound concentration is 0.59 M. As MDRI is
an efflux transporter, the R value should be calculated using the unbound concen-
tration of inhibitor in the cell. However, it is practically impossible to measure
the intracellular unbound concentration of inhibitors in humans. Assuming the
cell-to-medium concentration ratio to be 10 as a safety margin, the R value can be
calculated to be H-Txlo.sgﬁ = 0.46, suggesting that renal effiux will be reduced
to at most 46% of the control. For hepatobiliary efflux, the blood concentration at -
the inlet to the liver should be used. The plasma concentration of quinidine at the
inlet to the liver is calculated to be 4.6 uM using Qy = 1.6 liters min™!, F.'F, =
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0.8,k, = 0.1 min™', and f, = 0.13. Using this and assuming a cell-to-medium
concentration ratio of 10, the calculated R value is m = 0.098, suggesting
that hepatobiliary excretion will be reduced to at most 9.8% of the control. Actu-
ally, both the hepatobiliary and renal clearances of digoxin have been reported to
be reduced when concomitantly administered with guinidine (133).

MRP2-Mediated Drug-Drug Interactions

MRP2 also has a broad substrate specificity and is inhibited by a large number of
therapeutic drugs, incleding cyclosporin A, daunomycin, etoposide, probenecid,
and pravastatin (33, 134, 135). MRP2 functions as an efflux transporter for CPT-
11 and its metabolites, SN-38 and SN-38 glucuronide (SN38-glu) (136). CPT-11
is excreted into the bile mainly via MDR1 and, to 2 minor extent, via MRP2,
whereas SN-38 and SN38-glu are excreted via MRP2 (136). The biliary excretion
of its metabolites canses severe diarthea as a side effect (137, 138). To j}re\fent
this side effect, inhibition of MRP2-mediated transport by coadministration of its
inhibitor may be effective. Horikawa et al. have investigated the inhibitory effects
of several compounds on rat Mrp2 function (139). Among them, probenecid, sulfo-
bromophthalein, and the glutathione-conjugate of sulfobromophthalein had potent
inhibitory effects {139). The inhibitory effects of probenecid were also confirmed
for the in vitro human biliary excretion of SN-38 with a K; value of 42 xM (139).
The same authors also confirmed these inhibitors of rat Mrp?2 significantly reduced
the biliary excretion of CPT-11, SN-38, and SN38-glu (140). They suggested the
possibility of using MRP2 inhibitors such as probenecid to prevent the clmlcal]y
observed toxicity of diarthea by CPT-11.

EXAMPLES OF CLINICALLY RELEVANT DRUG-DRUG
INTERACTIONS BASED ON RENAL AND
HEPATOBILIARY TRANSPORT

In this section, examples of clinically relevant drug-drug interactions based on
membrane transport in the kidney and the liver are described.

HMG-CoA Reductase Inhibitors Versus Cyclosporin A

As cerivastatin, a potent HMG-CoA reductase inhibitor (statin), is metabolized by
two different enzymes, cycochrome P450 2C8 (CYP2CR) and 3A4, the likelihood
of a severe drug-drug interaction was believed to be low (141). However, the plasma
concentration of cerivastatin was reported to be increased when coadministered
with cyclosporin A (142).

The plasma AUC and maximum plasma concentration of cerivastatin increased
by four- and fivefold, respectively, when concomitantly administered with cy-
closporin A (142). Our group investigated the mechanism underlying this drug-
drug interaction (62). We have shown that the transporter-mediated uptake of
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cerivastatin is inhibited by cyclosporin A at a low concentration (K; was 0.3 ~
0.7 M), whereas the in vitro metabolism of cerivastatin is inhibited with an 1Cs5
value of more than 30 1M, suggesting that this clinically relevant drug-drug in-
teraction was caused by a transporter-mediated process rather than a metabolic
one (62). The unbound concentration of cyclosporin A in the circulating blood
and at the inlet to the liver, calculated by Equation 13, are, at most, 0.1 uM and
0.6 uM, respectively, which may explain the clinically relevant drug-drug interac-
tion, although there may be other mechanisms involved (62). We also showed that
the OATP-C/OATP2 [OATP1B1]-mediated transport of cerivastatin was inhibited
by cyclosporin A with a K; value of less than 0.2 M (Figure 7) (62).

In addition to cerivastatin, the plasma concentrations of pravastatin, pitavas-
tatin, and HMG-CoA reductase inhibitory activity of atorvastatin are reported
to be affected by concomitantly administered cyclosporin A (143-145), Among
them, pravastatin and pitavastatin undergo only minimal metabolism, and the like-
lihood of a drug-drug interaction owing to this is quite low. As these statins are
substrates of OATP-C/OATP2 [OATPIB11, interactions with cyclosporin A may
also be caused by a transporter-based mechanism (55, 56, 121). Interaction be-
tween atorvastatin and cyclosporin A may be occurred by a transporter-mediated
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Figure 7  Transcellular transport of cerivastatin (CER) mediated by OATP-C/OATF2
[OATP1IB1] and MRP2 and the inhibitory effect of cyclosporin A. (a) Transcellular trans-
port of [**C]CER in OATP-C/OATP2 [OATPIB1] and MRP2 double-transfected MDCK
cells (closed squares) and in vector-transfected cells (closed circles) was examined. Addi-
tion of ¢yclosporin A (10 M) inhibited OATP-C/OATP2 [OATPIB1]- and MRP2-mediated
transport of CER (open squares), whereas it did not change the transcellular transport in
vector transfected cells (open circles). (b) Cyclosporin A inhibited the transcellular transport
(PSg_54) in a concentration-dependent manner. The 1Csq value obtained in this experimental
system was 0.084 & 0.015 pM. **p < 0.01, ***p < 0.001.
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TABLE 1 Kinetic parameters of HMG-CoA reductase inhibitors coadministered with cy-

closporin A
Cyclosporin A (+/-)
HMG- Major
CoAreductase  Cmax AUC clearance
inhibitors [ng/mL] Ratio [ng-hr/mL] Ratie mechanism Reference
Simvastatin 18.9/2.5* 7.56 78.1/9.8** 7.97 CYP3A4 193
20.6/9.9° 2.08 101/39.6* 2.55 194
Pravastatin 2234280 795 1300/ OATP-C 143
57.1%**
Fluvastatin 155/119 1.30 373/192 1.94 CYP2C9 195
Cerivastatin 7.82/1.56 5.0 36.2/9.53 3.80 CYP2C8/ 142
3A40ATP-
C
Atorvastatin 58.0/8.84* 6.39 595/79.94+ 745 CYP3A4- 145
OATP-C
Pitavastatin 179/27.6*** 649 34777694 4.51 OATP-C 144

#ng eq/mL or ng ¢q. - he/mL
*p<0.05, **p<0.01,**"p<0.001

and metabolism-based mechanism as atorvastatin is metabolized by CYP3A4 and
cyclosporin A inhibits CYP3A4-mediated metabolism (146). In Table 1, we sum-
marize pharmacokinetic interactions between HMG-CoA reductase inhibitors and
cyclosporin A. : ‘

HMG-CoA Reductase Inhibitors Versus Gemfibrozil

Gemfibrozil also interacts with a wide range of statins (Table 2). In particular,
interactions with cerivastatin have been reported to cawnse the severe side effect
of myotoxicity, including lethal rhabdomyolysis (147). In addition, pharmacoki-
netic interaction between cerivastatin and gemfibrozil was reported (148, 149).
Although our group examined the inhibitory effects of gemfibrozil and its ma-
jor metabolites on the OATP-C/OATP2 [OATP1B1])-mediated uptake of cerivas-
tatin, we found gemfibrozil and its glucuronide iphibited it with ICss values of
72 and 24 uM, respectively, which were higher than their therapeutic unbound
concentrations, suggesting a low possibility of a transporter-mediated drug-drug
interaction (150). On the other hand, an interaction with rosuvastatin was re-
ported to be caused by the inhibition of OATP-C/OATP2 [OATP1B1]-mediated
uptake by Schneck et al. (151). In their report, gemfibrozil inhibited the OATP-
C/OATP2 [OATP1B1]-mediated transport of cerivastatin with a low ICsy value
of 4 uM (151), Although it is still higher than the therapeutic unbound concen-
tration of cerivastatin, this value is lower than that we have obtained (150). This
gap may be partly due to the difference in the experimental system, i.c., we used
transporter-expressing MDCK cells, whereas Schneck et al, used cRNA-injected
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TABLE 2 Kinetic parameters of HMG-CoA reductase inhibitors coadministered with gemfi-

brozil

HMG-CoA Gemfibrozil (+/-) Major

reductase Cmax AUC clearance

inhibitors ng/mL} Ratio [ng-hr/mL) Ratio mechanism  Reference

Lovastatin 2.38/2.69 0.885 33.1/344 0.962 CYP3A4 196

Simvastatin 6.15/6.87 0.895 36.2/25.2** 144 CYP3A4 197

Pravastatin 120/66.3* 1.81 2317139 2.02 QATP-C 198

Fluvastatin 543/484 1.12 213227 0.938 CYP2C9 199

Cerivastatin 8.0/3.2* 25 91172097 436 CYP2C8/3A4 148
OATP-C

293/1.61 1.82 41.9/9.92 4.22 149

Pitavastatin -no data 130 no data 145 QATP.C 200

Rosuvastatin 109/495 220 TT1/410 [.88 CYP2C9 151
QATP-C

*p<0.05, **p<0.01, ***p=<0.00]

Xenopus laevis oocytes (150, 151). We also analyzed the inhibitory effects of
gemfibrfozil and its metabolites on the P450-mediated metabolism of cerivastatin
and found that gemfibrozil and its glucuronide inhibited the CYP2C8-mediated
metabolism with 1Csp values of 28 and 4 uM, respectively (150). They are still
higher than the therapeutic unbound concentrations in the circulating blood. How-
ever, there are reports that, in rat perfusion studies, gemfibrozil-1-O-glucuronide
is actively taken up into the liver and accumulates there (152—~154). If this also
took place in human liver, the concentrated gemfibrozil-1-O-glucuronide might
act as an inhibitor of CYP2C8-mediated metabolism, leading to a drug-drug inter-
action. In this case, a transporter plays an important role, i.e., an inhibitor of the
metabolism leading to accumulation in the liver via transporter-mediated uptake.
Our hypothesis that interaction with gemfibrozil is not a transporter-mediated
one, but a metabolism-mediated one is supported by the fact that gemfibrozil
does not cause a severe interaction with pravastatin and pitavastatin, which are
mainly cleared by the OATP-C/OATP2 [OATP1B1]-mediated hepatic uptake (Ta-
ble 2). Therefore, we should also be more cautious about drug-drug interactions
when inhibitors of the metabolism are substrates of hepatic uptake transporters
(Figure 8).

Digoxin Versus Quinidine and Quinine

Digoxin undergoes biliary and renal excretion. Drug-drug interactions between
digoxin and quinidine and between digoxin and guinine (a stereoisomer of
quinidine) have been reported by Hedmann et al. (133). Quinidine reduced the
renal and biliary excretion of digoxin, whereas quinine reduced only the biliary
excretion of digoxin (133).

Because quinidine is a well-known P-gp inhibitor, its effect on biliary and
urinary excretion may be related to P-gp (MDR1)- mediated transport (35). As de-
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Figure 8  Possible mechanism of drug-drug interaction between cerivastatin and
gemfibrozil. Gemfibrozil-1-O-glucuronide is actively taken up via transporter(s) and
accumulates in the liver. In the liver, its concentration is hypothesized to be high enough
to inhibit the P450-mediated metabolism of cerivastatin.

scribed in MDR-Mediated Drug-Drug Interactions (above), the K; value of quini-
dine for the MDR 1-mediated efflux can be assumed to be 5 M. On the other hand,
the steady-state plasma concentration of quinidine in this study was 4,5 uM, with
a protein unbound fraction of 0.13. Therefore, the protein unbound concentration
in the circulating blood is estimated to be 0.5¢ uM. The unbound concentra-
tion of quinidine at the inlet to the liver estimated by Equation 13 is 4.6 uM
using Qu = 1.6 liters min~!, Fu*Fg = 08, and k, = 0.1 min~F, With a safety
margin of 1 ~ 10 as a cell-to-medium concentration ratio, the estimated reduction
in the renal excretion of digoxin is 46% to 89% of the control, and the estimated
reduction in the hepatobiliary excretion of digoxin is 9.8% to 52% of the control. In
clinical situations, the hepatobiliary excretion was reduced to 42% of the control,
whereas the renal excretion was reduced to 60% of the control, which was within
the predicted range (133).

In rat hepatocytes, the inhibitory effect on the uptake of digoxin was more
potent for quinine than for quinidine, and the same tendency was observed using
the rat Oatp2 [Oatplad] expression system (122, 155). Therefore, the mechanism
of the drug-drug interaction between digoxin and quinine may be caused by the
inhibition of the transporter-mediated uptake. However, there is a study that shows
that both quinine and guinine had no inhibitory effects on the uptake of digoxin
into isolated human hepatocytes, although both of them inhibited the uptake of
digoxin into rat hepatocytes (156).
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Drug-Drug Interactions Between Cephalosporin
Antibiotics and Probenecid

There are many reports on the drug-drug interactions between cephalosporin an-
tibiotics and probenecid (157). As both cephalosporins and probenecid interact
with OAT family transporters, some of these drug-drug interactions may be due to
an OAT-mediated uptake process. Most cephalosporins are excreted in the urine,
which may be partly mediated by OAT family transporters. The elimination rates of
cephazedone, cefazolin, cefalexin, cefradine, cefaclor, cefmetazole, cefoxitin, ce-
furoxime, cefmenoxime, ceftizoxime, and cedftriaxone were significantly reduced
by coadministration of probenecid, which may be partly caused by the inhibition
of their renal excretions (157).

Marino & Dominguez-Gil have shown that the pharmacokinetics of cefadroxil
is altered by coadministration of probenecid (158). In their report, the peak con-
centration and half-life of cefadroxil was increased 1.4- and 1.3-fold, respectively,
following coadministration of probenecid. Its urinary excretion rate constant falls
by 58%, supporting the possibility of drug-drug interaction at the renal excretion.
Supplemental Table 1 suggests that OAT1- and OAT3-mediated transport should
be decreased to at most 25%—47% and 25%—69% of the control, and, therefore, it
may be partly explained by the OAT-mediated drug-drug interaction.

Probenecid has also been shown to alter the plasma concentrations of cefaman-
dole and ceftriaxone (159). The maximum plasma concentration and half-life of
cefamandole were increased 6- and 1.8-fold by coadministration of probenecid
(159). Also, 71% of cefamandole is excreted in the nrine, and this was reduced to
66% of the control (159). The elimination of ceftriaxone was slightly affected by
coadministration of probenecid (160). Probenecid reduced the serum clearance of
ceftriaxone to 73% of the control (160). It reduced the renal and nonrenal clear-
ance to 80% and 68% of the control, respectively, suggesting that this drug-drug
interaction is, to a minor extent, due to renal excretion (160).

Drug-Drug Interaction Between Methotrexate and NSAIDs

To date, there are reports that coadministration of MTX with penicillin, probenecid,
and NSAIDs cause drug-drg interactions and several potential sites for these DDI
have beenreported: an increase in the protein unbound fraction of MTX, a decrease
in the urine flow rate resulting from the inhibition of prostaglandin synthesis, and
inhibition of the renal tubular secretion of MTX (161-164). Nozaki et al. analyzed
the uptake mechanism of MTX in rat kidney slices and examined the effects of
NSAIDs on its uptake (165). They showed that rat Oat3 and reduced folate carrier
1 (RFC-1) equally contribute to the renal uptake (30% each), with the remaining
fraction being accounted for by passive diffusion and/or adsorption, whereas rOatl
makes only a limited contribution (165). Many NSAIDs inhibited both rOat3- and
REFC-1-mediated uptake of MTX, but the K; value for Oat3 was lower than that -
for RFC-1 (165). At their therapeutic concentrations, they inhibited only Oat3-
mediated uptake of MTX. Therefore, the affect of NSAIDs on the renal uptake of
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MTX is expected to be nonextensive and partial. Many NSAIDs also inhibit human
OAT3-mediated uptake of MTX with therapeutic relevant plasma concentrations
of unbound drugs (26). However, also in humans, the contribution of OAT3 to
the total renal uptake of MTX needs to be clarified for the identification of the
mechanism of the clinically relevant DDL

CONCLUSION

In addition to phase I and phase II enzymes, transporters also play an important
role in drug elimination and distribution. Therefore, it is possible that transporter-
mediated drug-drg interactions alter pharmacokinetics, and could result in severe
side effects.

A large number of transporters have been characterized in rodents and humans,
and the mechanism of the membrane transport of several compounds including
endogenous compounds and therapeutic drugs has been clartfied. However, the
transport mechapism of most therapentic drugs remains unknown. To predict a
transporter-mediated drug-drug interaction, the transporters involved in the mem-
brane transport of the drug need to be characterized. As multiple transporters have
been characterized in the kidney and liver and their expression systems are avail-
able, it should be possible to predict a transporter-mediated drug-drug interaction
by using these systems with the information of the contribution made by each
transporter to the net transport in the kidney and liver.

‘We have estimated the possibility of a transporter-mediated drug-drug interac-
tion from the R value calculated using the maximum unbound concentration of
inhibitors. This method may avoid false negative predictions of drug-drug interac-
tions. In conclusion, greater awareness of the possibility of transporter-mediated
drug-drug interactions is necessary.

The Annual Review of Pharmacology and Toxicology is online at
http://pharmatox.annualreviews.org
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