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Dy(g,8)) = —loguwp (4)

Regarding each SQ specimen S; (i = 1, 2,. . ., 21), the probes
whose differential levels Dz(g,S;) were equal to or more
than diff were defined as the individual-specimen cluster,
Cioign_aifr i, where sign is the differential direction (+,
overexpression; —, underexpression in each SQ specimen).
Chrign_aifrs: was defined for all

sign=—, +
diff=2,3,4,...
S,‘=1,2, ,21

For example, C+2_s; and C_z_s; were clusters of probes whose
expression of §; were included in 1% of sections on both sides
of NL’s distributions. Mere specifically, C+2_s: was a cluster
of probes whose expression levels were equal to or higher
than {agveny, + 2.58 stddevnr) in a specimen S;, where aven.
is the mean and stddevwy is the standard deviation of expres-
sion level in NL specimens. In the same manner, C.g_s; was
a cluster of probes whose expression levels were equal to or
less than (aveny — 2.58 stddeunL); Nsign_qifr s: is the number
of Key-UniGenes in Ceign_gir_si- 1If multiple probes in a clus-
ter could be mapped to single UniGene, then only the probe

<Definition of clusters with cancer specificity>

Evaluation of difference
in the level of expression
of each gene between SQs and NLs

I

Formation of the exhaustive clusters
with cancer specificity

{c.r.'gn_d'itf }
Hgr=-+
diFn2, 34,

with the highest Dz value was adopted. The average num-
bers, fsgn_air Of (Msign_ai sl = 1, 2,. .., 21) are shown in
Table 3.

Construction of the EIM. In a manner similar to the EIM
for detecting expression imbalance of SQ group, that for
detecting individual differences in expression imbalance
among SQs was also constructed. The individual-specimen
clusters, Caign_aisr 5:;, Were arranged on the abscissa with
respect to each S;, and the locus clusters on the ordinate (Fig,
8). Underexpression clusters were arranged on the left side
and overexpression clusters on the right. Since the abscissa
represented an array of 8;, it was impossible to represent diff
on the abscissa like Fig. 4. Therefore, the EIM for individual
specimen was visualized by Caign_daipr s: with a defined diff,
and allowed the user to change diff interactively.

The number of common Key-UniGenes between Cuign_air s:
and Corm_jength_begins %, could also be evaluated using E(U, n.,
na, k)(Eq. 3), where n, was figign_digand ng Was farm_tengeh_bogin.
¥ the different specimens have the same number of genes with
under- or overexpression on the same local region, then it is
necessary to evaluate them as similar, Therefore, fisign_air in-
stead of Rsign_dir 5¢ Was used for the evaluation of the overlap
between Coign_digr s: and Carm_tength_begin- The E value for any
combination of Cyign_aig si and Carm_tengtn_begin Was calculated,

<Definition of clusters with chromosomal proximity>

Quantization of
each chromosome arm region

f

Formation of the exhaustive clusters
with chromosomal proximity

lCuml_l'mg.'h‘bcg:'n}
arm = lp, 1q, 2p. 3qu o 220, 229
lengrh=2,3,4,
begin=1,2,3,4, .., {Larm - length + 1}

<Construction of EIM>

For any combination of Cugn_diond Curm_temph_begin »

if the both begin-th and end-th buckets of Corm_tengih_pegin
have Kay-UniGenes which are included in Cogn_a

then calculate the E-value for Riign_diff arm_tergih_begin

<Visnalization of EIM>

Preprocessing

........................... [T LT L T

Realtime processing

Contral d and gapmar interactively

'

For any Raign_dif arm_tength_begin

d{tr > dnx!n
EParm_tength_pegin > EGPmax

if Crign_dyr and Carm_tongety_pepin meet the thresholds,

then the E-value was represented in Rygu_diform_fengih_degin S 8 gray scale

(The area where the multiple Ragn_diarm_tengie_begins overlnpped
was overwritten at the maximum E-value.)

Fig. 5. Flowchart for construction of the EIM for detecting expression imbalance regions specific to 5Qs. This
flowchart provides details of the steps of the EIM for detecting expression imbalance regions specific to SQs, For
the steps of “Definition of clusters with cancer specificity,” please refer to Fig. 3. For the steps of “Definition of
clusters with chromosomal proximity,” please refer to Fig. 2. For the steps of “Construction of the EIM” and
“Visualization of EIM,” please refer to Fig. 4. The user can interactively control the steps in real-time processing

by changing gopmax and dmia-
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20 Mbp {CGH rusolution}
0

. Evaluation Value E [gapmax = 1M (base-pairs), dmin = 2]
0 4 2

Fig. 6. The EIM applied for detecting expression imbalance regions specific to SQs. The regions of under- and
overexpression in SQs were visualized on the left and right side, respectively, as gray regional signals. All
statistical evaluation values of any combinations between the exhaustive uncertainty cluster sets of cancer
specificity and chromosomal proximity are visnalized on the EIM as the gradation of gray scale simultaneously.
Each exhaustive uncertainty cluster set was formed by repetition of the sufficiently minute changes of the
threshold of cancer specificity or chromosomal proximity. While the area with high luminance corresponds to the
more probable expression imbalance region, the EIM enables the user to search as many genes as possible by
referring to more expanded area with lower luminance. The EIM presented the most significant overexpression
regions on 3q (the evaluation value E = 7.2}, which is a well-known locus with frequent genomic gains, as detected
by comparative genomic hybridization (CGH) (6, 8, 9). Note the high resolution of the EIM compared with CGH
resolution (~20 Mbp).

Fig. 7. BExpression imbalance regions specific to 3Qs on chromosome 3. A-I: chromosome 3 of the EIM and the
influence of gePpmex and dmin on the detection of the expression imbalance regions specific to S@s. The EIM
represents the E values whose Cuign_siy and Corm_tengin_begin Meet dmin 80d £aPmax, respectively. The EIM allows the
user to control gapmax and dmin interactively. The user can narrow down the possible expression imbalance regions
by changing gapmux 80d doin. Especially, as is shown in A-J, changing gapmex, which allows exclusion of regions
containing large gaps between genes, markedly affected the detection of expression imbalance regions. J: the
macrograph of the encircled region A from panel A. Intersection area R +s_3q_1s04_s shows the most significant
overexpression region, which is a well-known locus with frequent genomic gains as previously detected by CGH (6,
8, 9). That is, the overlap (k = 6) between C.s and Caq_18s4_s Was statistically the most significant (E = 7.2), C.s
was the cluster of probes with overexpression whose differential level Di(g} was more than 5 and its number of
Key-UniGenes, n+s, was 205. Caq 18046 Was the region from 189,400 to 189,900 kbp on chromosome 3 and
contained 9 Key-UniGenes (n3q 18045 = 9). The maximum gap (gapaq_1se4_s} between Key-UniGenes in Czq_13s4_5
was 146 kbp. In addition, all evaluation values of any combinations between the exhaustive uncertainty cluster
sets of cancer specificity and chromosomal proximity are visualized simultaneously on the EIM as gradation of the
gray scale. This gradation pattern could convey the distribution of the false balance to the user through visual
perception and enabled the detection of as many significant genes as possible. In addition, note the high resolution
of EIM compared with CGH resolution (~20 Mbp).
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gapmax = 1M (base-pairs) Zapmax = 2M (base-pairs) gapmax = 3M (base-pairs)
B C

~ Underexpression  Overexpression

'

dmin=2

20 Mbp
{CGH resolution)

dmin=3

dmin=4 .

— 20 Mbp
(CGH resolution)

gapmax = 1M (base-pairs)
chnin =2

Physiol Genomics » VOL 13 « www.physiolgenomics.org

—434—



40 EXPRESSION IMBALANCE MAP

Table 3. Clusters of probes with under- or overexpression profiles in each squamous cell lung carcinoma

Avg. of
Cluster Name Avg. of Probe Key-UniGEgue Number 8D of
Difterential Direction (Caign_difr_si) Number {(Finign_diff) Key-UniGene Number
NL{17) > each 5Q Coo s 669 447 103
C_s_si 497 331 91
C-4 5 387 259 82
C_s_si 317 211 76
C_s_si 268 181 70
NL{17) < each 8Q Cia_si 321 208 67
Cos_si 188 120 48
Cra_si 12¢ 77 35
Cao_si 81 50 25
Cuesi 58 36 19

To detect individual differences in expression imbalance among 21 SQs, probes {on the U95A array) with under- or overexpression profiles
in & SQ specimen, S: (i = 1,2,...,21), compared with NLs were extracted as clusters, Caign_aig si. This extraction was independently
performed, regarding each SQ specimen. The suffix sign indicates the differential direction (+, overexpression; —, underexpression in each
SQ specimen), diff indicates a differential level Dz in gene expression. Shown are the average number of probes and the average and standard

deviation (SD} of Key-UniGenes in the 21 clusters with the same differential direction and differential level.

[PTI = ﬁsigﬂ_ﬁiﬂ-)]
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Fig. 8. Individual-specimen clusters vs. locus clusters. In a manner similar to the EIM for detecting expression
imbalance of SQ specimen group, that for detecting individual differences in expression imbalance among 5@
specimens was also constructed. In a SQ specimen S; (i = 1, 2,.. ., 21), probes with expression whose differential
level Da(g,S:) was equal to or higher than diff compared with NL specimens were extracted as an individual-
specimen cluster, Caign_zig s:- This extraction was independently performed with respect to each 5@ specimen. The
individual-specimen clusters, Csign_air.s: values, were arranged on the abscissa with respect to each 8;, and the
locus clusters, Carm_tength_segin values, on the ordinate. Among Ciign_digr s: values, the clusters of under- and
overexpression were arranged on the left and right side, respectively. Since the abscissa represented an array of
S;, it was impossible to represent diff on the abscissa like Fig. 4. Therefore, the EIM for individual specimen was
visualized by Caiga_aig si with 2 defined diff, and allowed the user to change diff interactively; fuign_air is the
average number of Key-UniGenes in {Cugn_air sid = 1, 2,. . ., 21); Rarm_tength_begin i the number of Key-UniGenes
in Carm_tength_segin; & is the number of common Key-UniGenes between Ciign_air st 808 Carm_tengen_begin. The
significance of overlap between Ciign difrsi and Corm_tength_begin Was visualized in the intersection area
Raign_d:‘ﬁ_Si_arm,lcmgth_begin as a gray scale.
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EXPRESSION IMBALANCE MAP

when both (begin)-th and (begin + length — 1)}th buckets of
Carm_tengeh_begin have the Key-UniGenes that are included in
Cisign_difr i This calculation was preprocessing for the EIM.
Then, in real-time processing, after a certain diff was se-
lected, each E value was represented in the intersection area,
Rsign_diﬁ"_Si_arm_length_begin, as a gray Sca]e; if Carm_length_bzg:’n
met gapmax. The user can control diff and gapax interac-
tively.

A flowchart that details these steps is shown in Fig. 9. The
EIM for detecting individual difference of expression imbal-
ance among 5Q specimens is shown in Fig. 10. Figure 11
shows chromosome 3 of the EIM and the influence of gapmax
and diff on the detection of the individual differences in
expression imbalance among SQs.

RESULTS AND DISCUSSION

Detection of Expression Imbalance Specific to SQs
The EIM showed the distribution of expression im-

balance specific to SQs (Fig. 6). It is highly comparable

<Definition of individual-specimen clusters>

Extraction of genes
with significant under- or over- expression
compared with NL specimens,
in each SQ specimen independently
{Cign i 57}
signw. +

41

to previous CGH data of lung cancer reported by other
investigators (6, 8, 9). There are significant differences
among these CGH data because of method variation
and sample preparation {especially tumor fraction of
clinical samples). So it may be of little importance to
compare details with individual CGH experiments.
However, the most frequent abnormal loci reported in
most of these studies were also detected by the EIM as
regional signal images on chromosomes (expression
imbalance regions), such as loss of 3p, 4q, 5q, and 8p,
and gain of 1q, 3q, and 12p (6, 8, 9). The major differ-
ence from the CGH image is that signals are detected
in a more confined area, which reflects the high reso-
lution of EIM. Figures 6, 7, 10, and 11 clearly show the
high resolution of EIM compared with CGH image.
Especially, the intersection area R.s5_sq 1884 5 showed
the most significant overexpression region on 3q (Fig.
7), which is reported to be the most frequent aberration

<Definition of clusters with chromosomal proximity>

Qunatization ef
each chromosome arm region

Formation of the exhaustive clusters
with chromosomal proximity

diFm2,3, 4, v
Si=1,2,3,.. 21 {Curm_tengih_tegin}
areem bp, [, 20,29, ..., 22, 29
lenpthm 2, 3,4, ..
begin = 1,2, 3,4, o, (L - ergth + 1)
|
<Construction of EIAM>

For any combination of Crygn_aigr 5 8nd Carm_feugih_pegin ,
if the both begin-th and end-th buckets of Corn_tength_begin
have Key-UniGenes which are included in Cyign_dir 5
ther calculate the E-value for Ryig_dyr 5i_arm_femgih_begin

Preprocessing
N : Realtime processing
<Visualization of EIM>
l Select a certain diff’ II -4
¥
L Control gap,uac interactively I -t

Y

if Carmr_tength_begin meets the threshold,
(2P aren_tength_begin > E0Bmar)

For any Regn_diff Si_arm_tength_begin (diff is fixed),

then the E-value was represented in Rugn dir 1 arm_teugih_begtn 35 8 gray scale

{The area where the multiple ingu_dﬂ'_s‘_m_fﬂwjh_ng["s overlapped
was overwrilten at the maximum E-value.)

Fig. 9. Flowchart for construction of the EIM for detecting individual differences in expression imbalance among
5Qs. This flowchart provides details of the steps of the EIM for detecting individual differences in expression
imbalance among SQs. For the step of “Definition of clusters with chromesomal preximity,” please refer to Fig. 2.
For the step of “Construction of the EIM” and “Visualization of EIM,” please refer to Fig. 8. In this type of EIM,
since the abscissa represented an array of S;, it was impossible to represent diff on the abscissa like Fig. 4.
Therefore, the EIM for individual specimen was visualized by Cyiyn_dgi s: with a defined diff, and allowed the user
to change diff interactively. In addition, it is possible to exclude regions containing large gaps between genes by

changing gapmax interactively.
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Fig. 10. The EIM for detecting individual difference of expression imbalance among SQs. The EIM was applied for
detecting individual differences of expression imbalance among the SQs. Regions of underexpression and overex-
pression were visualized on the leff and right side, respectively, as gray regional signals. The expression imbalance
regions in each 5@ were evaluated independently, Note the high resolution of EIM compared with CGH resolution

(~20 Mbp).

in SQs by CGH (6, 8, 9). That is, the overlap (¢ = 6)
between C. 5 (the cluster of probes with overexpression
whose differential level Di(g) is more than §: nys =
205) and Csq_1894_s (the region from 189,400 to 189,900
kbp on chromosome 3: naq_1804_5 = 9, §aPaq 1894 5 = 146
kbp) was statistically the most significant (£ = 7.2).
Therefore, the overlap was evaluated using the hyper-
geometric probability for observing at least 6 (=k)
common elements between randomly selected 205
(=n+s) and 9 (=nasq_1se4_s) elements among 6,652 (=)

elements. The user can narrow down the possible ex-
pression imbalance regions by changing gapma.x and
dmin interactively. Especially, as is shown in Fig. 7,
A-I, changing gapmax, which allows exclusion of the
regions containing large gaps between genes, markedly
influenced the detection of expression imbalance re-
gions. In addition, all evaluation values of any combi-
nations between the exhaustive uncertainty cluster
sets of cancer specificity and chromosomal proximity
are visualized simultaneously on the EIM as gradation

Fig. 11. Individual difference of expression imbalance on chromosome 3. A~I: chromosome 3 of the EIM and the
influence of gapmax and diff on the detection of individual differences in expression imbalance among 5Qs. With
regard to each SQ specimen, the under- and overexpression regions were visualized on the left and right side,
respectively, Since the expression imbalance regions in each SQ were evaluated independently, this type of EIM
clarified the individual difference of the overexpression region on 3g, which was detected as the most significant
region in the group of SQs by ancther type of EIM. The user can rarrow down the possible expression imbalance
regions by changing gapmex and diff. J: macrograph of the encircled region A from panel A. When gapme=« was 1 Mbp
and diff was 2, the EIM showed that 17 of 21 SQs had overexpression regions on 3g, which is comparable to other
data sets by CGH (6, 8, 9. In addition, note the high resolution of the EIM compared with CGH resolution (~20

Mbp).

Physiol Genomics » VOL 13 « www._physiolgenomies.org

—437—



EXPRESSION IMBALANCE MAP

gapmax = 1M (base-pairs) gapmay = 2M (base-pairs) gapmax = 3M (base-pairs})
B

Underexpression ~ Overexpression

<Cluster of genes with everexpression specific to each SQ>

gapmax = IM (base-pairs)
diff =2
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of gray scale, which is clearly shown in Fig. 7J. This
gradation pattern could convey the distribution of the
false balance to the user through visual perception and
enabled the detection of as many significant genes as
possible.

Table 4 shows the gene list of Cg3q 1894_5. Although
this overexpression region strongly reflected the
known genomic gain detected by CGH, several probes
without overexpression were also detected on this re-
gion. There may be several reasons for this. First, since
several probes with low quality were possibly included
in this region, signal intensity does not always reflect
their target mRNA expression levels. Improvement of
the quality of probes would make it possible to detect
the overexpression region more clearly. Second, mRNA
expression levels would not completely reflect genomic
copy number changes caused by chromosomal gain or
loss, although there was strong correlation between
them, because they are under various transcriptional
control including feedback pathway of lost or gained
genes themselves, Mukasa et al. (7) also reported that
several genes without reduction of expression were
detected in 1pL.OH region of oligodendrogliomas. In
addition, it should be stated that cancer tissues used
here contained significant number of noncancerous
stromal or inflammatory cells, which add noisy expres-
sion to cancer profiling.

Because of the complex factors discussed above, sim-
ple spatial mapping of the microarray expression pro-
files on chromosomal location gives little information
about genomic structure (Fig. 12, left). In addition, it is
very difficult fo define adequate thresholds for cancer
specificity and chromosomal proximity, because the
distribution of “false balance” is unclear and the risk of
overlooking significant genes by arbitrary selection of
thresholds is high (i.e., the “threshold problem”). How-
ever, the EIM, using a new methodology without arbi-
trary selection of thresholds in conjunction with hyper-
geometrie distribution-based algorithm, has a high tol-
erance of these complex factors and controls the risk of

EXPRESSION IMBALANCE MAP

overlooking the expression imbalance regions. This ad-
vantage of the EIM over the simple spatial mapping is
clearly shown in Fig, 12. The EIM detected the under-
expression regions, A and B, and overexpression re-
gion, C, on chromosome 11, which are known loci with
frequent genomic gain or genomic loss (6, 8, 9), al-
though it was difficult to detect it from the simple
spatial mapping of D; value.

Detection of Individual Difference in Expression
Imbalance Among 8¢ Specimens

The analysis for extraction of probes with expression
profiles specific to the group of cancer is very effective
and popular. However, this type of analysis sometimes
raises a critical problem because the individual differ-
ence among a group is unochservable. In this context,
the function of the EIM to detect individual difference
of expression imbalance in a group is very significant.
Figure 11, A-I, shows that the user can narrow down
the possible expression imbalance regions on chromo-
some 3 by changing gapmax and diff interactively. Fur-
thermore, Fig. 11 shows the individual difference in
the most significant overexpression regions on 3q
{gapmax = 1 Mbp, diff = 2), where 17 of 21 8SQs had
overexpregsion regions, a finding comparable with
other data sets analyzed by CGH (6, 8, 9).

The high-resolution spatial map of expression pro-
files described in this report, i.e., the EIM, has several
significant advantages. Its validity is clearly shown by
the fact that many known loci with high frequent
genomic losses or gains were detected by regional sig-
nals obtained with high resclution by this method.

Recently, several studies have been reported on mi-
croarray-based CGH for detecting genome-wide copy
number changes (10). However, to our knowledge, no
spatial mapping data obtained with such validity and
genome-wide coverage have ever been reported previ-
ously from this array-CGH method. Experimental dif-
ficulty of genome hybridization and limited number of

Table 4. Gene list of the overexpression region on 3q detected by the EIM

Cancer
Specificity UniGere  Location, base pairs Description
* Hs.108660 189457995 ATP-binding cassette, subfamily C (CFTR/MRP), member_5
? H3,343882 189554055 CaM-KII inhibitory protein
x Hs.129801 189604044 KIAAQB04 gene product ‘
x Hs.1166 189609401 thrombepoietin (myeloproliferative leukemia virus oncogene ligand, megakaryocyte growth and
development factor)
¥ Hs.74619 189621219 proteasome (prosome, macropain) 268 subunit, non-ATPase, 2
X Has.141660 189658124 chloride channel 2
* Hs.211568 189734699 eukaryotic translation initiation factor 4 gamma, 1
? Hs.146161 189735389 hypothetical protein MGC2408
* Hs.153581 189832147 Not58 (D. melanogaster)-like protein
* Hs.174044 189851048 dishevelled 3 (homologous to Drosophile dsh)
- Hs.152936 189862279 adaptor-related protein complex 2, mu 1 subunit

The expression imbalance map (EIM) detected the most significant overexpression regions, B +s_sq 1594_s, 00 3q in the 5Qs, This region is
a known locus with frequent genomic gains (6, 8, 9). This table shows the gene list of intersection area B+s_sq_1a04_s. B+5_34_1884_s evaluated
the overlap between C+s (the eluster of probes on the U95A oligonucleotide arrays with overexpression whose differential level are more than
5) and Caq 1384 s (the region from 189,400 to 189,900 kbp on chromosome 3: gepag_1ass_s = 146 kbp). Differential levels of the genes marked
with an asterisk (*) were more than 5, and those of the genes with “x” were less than 5. The genes with “?” were not the Key-UniGenes but

the UniGenes that were contained in Genes On Sequence Map,
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Simple spatial mapping

45

Fig. 12. Advantages of the EIM over
the simple spatial mapping of expres-
sion profiles. Left: a simple spatial map-
ping of D, value, which was calculated
from the expression profiles of SQs, on
chromosome 11. Right: the EIM of the
same region. The EIM allowed detec-
tion of the underexpression regions, A
and B, and overexpression region, C, on
chromoseme 11, which are known loci
with penomic gain or genomic loss (6, 8,
9), although it is difficult to detect it by
simple spatial mapping.

Expression Imbalance Map

(gapmax = 1M (base-pairs), dimin=2)

probes on CGH array could be major problems for it.
There may be several reasons for the successful result
of our alternative approach, ealculation of genomic
structure from expression profile. The first reason is
the use of the Affymetrix-type GeneChip. The large
number of probes (12,533) available enables detection
of a relatively short abnormal region (chromosomal
loss can frequently affect areas as short as a few
hundred kbp), although this method can be easily ap-
plied to other types of microarrays. The second reason,
which is most important, is that the EIM is a visual-
ization method using a new methodology without arbi-
trary selection of thresholds in conjunction with hyper-
geometric distribution-based algorithm. By processing
the complex factors and the threshold problems which
hinder user’s visual perception of essential informa-
tion, the EIM presents to the user a comprehensive
visual image of whole genome-wide information,
clearly indicating where expression imbalance regions
are and which genes are to be examined. It has an
obvious advantage over simple spatial mapping of the
expression profiles. For further curation by the user,
simple clicking of a selected expression imbalance re-
gion on the EIM image leads to a direct link to a file
that contains the actual gene names of the region, their
expression scores, and other biological information. In
addition, if the user input the UniGene number of
genes of interest, the EIM indicates its position on the
chromosome. Therefore, the EIM can be a broadband

interface that enables user’s visual perception of com-
plex data and further curation.

Using the EIM, we might be able to detect regional
under- or overexpressions independent of copy number
changes, such as gene methylation silencing and/or
imprinting abnormality (11). In addition, by using the
Kruskal-Wallis test (4), which is a rank sum test to
deal with three or more data groups instead of Mann-
Whitney test, the EIM can easily extend to multiple
phenctypes.

In conjunction with the microdissection technique,
which can isclate only tumor-cell-specific RNA (2), our
EIM can more precisely detect potential genomic struc-
tural changes, which offer more diagnostic and thera-
peutic impact.

Conclusion

In this report, we describe the development of the
expression imbalance map, or EIM, a visualization
method without arbitrary selection of thresholds, in
conjunction with hypergeometrie distribution-based al-
gorithm, for detecting expression imbalance regions.
By using this method, many known as well as potential
loci with high frequent genomic losses or gains were
detected as regional signals with much higher resolu-
tion than conventional methods, such as CGH. The
EIM can be a broadband interface which enables user’s
visual perception of complex data and further curation,
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and its advantage is obvious over simple spatial map-
ping of the expression profiles on chromosomal loca-

tion. Therefore, the EIM would provide the user with 6
further insight into the genomie structure through
mRNA expression.

This work was supported by Grant-in-Aid for Seientific Research !
on Priority Areas (C) “Genome Information Science” from the Min-
istry of Education, Culture, Sports, Science and Technology of Japan.
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Abstract: We examined the published data for the binding affinity of typical ligands to the
o-subtype of the human estrogen receptor with use of an approximate molecular orbital
method applicable to interacting molecular clusters. An ab initio procedure for “molecular
fragments™ proposed recently to deal with such macromolecules as proteins was applied to
the molecular orbital calculations. The receptor protein was primarily modeled using
50 amino acid residues surrounding the ligand. For a few ligand-receptor complexes, the
binding energy was also calculated with vse of 241 amino acid residues contained in the en-

_ tire binding domain. No significant difference was found in the calculated binding energy be-
tween the cornplex modeled with ligand-surrounding 50 amino acids and that with residues
of the entire domain. The calculated binding energy was correlated very well with the pub-
Tished relative binding affinity for typical ligands.

INTRODUCTION

The effect of estrogenic ligands is induced by their binding to the estrogen receptors (ERs) [1-3]. Since
a variety of unknown compounds could bind to the ligand-binding domain (LBD) of the ER and exert
hormone-like effects on human and wildlife health, the ER is an important research target for the de-
velopment of therapeutic agents [3.4] as well as the screening of endocrine disruptors [5). A number of
experimental and theoretical efforts have been carried out for the mechanism of the interaction of lig-
ands with the ER LBD. Most of the theoretical works, however, have stood on empirical force field ap-
proximations [6-8]. Although they are suited for calculating macromolecules in terms of the computa-
tional time, empirical approaches may not be accurate enough theoretically. Hoping to establish a
time-saving and versatile computational procedure for biomacromolecules, we recently proposed the
fragment molecular orbital (FMO) method [9]. Here, we report the result of our FMO study for the in-
teraction of ligands with the o-subtype of ER carried out to elucidate its submolecular mechanism the-

oretically and accurately.

*Report from a SCOPE/UPAC project: Implication of Endocrine Active Substances for Human and Wildlife (J. Miyamoto and
1. Burger, editors). Other reports are published in this issue, Pure Appl. Chem. 75, 1617-2615 (2003). :
¥Comesponding author
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METHODS

In the FMO method [9], a single molecule or a molecular cluster (a group of molecules interacting to
each other noncovalently) is dealt with after being divided into fragments to which electron pairs are
assigned according to certain rules. The molecular orbitals (MOs) for fragments and fragment pairs
(combinations of two fragments) are calculated under conditions under which the orbitals are forced to
localize as the closed shell within the corresponding region. For fragments to which no electron pair is
allocated from the bond when detached in the fragmentation, the MO is built from usual atomic basis
functions of the constifuent atoms according to the conventional linear combination of atomic orbitals
to yield molecular orbitals (LCAO-MO) framework. For fragments in which bonding electron pair is
left, the atomic valence basis function of the partner atom, with which the fragment is connected orig-
inally, is used additionally in the LCAO-MO model. The initial calculation for each fragment MO yields
the initial electron density distribution.
_ The Hamiltonian for each fragment is composed to include the terms for the electrostatic poten-
tial governed by electrons in the surrounding fragments and all nuclei in the molecule. Since the elec-
trostatic potential of each fragment depends on the electron distribution of surrounding fragments, the
electron density distribution of each fragment is calculated first using the initial electron distribution
calculated in a manner described above. A set of “Schridinger” equations for every fragment with the
initial electron density is solved iteratively until the electron density distribution for all fragments con-
verges self-consistently. Likewise, the Hamiltonian of each fragment pair has the terms for the poten-
tial arising from electrons in the surrounding fragments and the terms from every nuclear charge in the
molecule. The set of equations for fragment pairs is solved using the electrostatic potential from the
converged electron density distribution of the surrounding fragments. The potential energy of fragments
and fragment pairs at the HF/STO-3G Jevel is calculated to estimate the energy of the total system.

The ligand molecules examined here are shown in Fig. 1. The coordinates of heavy atoms in the
ER complex of EST, RAL, DES, and OHT were fixed as being equivalent to those of the PDB files, en-
tries 3ERE, 1ERR, 3ERD, and 3ERT, of the Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB), respectively [10-12]. For ligands such as ESTA, GEN, TAM, BISA,
BISF, CLO, and OHC, the PDB files for the ERa complex are not available. Thus, the binding geom-
etry of the first two ligands was approximated first by superimposing the “phenoxy” substructure of the
phenol moiety on that of EST in the 3ERE, while that of the others was by superimposing their “phe-
noxy” substructure or corresponding phenyl group on that of OHT in the 3ERT file. Then, the geometry
of GEN was approximated by that in the ERB-GEN complex taken from the PDB 1QKM file. TAM,
CLO, and OHC were modeled with the Insight I system [13] based on the geometry of OHT, and the
others were optimized using the HF/6-31G(d) method. The geometry of hydrogen atorns was modeled
with the Insight II system {13] and the CHARMm force field calculations [14]. '

Hydrogen bonds, occurring between the ligand and surrounding residues directly as well as
through the mediation of a single water molecule, have been shown to stabilize the ER ligand binding
[15]. In this study, the most stable geometry of the hydrogen bond network was calculated at the
HF/6-31G(d) level [16] with use of a model molecular cluster consisting of such hydrogen-bonding
residues in the LBD as Glu 353, Leu 387, Arg 394, and His 524, each of the ligands and the single water
molecule (Model 3).

The entire LBD of the receptor protein containing 241 amino acid residues (Model 1) was used
for the calculation ouly for some ligands. The binding domain was, however, primarily modeled with
use of 50 amino acid residues “directly” surrounding the ligand (Model 2) as displayed in Fig. 2. To
make the fragmentation of the receptor protein, the peptide chain was divided at the Cat atom into
blocks of every two residues in a manner as shown in Fig. 3. The ligand as well as the hydrogen-bond-
ing water molecule was treated as a single fragment.

All the FMO calculations were carried out with an FMO program package, ABINIT-MP [17],
mostly on dual Pentium I 1-GHz clusters equipped with 32 processor units. The time required for cal-

© 2003 WUPAC, FPure and Applied Chemistry 75, 2405-2410
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1. 17p-Estradiol {EST} 2. Diethylstilbestrol {DES) 3. Raloxifens {RAL) 4. 4-hydroxytamaxifen (OHT)
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5. Genisteln (GEN) 6. Tamoxifen (TAM} 7. 4-hydroxyclomifene (OHC) 8. Clomifene (CLO) _
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9. 17a-Estradlol (ESTA) 10. Bisphenol A {BISA) 1. BlsphenoI'F (BISF)

Fig, 1 Ligands used for the calculation of the binding energy. Light black substructures represent the moiety to be
superimposed with the corresponding moiety in reference compounds.

Fig. 2 The ribbon display of the ERat LBD complexed with 17B-estradiol (1, EST). Model 1 including 241 residues
is shown as the entire picture. Fifty residues surrounding “directly” the ligand for Model 2 are dark-colored. The
ligand and the water molecule are displayed inside the matrix using ball and stick.

© 2003 IUPAC, Pure and Applied Chemistry 75, 2405-2410
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Fig. 3 Fragmentation of peptides indicated as broleen arcs.

culating entire ERa LBD containing 241 residues with ca. 4000 atoms was about 14 h. The accuracy
of the FMO method has been examined using crambin, a protein series with 46 residues [9). The ab ini-
tio total energy values calculated at the HF/STO-3G level for [Pro?2, Leu?*Jcrambin with and without
the FMQ approximation are ~17779.5030 and -17779.5024 a.u., respectively, corresponding to a dif-
ference below 0.5 kcal/mol. The computational time is “drastically” reduced with the FMO procedure
compared to that without the FMO approximation.

RESULTS AND DISCUSSION

The energy of each of the three systems, i.e., the receptor, E ..., ligand Eh and» and the ER ligand
complex, E compexs 31 be calculated from the sum of energy Vafucs of fracments and the counterpart
for fragment pairs within each system under certain conditions [9]. In the calculation of the En:mpmr
value, the hydrogen-bonding water molecule was included as a fragment along with “dipeptide” frag-
ments. The binding energy for a given ligand (AEh,and) can be expressed in eq. I as the difference in

the energy between complex and components.

AEligzmd E complex — (Eraccptor + Eligand) (1)

The binding energy relative to that of 17B-estradiol (EST), AAE;;. ., in eq. 2 is the value to be
compared with the experimental relative binding affinity (RBA) value. The RBA value of 17B-estradiol
is defined as 100.

A"ﬁ'\‘Elig:mcl = "(AEligand —AEgqr) . (2

The AAE; figand values estimated using Model 2 are plotted against the published values of log
(RBA/100) in Fig. 4.

The ligands 1-6, 9, and 10, of which the experimental RBA value is known, are shown as a cir-
cle in Fig. 4. For these 8 compounds, the correlation between AAE and log (RBA/100) seems to be
promising, the correlation coefficient r being 0.837. In particular, there is a very good correlation
(r = 0.931) for the 7 ligands omitting TAM (6). From the correlation equation {(n = 8), the log
(RBA/100) value of ligands 7, 8, and 11, of which the RBA value is unknown, can be estimated with
use of the calenlated AAE value, These 3 compounds are shown as a square in the plot.

The AAE value was also calculated according to Model 1 for the complex of ligands 1~4. The re-
sult was almost identical with that calculated with Model 2. The difference in the AAE value between
two models was mostly below 3 kcal/mol, suggesting that the binding between ER and ligand is local.
Another interesting finding was a difference in the charge distribution between complexed and individ-
ual component molecules. The total charge of ligands was changed to be negative with the values
-0.00 ~ -0.18 when complexed with ER. The greatest negative charge influx occurs from Gl 353 to
ligands, and a slight efflux is observed into Arg 394 and His 524. Such charge transfer is highly related
with the binding energy. In fact, the AE tends to be greater with the increase in the difference of the
charge distribution. Thus, most of the stabilization in the ER-ligand docking arises from the ligand-Glu
353 interaction. This observation seems to indicate that the charge is variable in the ER-ligand interac-
tion, and therefore atomic charges should be calculated dynamically instead of using fixed charges as
in classical calculations.

©® 2003 IUPAC, Pure and Applied Chemistry 75, 2405-2410
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AAE / keal/mol
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log({RBA/100)

Fig. 4 Relationship between calculated relative binding energy (AAE) and experimental relative binding affinity
[log (RBA/100)] of eight ligands (@), and the estimation of log (RBA/100) for three ligands (®). The regression line
is drawn so that it is forced to pass the origin of coordinates.

To summarize, we have applied the ab initio FMO method to ER ligand binding which allows us
to accurately predict the relative binding energy of xenoestrogenic ligand molecules from a “single™ en-
ergy calculation. Given a variety of compounds, some of which could bind to the ER, such methods as
we have proposed may provide a powerful tool for assessing the affinity of putative xenoestrogens in
silico prior to biclogical studies. For further improvements, it is necessary to optimize not only the hy-
drogen bond, but also the geometry of the ligand and surrounding residues to estimate possible effects,
in particular, those according to induced-fit in the ER ligand binding. Such functions are under devel-
opment in our group.
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in Microarray Experiments
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A traditional method for comparing two expression levels of genes in microarray experiments is the two-sample f-test.
Because of the difficulty in using a large number of microarrays, an alternative method is required which can provide a
reliable judgment of the comparison from a small number of replicates, even from a single pair of control and treatment,
We present a method for detecting the changes in the gene expression levels under two different conditions in microarray
experiments. Our method targets a single experiment for each condition, while retaining the statistical advantages of the
r-test. The new proposals are: 1) standard deviation (SD) estimates of the expression levels which are an indicator for
significant differences are given a priori as a function of the expression levels; 2) the limit of detection (LOD) for the
expression levels is used to eliminate the majority of genes expressed at extremely low levels. The a priori SD estimates
are obtained from six replicates under a fixed condition and are shown to be the approximate, but proper description of
the expression uncertainty covering diverse conditions {e.g., different samples (human and rat) and different DNA chips).
The LOD is defined as three times blank SD according to the [IUPAC recommendation. A cell line (HL60) which will
undergo macrophage differentiation on treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) is taken as an
example. Our methad is compared with the stest for the data on duplicate TPA experiments and the former alone is
evaluated with the data on a single TPA experiment. The errors from sample preparation and instrumental analysis are

discussed.

{Received June 6, 2003; Accepted September 16, 2003)

Introduction

The advent of high-thronghput array technology has now made
it possible to collect data on thousands to tens of thousands of
genes simultanecusly. However, methods for detecting the
genuine changes in the gene expression levels in cells or tissues
are still evolving. !

A straightforward method for comparing two expression
levels of genes is the traditional two-sample #-test. The basic
problem with the ¢-test in microarray experiments, however, is
that the repetition is restricted within a small number in most
cases, because experiments are costly or tedious to repeat.
Although the importance in replication has been illustrated,'*5*
situations often arise where only single or duplicate experiments
for each condition are allowed.

The purpose of this paper is to put forward a method for
testing the significant differences of the gene expression levels
under a single pair of experiments {a control experiment and
treatment experiment). In order to take into account the
stochastic aspects of gene expressions, we model our algorithm
on the t-test. In our approach and the r-test, the SD estimates of
the gene expression levels are a criterion for the statistical
judgment, but one of the key differences is how to estimate the
SD for each gene.

¥ Co-first authors,
t* To whom correspendence should be addressed.
K. S. present address: Japan Pharmaceutical Information Center.

In the t-test, the SD estimates are derived from the same data
set as those to be judged by the t-test, itself. This fact can be
closely connected with the above-mentioned problem of
replication. In our approach, the SD estimates, referred to here
as a priori SD, are obtained from experimental results which are
different from the target data set of the judgment.

Statistics tells that the variability in the estimates of SD obeys
the chi-squares distribution and is much larger than the
variability in the estimates of averages, as long as the estimates
are obtained by repetition. That is, the estimates of averages are
more reliable. The r-test uses the SD estimates directly, but in
this paper, the a prior SD is given as a function of the average
of the gene expression levels. Then, we can easily expect that
our approach can provide more stable judgment, but needs a
sound model for the g prior SD.

The idea of the a priori SD is not novel in the area of
analytical chemistry. Since more than three decades ago, there
have been published many theories and methods for estimating
SD with no recourse to repetition, especially in instrurnental
analyses.'** In spite of varied symbols and terminology in the
literature, the largest part of uncertainty equations proposed can
take a universal form:*

Sa2

RSD= 2%

+P, (€))

where RSD denotes the relative standard deviation of
measurements, sz denotes blank SD, A measurements (e.g.,
aren), and [ independent error. To our knowledge, Huber et af.
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first used Eq. (1) in 1971. The identical error models were
adopted in microamray experiments.*® This paper also follows
suit,

The mathematical formalism of uncertainty like Eq. (1) has
wide applicability. Examples are LOD,»*% confidence
intervals of linear calibration® and tests of significant
differences.*¢  Theoretical SD descriptions elaborated so far
include Winefordner’s theory,2 Ingle’s theory,"" Bouman’s
theory** and FUMI theory (FUnction of Mutual
Information}. ™%

Proceeding along the lines suggested by the FUMI theory, our
approach is named after it. The other salient feature of the
FUMI theory in this paper is the introduction of LOD which is
helpful to remove the vast majority of genes expressed at
exceedingly low levels. This point is also a problem with which
simple fold-change methods are accompanied.?® The FLUMI
theory is applied to a cell line (HL60) which will undergo
macrophage differentiation on exposure to a tumor promotor,
12-O-tetradecanoylphorbol 13-acetate (TPA) 0

The errors due to sample preparation, before the instrumental
measurement, are often a critical problem in practice. Typical
experiments are planned to discern the contributions of the
preparation and measurement processes to the fotal analytical
error. This paper demonsirates that the error magnitude of
preparation is even smaller than that of the measurement in our
analytical system.

Materials and Methods

There are about ten thousand genes on a DNA chip used
(GeneChip, Affymetrix). A probe set for a given gene on the
DNA chip usually contains sixteen probe pairs, each of which is
made up with perfect match and mismatch probe cells. The
total RNAs prepared from a sample are enzymatically converted
into fragmented, biotin-labeled cRNAs and hybridized to the
probe sets. After washing and staining with phycoerythin
conjugated streptavidin, the amount of hybridized cRNAs is
quantified by scanning the DNA chip with the argon-ion laser
scanner. The resulting fluorescence image data are processed
and given as *Signal” by a software (Microarray Suite 3.0,
Affymetrix). The values of “Signal” can directly be related
with the expression levels of the genes and are used as
measurements of samples by the r-test and FUMI theory.

All the experiments including RNA isolation, hybridization,
etc. were carried out according to the manufacturer’s protocol.
The cell lines used were human hepatocellular carcinoma cell
line (HepG2), human promyelocytic leukemia cell line (HL60)
and rat microglia. The rat celi line was obtained from primary
cell cultures of neonatal Wister rat brains as described
previously.’' The combinations with DNA chips {GeneChip,
Affymetrix) were: HepG2 (U95A); HepG2 (U95B); HL60
(U95A); rat microglia (U74A).

The biotin-labeled cRNA for each cell line was stocked and
later used for the repeated experiments (# = 6} which began
with the hybridization (six arrays for each cell line).

The HL60 cells were exposed to 20 nM TPA for 1 h and the
biotin-labeled ¢RNA was prepared and stored as a stock
solution. A total of four U95A arrays were used (two with the
TPA-exposed stock solution and two with the control stock
solution).

The model experiments for the entire microarray analyses
were carried out as follows: the total RNA was prepared from
eleven culture dishes of HL60 by the RNeasy Mini total RNA
preparation kit (Qiagen, Germany); cRNA was synthesized

ANALYTICAL SCIENCES NOVEMBER 2003, VOL. 19

from 10 pg of total RNA on each dish according to the
Affymetrix protocol; the cRNA was determined by ultra-violet
absorption spectrometry; the RSD was calculated from the
measurements (1 = 11).

Theory

A brief review of the r-test and an in-depth explanation of our
test are given below,

t-test and Cocltran-Cox method
1t is assumed that the number of replicates is two for exposure
and control experiments, respectively. Let X be the mean of
the expression levels (measurements}, Xe, of a gene for exposed
samples and Xc be the mean of measurements, Xc, of the gene
for control samples, In the #-test, the expression levels of a gene
are judged to be significantly different, if the absolute difference
between Xg and Xc, meets the condition:
Ke—Xd 59,925, ®)

where 9.925 is the critical value of [t| at a significant level of
1%. Here, the SD estimate, s, takes the form:*

s= V(s + 52, 3)

where sg and sc are the SD  estimates of individual
measurements, Xe and X., of exposure and control, respectively.

Before the t-test, the F-test is carried out for the $D estimates,
se and sc. If the homoscedasticity assumption (se = s¢) is
rejected by the F-test, another critical value, 63.657, is used in
Eq. (2) instead of 9.925 (Cochran-Cox method).® If the
homoscedasticity is accepted, the f-test (Egs. (2) and (3))
follows.

FUMI theory
The FUMI theory has an equivalent formalism of judgment;

He-Xd 958 )
. 8

where 5 means the SD estimate of numerator, Xz — Xc, and 2.58
Is the critical value for a significant level of 1% under the
assumption that the distribution of Xg — X¢ is normal.

We define o (a priori SD) as the SD of the individual
measurements, Xe and Xc (see Eq. (6))._If the SD of X is equal
to the SD of Xe, then the SD, s, of Xg — X can be given:

5= (= ﬁ(a +E}; note that n = 2), (5)

Figure 1 illustrates the algorithm of the FUMI theory which
consists of three types of judgment based on the a priori SD, &
(gray rhombi).

Step I (Difference > 353 5 = ﬁc): If the duplicate expression
levels for a gene under the same conditions (e.g., Xc for Control
1 and Centrol 2) are even more different than those expected by
the a priori SD, the gene is elintinated from the analysis.

Step 2 (Difference > 2.58s; 5 = &; see Eqgs. (4) and (5): If the
difference in the mean expression levels (= Xg — X¢) is regarded
as being significant at 1% level, the gene goes to the next step.
If not, it is discarded.

Step 3 (Larger data > 2 x LOD; LOD = 3(¢ +¥2 )): If the
largest level of the control and exposure means is less than
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Fig. 1

twice the limit of detection (LOD), the gene is removed from
the analysis.

According to the [UPAC recommendation,® LOD is defined
as three times blank SD, 5 (5o = ¢ where X = 0 in Eq. (6)). The
blank measurements correspond to the expression levels of
house-keeping genes and are assumed to vary due to a random
fluctuation of detector noise or other error sources. The above
LOD definition implies that the probability for a noise-created
false signal being above the LOD is at most 0.13%.3 If the
smallest level of the control and exposurc means is just the
LOD, the minimum level which can be distinguished from the
LOD level at a significant level of 0.13% is 2 x LOD.

To a single pair of experiments, the FUMI theory can also be
applied. However, Step 1 should be skipped and the test begins
at Step 2. Moreover, the critical values should be changed: 5 =
\[—Z*Uin Step 2; LOD = 3¢in Step 3.

Results and Discussion

Precision of microarray measurement

Figure 2A shows the precision plot for human HepG2 using
U95A chips. The X axis is the average of & expression levels
(measurements} for each gene (total 12559 genes). The Y axis
denotes the SD values estimated statistically from the 6
measurements each. The SD estimates {#) are not randomly
scattered, but seem to increase with increasing expression level,
This trend of the precision plot is quite common to many
instrumental analyses such as ultraviolet-visible absorption
spectrometry, atomic absorption spectrometry and high
performance liquid chromatography.'>®2 The similar precision
plots for microarrays were observed. 4%

Qur microarray experiments were repeated over a part of the
entire process, ranging from the hybridization on the chips to
the data processing which gives the measurements, X. The least
squares fitting to the observed SD values in Fig. 2A can lead o
the SD dependence on X (for details, see the legend of Fig, 2):

o= Y 0.009639 X* + 91897.8 (6)

Flow chart of probabilistic significance test (FUMI theory). 5, SD; LOD, limit of detection,

This is the a priori SD defined in the preceding section and is
shown in Fig. 2A (—). As for Fig. 2A, exceptionally large SD
estimates are spotted frequently at high expression levels and
the region of the least squares fitting is limited as described in
the figure legend to guarantee the goodness of fit. Li and Wong
revealed outliers due to various reasons including image
artifacts in oligonucleotide microarrays.'?

The dots (e) of the precision plots in Figs. 2B - D are the SD
estimates observed under the conditions different from Fig. 2A
(i.e., different samples, chips; see the legend). However, the
lines {—) in Figs. 2B - D are just the a priori SD, &, drawn in
Fig. 2A (Eq. (6)). From this fact, we can see that although the a
priori SD is phenomenological without knowledge about the
causality of errors appearing on X, the a priori SD can provide a
general aspect in the microarray experiments conducted here.
The results of the TPA experiments are analyzed below with
Eq. (6).

The distribution of microarray measurements is shown in Fig.
3A. The data are collected from the genes which give almost
the same averages, Xp (= 1100}, of measurements {for details,
see the legend). Figure 3B illustrates the normal distribution
with the SD obtained by substituting Xp for X in Eq. (6).
Although there are slight differences between the observed and
nornial distributions, especially around the center and on the
edges, the measurements can be considered normally
distributed. This normality makes the SD scattering pattem in
Fig. 2 interpretable in terms of the chi-square distribution, A
log-normal distribution was observed for the bulk of Affymetrix
microarray spot intensities.®

Underlying the #test is the gene-specific SD, or rather
changeable SD from gene to gene. However, the intensity-
dependent SD of the FUMI theory (Eq. (6)) is not surprising in
the fizld of instrumental analysis. A photomultiplier can know
the intensity of light, but can never know anything else, e.g., the
origin of light is a human gene or rat gene. ‘

Error sources and evaluation of a priori SD
The error sources of the microarray measurements have yet to
be identified. The constant term of Eq. (6) (= 91897.8)
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Fig. 2 Precision plots for microarray measurements in different conditions. Six DNA chips are used for

each condition. The average and SD estimate of 6 measurements for a gene leads to the values of X and Y
axes, respectively, e, the SD estimates from six replicates; —, the fitted line (@ priori SD, Eq. (6)).
Conditions (samples, chips): A, human HepG2, U95A; B, human HL60, U95A; C, humarn HepG2, U95B; D,
rat microglia, U74A. The intercept (= 91897.1) of Eq. {6} is the average of the variance estimates over X
from 1000 to 2000. The ceefficient (= 0.009639) is obtained from the least squares fitting of a straight line
passing the origin to the average-subtracted variance estimates over X from 1000 to 100000,

700 dominates at low fluorescence intensities and will correspond to
sao F 1 the background noise which comes mainly from the
o | photomultiplier of the detection unit. The coefficient of X* (=
g 0.009639) plays an important role at high intensities where the
£ 40 I RSD of measuwrements is almost invariant (-10% here),
g 100 | Promising candidates of error sources are some procedures
%200 ! before the light detection such as the incorporation of
w fluorescent tags and hybridization.
190 The model experiments, using no microarrays (see “Materials
0 b e e ? and Methods™), include the former part of typical entire analysis
B R e R e I I IR (preparation of total RNA and synthesis of cRNA), but the
LR AR N0 A U U A A A T U A IO O A O A A B procedure comresponding to detection is quite simple
FTTPFTFeTaigess " ~nsnas~ (ultraviolet-visible absorption). The RSD for the model
Normalized Measurements experiments was observed to be about 5%. This result implies
that the experimental error originates mainly from the total
200 RNA preparation and ¢RNA synthesis, since the precision of the
o0 | UV detection is usually high (RSD < 1%).
= Our microarray experiments lack the former part of the entire
7§ S00 1 analysis (total RNA preparation and c¢RNA synthesis).
S a0 b However, even if they included it, the emor of the entire
Fy 500 analysis (RSD = (10 + 53%)'% = 11.2) would be almost equal to
El the error of the experiments without the former part (RSD
&0 ~10%, see above).
100 From the above discussion, it follows that in our microarray
0 s experiments, the most important emor sources are the
emSmenenemonensESnInS Y background noise at low fluorescence intensities and the
} iu},i j‘ i ..5, i u}‘ i Lirrrrrpgw incorporation of fluorescent tags and hybridization at high
R R I I S I g intensities. Since the former part of analysis does not affect the

Normalized Measurements

Fig. 3 Distribution of expression levels (top) and normal
distribution (bottom). The top figure uses 498 pgenes which are
located in the X region from 1000 to 1200. The total number of
measurements used is 2988 (= 6 x 498).

precision substantially, the a priori SD (Eq. (6)) can be
considered to be applicable to the usual microarray experiments
including the sample preparation.

t-test and FUMI theory for duplicate pairs of TPA experiments
If the sample size is large, the t-test and FUMI theory would
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