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Fic. 2. Immunoflucrescence analysis of HO-1 induction in HT22 cells. HT22 cells were treated with vehicle (A) or with 1 uM NEPP11 (B) for 24 h, and then the cells
were fixed and stained with anti-(HO-1) antibody. The values in the photographs are average fluorescence intensity (arbitrary units) in the designated squares, Scale

bar in B represents 20 ym.

Fic. 3. Protection of HT22 cells against oxidative glutamate toxicity by pene transfer of HO-1. HT22 cell transfected with pEGFPC1 (GFP only, A and C) or pHOC1
(GFP-HO-1, B and D) were incubated for 12h. Then, glutamate (C and D) or vehicte (A and B) was added; and 24 h later the cells were fixed and observed under a

Auorescence microscope. Scale bar in D represents 20 pm.
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Fi. 4. Effect of biliverdin and bilirubin on the oxidative glutamate toxicity of
HT22 cells. HT22 cells were treated with various concentrations of biliverdin or
bilirubin in addition to 5 mM glutamate and were then lysed for the MTT assay at
24 h. Open squares, biliverdin; diamonds, bilirubin. The values, which represent
the percentage of the control MTT activity, are means + SD (n=4). Sig-
nificance of the difference in value in the presence of biliverdin or bilirubin vs.
the control value (in the absence of these compounds) was determined by
ANOVA (*P < 0.05).

catalytic activity was enhanced by phosphorylation and showed that C-
kinase, activated by phorbol,12-myristate,13-acetate (PMA), phos-
phorylated HO-2, resulting in increased activity and that it protects
neurons against oxidative stress through enhanced production of
biliverdin and bilirubin. In contrast, NEPP11, by inducing HO-1
protein in neurons, caused the cells to produce biliverdin and bilirubin,
both of which seem to be responsible for the inhibition of cell death
induced by oxidative stress.

We propose an intracellular mechanism for the neuroprotective
effect of NEPP11 in Fig. 5. NEPP11 covalently binds to some nuclear
protein, and induces HO-1 protein (Narumiya et al., 1987; Parker,
1995; Satoh et al., 2001). The induction of HO-1 is an event respon-
sible for the inhibition of neuronal death by NEPPI1 based on the
following results. (1) Neuroprotective NEPPG and NEPP11 induced
HO-1 protein in neuronal cells both in the presence and in the absence
of glutamate (Fig. 1B); (2) neither non-neuroprotective PG (PGA4 nor
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A"™-PGJa) protected the cells or induced HO-1 protein (Fig. 1C); (3)
gene transfer of HO-1 protected HT22 cells against oxidative stress
(Fig.3) and (4) biliverdin and bilirubin, products of HO, actively
protected HT22 cells against oxidative stress (Fig. 4). NEPP11 binds to
cellular protein(s) and activates transcription of HO-1 to protect
neurons presumably through enhanced production of biliverdin and
bilirubin (Fig. 5). In contrast to a sustained phase of regulation of HO
activity derived from HO-1 gene transcriptior, neurons can also have a
transient phase of regulation of HO activity derived from HO-2 protein

" phosphorylation. Neurons expesed to acute oxidative stress activate

HO-2 to resist this stress via phosphorylation of HO-2, whereas those
exposed to chronic oxidative stress activate HO-1 through transcrip-
tion. Regulations of ‘heme-pool’ by HO-1 and HO-2 have distinct roles
in neuronal survival and are highly critical for the resistance to
oxidative stress. HO-2 is rapidly activated by phosphorylation, but
its activated state is not sustained. In contrast, the HO-1 level is slowly
increased by transcription, and is sustained. We consider that these
differential regulations of HO activities may co-operatively contribute
to the maintenance of neuronal survival under oxidative conditions.
Strong therapeutic implications of HO-1 inducticn in neuvronatl dis-
eases associated with oxidative stress were provided by the findings
that HO-1-deficient mice were strongly susceptible to the deleterious
effects of endotoxin or hypoxin (Poss & Tonegawa, 1997; Yet et al.,
1999).

Bilirubin, the end-product of heme catabolism in mammals, is
generally regarded as a potentially cytotoxic, lipid-soluble waste
product that needs to be excreted, However, recent studies suggest
that the resultant accumulation of biliverdin and bilirubin might afford
a neuroprotective mechanism against oxidative stress. In the present
study, bilirubin as well as biliverdin protected HT22 cells at concen-
trations in the nanomolar range (Fig. 4). Consistent with this finding,
Dore et af. (1999) also reported that these compounds protected
primary cortical neurons against hydrogen peroxide toxicity at similar
concentrations, These pharmacological studies suggest that [ow con-
centrations (below micromolar levels) of biliverdin and bilirubin might
have a neuronal survival effect in the brain, whereas higher concen-
trations (above micromolar levels) of blirubin were shown to induce
neuronal death (Grojean ef al., 2000). What is the mechanism of the
neuroprotective effects afforded by these endogencus compounds?
Several possibilities were postulated by previous investigators. One is
the scavenging of free radicals (Stocker ef al., 1987), and another is
inhibition of protein phosphorylation (Hansen et al., 1997). Because
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FiG. 5. Proposed mechanism for neuronal survival-promoting effect of NEPP11.
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the generation of free radicals (Tan et al., 1998) and protein phosphor-
ylation, for example by ERK1/2 (T. Satoh et al., 2000¢; Stanciu et al.,
2000), plays a central role in the death of HT22 cells by oxidative
glutamate toxicity, inhibition of these events may contribute to inhibi-
tion of cell death. The problem is that a high concentration {above
micromolar level) of bilirubin is required to produce these actions.
Thus, some other unknown mechanism might be responsible for the
inhibition of cell death by bilirubin and biliverdin. If not, then several
neuroprotective events triggered by induction of HO-1 other than
production of biliverdin and bilirubin might be possible. For example,
CO is suspected to be a signalling molecule to modulate guanylate
cyclase activity and to produce cGMP (Maines, 1997; Zakhary et al.,
1997), which reportedly protects primary neurons (Keller et al., 1998).

The biological significance of HO-1 induction has remained a
matter of debate. The most essential question is whether HO-1 protects
or kills neurons, Schipper (2000) suggested that HO-1 overexpression
contributes to pathological iron deposition and mitochendrial damage
in ageing-related neurodegenerative disorders. Metalloporphyrins,
inhibitors of HO, protected astroglial cells against hydrogen peroxide
toxicity {Dwyer et al., 1998). These results suggest that the induction
of HO-1is cytotoxic, However, in vitro studies suggest neuroprotective
effects of HO-1. Culture experiments to examine the role of HO-1 in
neuronal survival were conducted by two groups. One (Le et al., 1999)
reported the use of antisense nucleotides; and the other (Chen er al.,
2000) reported the use of primary neurons from mice overexpressing
HO-1, HO-1 was induced in response to a varicty of oxidative stresses
including B-amyloid peptides and hydrogen peroxide in nevronal cells;
and pretreatment with HO-1 antisense nucleotides enhanced the
cytotoxicity, whereas hemin, an HO-1 inducer, decreased the toxicity
(Le et al., 1999), Cerebellar granule neurcns from mice overexpressing
HO-1 resisted glutamate toxicity by decreasing the levels of free
radicals (Chen et af., 2000). In addition, CNS neurons of HO-1
transgenic mice were resistant to permanent brain ischaemia (Panahian
et al., 1999), These results suggest that HO-1 protein is induced under
oxidative conditions and that the HO-1 protein protects newrons
against oxidative stress, In view of our results and those of others,
it is possible that the enhanced expression of HO-1 in the neurode-
generative areas is not a cause of cell damage but a result of cell
defence against oxidative stress.

Natural cyclopentenone PGs (4"-PGJ, and J5-deaxy-d”'”-PGlg)
were shown to induce HO-1 protein in non-neuronal cells (Koizumi
et al., 1995; Negishi ef al., 1995; Clay er al., 2001). Negishi et al.
(1995) reported that 4'2-PGJ, potently induced HO-1 in leukaemia
cells through phosphorylation of nuclear protein. The induction of HO-
1 protein may contribute to the anti-tumour effects of A"-PGI,
because adenoviral gene transfer of HO-1 reportedly arrested the cell
cycle of, and induced apoptosisin, vascular smooth muscle cells
proliferating in response to serum (Liu ef al., 2002). In contrast to
an apoptosis-inducing effect on proliferating cells, induced HO-1
seems to inhibit cell death in post-mitotic CNS neurons. For example,
administration of HO-1 cDNA via viral vectors decreased the volume
of infarct induced in the brain by permanent ischaemia, suggesting that
HO-1 induction is neuroprotective (Panahian et al., 1999). NEPPI1
potently induced HO-1 in cortical neurons (data not shown) as well as
HT?22 cells and protected them at similar concentrations (Satoh et al.,
2001). Furthermore, NEPP11 also reduced the volume of infarct
induced by permanent ischaemia (Satoh ef al., 2001). In this context,
NEPP11 is a novel melecular probe both in vive and ir vitre for the
investigation of neuroprotective HO-1 inducer against oxidative stress.
In contrast, nen-neuroprotective cyclopentenone PGs such as PGA,,
PGA,, 4'2-PGJ; and 15-deoxy-A'>1*.PGJ; neither protected HT22
cells (Satoh et al., 2001) nor induced HO-1 protein in them (Fig. 1).

The differential response to 4'2-PGJ, between nevronal and non-
neuronal cells remains to be analysed, but it might be dependent on the
cell types used. Alternatively, the toxicity of 4'*-PGJ; toward neurons
might mask the neuroprotective effects of this PG.
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ABSTRACT

WW domain-containing oxidoreductase (WWOX) is a candidate tumor
suppressor gene, Because mutation or deletion in the coding region of
WWOX is rarely found, it is speculated that the appearance of aberrant
transeripts affects progression of various cancers. However, little is known
about the role in these cancers of the WWOX protein. To characterize
endogenous WWOX protelns, we analyzed WWOX expression using
newly generated monoclonal antibodies. In immunoblot analysis of 49
cancer cell lines, only the normal form of the protein was detectable,
although some of cell lines exhibited aberrant WWOX RNA transeripts.
Accumulation of truncated proteins was observed by inhibiting proteaso-
mal degradation with MG-132, whereas expression level of normal protein
did not change, sugpesting truncated proteins may be subjected to rapid
degradation through proteasomal machinery. Immunohistochemistry for
cancer cells demonstrated that WWOX protein levels are not decreased
but rather elevated in gastric and breast carcinoma, challenging the
notion of WWOX as a classical tumor suppressor, In noncancerous cells,
WWOX was observed only in epithelial cells, including hormone-regu-
lated cells such as Leydig cells, follicular cells, prostate epithelium, and
mammary glands. Interestingly, restricted stalning in nuelei was observed
in some mammary gland cells while other epithelial cells exhibited local-
ization of WWOX in cytoplasm. Nuclear localization of WWOX was also
confirmed in confluent human fibroblast KMS-6, whereas WWOX was
associated mainly with mitochondria before reaching confluence, indicat-
ing that WWOX shuttles between cytoplasm and noclei. These findings
provide novel insights Into aspects of human WWOX function in both
normal and malignant cells.

INTRODUCTION

Common fragile sites can contribute to oncogenesis by facilitating
gene inactivation through chromosomal deletion or amplification (1).
The common fragile site FRAIGD on chromosome 16q23.3-24.2 is
localized within a large region of chromosomal instability in cancers
defined by loss of heterozygosity (2-5) and homozygous deletion (6,
7). Mashimo et al. (8) reported that microcell-mediated chromosome
transfer of chromosome 16q23-24 resulted in strong suppression of
metastatic activity in prostatic cancer cell lines, indicating the pres-
ence of a major tumor suppressor gene associated with cancer pro-
gression on 16q23.3-24.2.

WW domain-containing oxidoreductase (WWOX) was cloned from
this FRAIGD site (9, 10). From its deduced amino acid sequence, two
functional domains were predicted; the first, at the NH, terminus, is a
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tandem WW domain that is likely to be involved in protein-protein
interactions. The second is short-chain dehydrogenase/reductase do-
main that is shared in common among metabolic enzymes of steroid
hormones {11). On the basis of the function of these motifs and the
observation that WWQOX shows elevated expression in hormonally
regulated tissues such as testis, prostate, and ovary, it has been
speculated that WWOX is functionally related to steroid hormones
9).

WWOX is reported to behave aberrantly in cancers of the breast,
ovary, esophagus, and lung (9, 12-16}. Although truncated WWOX
transcripts are frequently observed in cancers from these tissues,
mutations or deletions of the gene in the coding region are rarely
found. Ectopic expression of WWOX protein induces apoptosis (11}
and suppression of tumor growth both in vitre and in vive (17). From
these findings, WWOX was proposed to be a candidate tumor sup-
pressor gene in which the function is presumably inactivated by the
dominant negative action of truncated products from aberrant tran-
scripts (17). However, a consistent picture of the subcellular localiza-
tion of WWOX has not yet emerged (11, 17), and the dominant
negative theory of WWOX action has remained untested without
direct examination of endogenous expression of WWOX protein.
Consequently, little is known about the role of WWOX protein in
cancer progression.

To address these issues, we performed immunaoblotting, subcellular
localization analysis, and immunohistochemistry using newly gener-
ated monoclonal antibodies and provide new insights into the molec-
ular understanding of WWQOX protein in normal and cancer cells.

MATERIALS AND METHODS

Tumotr Cell Lines. The stomach cancer cell lines OCUM-2M, OCUM-
2MD3, and QCUM-2MLN were previously established by Yashiro et al. (18)
and Fujiwara et al. (19). An additional 46 tumor cell lines derived from
differant tumor types (stomach, liver, lung, colon, esophagus, pancreas, kid-
ney, brain, and breast) were obtained from the American Type Culture Col-
lection (Manassas, VA), Riken Cell Bank (Tsukoba, Japan), Cell Resource
Center for Biomedical Research at Tohoku University (Sendai, Japan), and
Japanese Collection of Research Bioresources (Tokyo, Japan). Human skin
fibroblast KMS-6 was purchased from Dainippon Pharmaceutical Co. Ltd.
{Osaka, Japan)

Reverse Transcription-PCR and Northern Blot Analysis. cDNA de-
rived from human WWOX was synthesized with oligodeoxythymidylic acid
primer from | pg of total RNA and dituted up to 80 pl as described previously
(20). Reverse transcription-PCR was performed with Advantage cDNA po-
lymerase mixture (Clontech, Palo Alto, CA)and 1 pl of cDNA for L ¢ycle of
94°C for 2 min, followed by 35 cycles of 94°C for 30 s, 63°C for 30 s, and
68°C for 3 min. Primers for amplification of sequence from exon 1 to 9 were
5'-GTGCCTCCACAGTCAGCCATG-3' (sense} and 5'-CATCCCTCCCA-
GACCCTCCAGT-3" (antisense). Glyceraldehyde-3-phosphate dehydrogenase
primers were CATGTGGGCCATGAGGTCCACCAC (sense) and AATGC-
CTCCTGCACCACCAACTGC (antisense). Northern blot analysis and quan-
tification of mRNA expression, using 20 ug of total RNA encoding normal
WWOX, was performed as described previously (20).

Generation of Anti-WWOX Monoclonal Antibodies. A glutathione 3-
transferase-fusion protein of human WWOX derived from normal tissue was
constructed in the expression vector pET 41 (Novagen, Madison, WI). Fusion
proteins were induced in BL-21 Codon Plus (DE3; Stratagene, La Jolla, CA)
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Fig. 1. Epitope mupping of anti-WWOX monoclonal antibody H2267. A, immuncbiot
analysis was performed with anti-WWOX antibedy H2267 {Lanes ]~6) and anti-Xpress
antibody (Lane 7). Xpress-tagged proleins were abtained by transfection of expression
vector with inserts into COS7 cells. B, a schematic representation of various recombinant
WWOX proteins, asterisk inarked bars indicate the deduced region where the epitope of
antibedy H2267 resides.

and purified using Glutathione Sepharose 4B (Amersham Biosciences, Upp-
sala, Sweden} according to the manufacture’s instructions. Recombinant glu-
tathione S-transferase-WWQX was used for 3 cycles of immunization against
female BALB/c mice. Spleen cells were isolated and fused with NS-1 my-
cloma cells (Dainippon Pharmaceutical Co., Ltd.). Hybridomas were selected
by ELISA against the purified recombinant glutathione S-transferase-fused
WWOX. After ELISA against glutathione S-transferase-WWOX, 90 hybri-
doma clones were selected and purified by limited dilution. For mass produc-
tion, 7 clones of hybridomas were grown in mice ascites, Ascite fluids were
collected and purified using ammonium sulfate.

Epitope Mapping. To obtain an antibody that recognizes both normal
full-length and truncated proteins, we determined the epitope of each antibody
by immunoblotting with recombinant normal and truncated WWOX proteins
1o correspond to amino acids 1-186, 1-98, amino acids 54~122, amino acids
17i-414, and Aexon7-8 inserted into expression vector pcDNA4/HisMax
(Invitrogen, Carlsbad, CA). Expression vectors with inserts were transfected
into COS-7 using FuGENE 6 Transfection Reagent {Roche, Mannheim, Ger-
many). Recombinant WWOX proteins containing the NH,-terminal leader
peptide Xpress epitope were obtained 2 days after transfection, and expression
of proteins were confirmed by immuneblotting with anti-Xpress antibody
(Invitrogen) and antimouse IgG antibody according to the following procedure.

Immunoblot Analysis. Proteins (10 ug) were resolved on 12% SDS-
PAGE and transferred to polyvinylidene difluoride membranes (Hybond-P;
Amersham Biosciences, Piscataway, NJ). After blocking the membranes with
2% nonfat milk in PBS for 1 h, immunoblatting was performed with an
anti-WWOX antibody H2267 as primary antibody. Peroxidase-conjugated
antimouse IgG antibody {(Amershamm Biosciences) was used as secondary
antibody, and ECL-PLUS Detection System (Amersham Biosciences) was
used as substrate for chemiluminescent detection. Quantification of WWOX
protein Jevel was performed on a Densitograph Lane and Spot Analyzer (Atto,
Tokyo, Japan). To examine rapid degradaiion of truncated proteins, an inhi-
bition of proteasomal machinery assay was performed using the proteasome
inhibitor MG-132, obtained from the Peptide Institute (Csaka, Japan). A total
of 5 pM MG-132 dissolved in DMSO or DMSO only was used to treat
HCT-116 cells for 10 h, followed by immunoblot analysis.

Immunohistochemical Analysis. Immunohistochemical analysis was per-
formed against samples from a formalin-fixed, paraffin embedded tissue ar-
chive. Tissue collection and the subsequent study had full local research ethics
approval. The sections were deparaffinised in xylene, washed in ethanol, and
rehydrated in Tris-buffered saline. Antigen retrieval was performed in 10 mm
citrate buffer pH 7.0 at 120°C for 10 min, followed by incubation with 2%

nonfat milk in Tris-buffered saline. Sections were then incubated an antibody
H2267 (50 pg/ml) for 1 h, followed by secondary staining with Dako Envi-
sion+ (Dako Lid., Cambridge, United Kingdom). All sections were counter
stained with Mayer's hematoxylin.

Subcellular Localization Apalysis. Immunostaining of culture cells were
performed after fixation in 4% paraformaldehyde and permeabilization in 0.2%
Triton X-100 followed by incubation with 2% nonfat milk in Tris-buffered
saline. To gain higher, an antibody in immunostaining were biotinylated by
reacting antibodies with N-hydroxysuccinimide biotin. A biotinylated antibody
H2267-biotin (50 pg/ml) was applied as primary antibody for 1 h and FITC-
labeled Avidin (Vector Laboratories, Inc., Burlingame, CA) was used as
secondary reagent. Dual-color detection by confocal laser scan microscopy
was performed after treatment with a 0.5 uM solution of the mitochondrial
stain MitoTracker Red CMXRos (Molecular Probes, Inc., Eugene, OR).

RESULTS

Generation and Characterization of Monoclonal Antibodies
against Human WWOX., We established 90 clones of hybridoma
producing antihuman WWOX antibodies. To select antibodies that
can recognize both normal and truncated proteins, we performed
epitope mapping for antibodies from 7 clones. Antibody H2267 rec-
ognized a region within amino acids 54-98 (Fig. 14). All truncated
WWOX proteins with Aexon 5-8, Aexon 6-8 and a novel isoform
Aexon7-8, described below in this study, possess amino acids 1-136.
Thus, antibody H2267 can recognize both normal and iruncated
WWOX proteins and was selected for use in the following study.

Expression Analysis of WWOX Transcripts and Proteins in
Cancer Cell Lines, We examined the expression of WWOX by re-
verse transcription-PCR in 49 cancer cell lines derived from stomach,
liver, lung, colon, esophagus, pancreas, kidney, brain, and breast.
Except for the gastric cancer cell line MKN7 that lacks full-length
transcripts containing exons 1-9, all of the 48 remaining cell lines
expressed full-length transcripts containing exons 1-9. In addition to
full-length transcripts, aberrant transcripts were found in OCUM-
2MD3, SCH, AGS, LoVo, HCT-116, Capan-1, and MCF-7 (Fig. 24).
Sequence analysis of these transcripts revealed a novel aberrant tran-
script in OCUM-2MD3 and HLE in which alternative splicing re-
sulted in the absence of exons 7-8.

Next, we examined the expression of WWOX proteins in cancer
cells by immunoblot analysis. We anticipated the presence of trun-
cated proteins corresponding to the aberrant transcripts identified in

i 1 3 ggl?i;
D "]

Fig. 2. Expression of WWOX transcripts and proteins in cancer cell lines. A, reverse
transcription-PCR for amplification of fragments conluining exons 1-9 of WWOX. B,
reverse transcription-PCR for GAPDH as on internal control. €, immunoblot analysis of
WWOX using anti-WWOX antibody H2257. Note enly normal WWOX protein was
detected. [, proteasome inhibitor MG-132 (5 um) induced sccumulation of truncated
protein of WWOX in HCT-116 cells. + and — indicates with or withoul MG-132,
respectively.
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Fig. 3. Immunchistochemical analysis of
WWOX. A, strong staining is observed in gastric
cancer cell (right and inser), but only weak staining
in normal epithelivm {fop leff) and no staining in
intestinal metaplasia (horranr lefr) was observed in
gastric cancer tissue {X100). Magnification is
shown in fnset (X400). B, strong staining in Leydig
cells (center) and weak staining in testicular epi-
thelium is observad in testis (X200). C, suong
staining in follicular epithelium was observed in
thyroid (X400). D, restricted nuclear staining is
observed in some cells, whereas most cells showed
reactivity in cytoplasm in mammary glands
(<400,

seven of the cell lines. However, truncated proteins of M, 35,000 for
Aexon3-8, M, 26,100 for Aexon 68, and M, 35,200 for Aexon7-8,
that would correspond to the truncated WWOX mRNA transcripts
could not be identified in any of the seven cell lines. The 48 cell lines,
except for MKN7, expressed a normal WWOX protein (Fig. 2C).

Mechanism for Truncated WWOX Protein Absence. We next
investigated the reason why truncated products from aberrant tran-
scripts were not detected by immunoblotting. We first suspected that
the small amount of aberrant transcripts in cell lines was undetectable:
Even in cells with a relatively large amount of aberrant transcripts
such as Capan-1 and MCF7, the quantitative ratio of aberrant to
normal transcripts determined by Northern blotting was 0.63 and
0.069, respectively. However, truncated proteins could readily be
detected in HCT-116 cells treated with the proteasome inhibitor
MG-132 (Fig. 2D), whereas expression levels of normal WWOX
remained unchanged, suggesting that truncated WWOX proteins are
not usually detectable due to rapid and selective degradation.

Immunohistochemistry in Tumor and Normal Tissues. To de-
scribe WWOX expression in vivo, immunchistochemical analysis was
performed. If WWOX is a tamor suppressor, decreased expression
may be expected in cancer. However, strong staining in cytoplasm
was unexpectedly observed in 10 of 16 cases of gastric carcinoma
(Fig. 3A) and 5 of 5 cases of breast carcinoma (data not shown),
whereas staining in surrounding noncancerous ceils was weak. In
normal tissues, staining was observed only in epithelial cells, partic-
ularly in hormone-regulated organs such as testis (Fig. 3B), thyroid
(Fig. 3C), prostate, and mammary glands, consistent with the previous
analysis by Northern blotting (9) and our Gene Expression Database
by oligonucleotide microarray.® In testis, WWOX was enriched in
Leydig cells, which are known to produce testosterones (Fig. 3B).
Interestingly, staining in nuclens was observed in mammary epithelia
(Fig. 3D), whereas other epithelial cells were stained in the cytoplasm
(Fig. 3, A-C).

Subcellular Localization Analysis in Culture Cells. Subceflular
localization of endogenous WWOX in cultured cells was determined

3 htip:/fwww2. genome.rcast u-tokyo.ac.jp/database/.

by confocal laser scan microscopy analysis. Dual-color detection of
WWOX and mitochondria demonstrated that localization of WWOX
was mainly to mitochondria (Fig. 4, A-C). However, as shown in Fig.
4D, WWOX translocates into nuclei under confluent culture condi-
tions.

DISCUSSION

The present study is an extension of our initial goal of identifying
tumor suppressor loci in gastric cancer. We had searched for genomic
homozygous deletions in the highly metastatic schirrous gastric can-
cer cell line OCUM-2MD3 using representational differential analysis
with isogenic gastric fibroblast as a reference. This analysis identified
several homozygously deleted fragments of ~300bp, including frag-
ments mapped in 3p14 and 16g23, latterly identified as intronie region
of fragile histidine triad at FRA3B and WWOX at FRAIGD, respec-
tively. Both fragments were deleted during malignant progression to
QCUM-2MD3 from OCUM-2M, a poorly metastatic and isogenic
ancestral line of OCUM-2MD3. As well as fragile histidine triad,
alterations in WWOX such as rare point mutations and frequent
intronic deletions and expression of aberrant transcripts found in
gastric cancers (unpublished results). Prompted by these notable sim-
ilarities of WWOX to fragile histidine triad, which now established as
a tumor suppressor after a long period of controversy (21), we set out
to analyze WWOX at the protein level.

To make sure of WWOX as a tumor suppressor, the following two
points are needed: (a)} whether protein expression of WWOX in
cancer declines; and (b) what impact of aberrant transcripts in cancer
has (17). To verify these issues, we focused on chasing a fate of
aberrant transcripts and making protein expression in cancer clear by
immunohistochemistry.

By immuncblotiing with an antibody, which can recognize both
full-length and truncated WWOX, we were not able to detect trun-
cated proteins and only detected normal WWOX proteins from cell
lines, which expressed normal and truncated RNA transcripts. Trun-
cated proteins were not detectable under physiological condition until
proteasomal inhibitor MG-132 was treated(Fig. 2D). These observa-
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Fig. 4. Subcellular localization of WWOX in
human skin fibroblast KMS-6 cells by laser con-
focal microscopy. A, WWOX protein stained with
anti-WWOX antibody A2267. B, mitochondria
stained with MitoTracker Red CMXRos. C,
merged image demonstrates localization of endog-
engus WWOX protein in  mitochondria, D,
WWOX translocates into nucleus in KMS-6 under
confluent culture conditions.

tions indicate that truncated WWOX proteins in cancer are unstable
and subject to rapid proteasomal degradation and contradicts the
possibility that truncated WWOX proteins acts in a dominant negative
manner. On account of the possibility that mutated WWOX acts in the
dominant negative manner, we examined sequence analysis in the
coding region. Cancer-specific missense mutations in coding region
were not found in 49 cell lines examined, although polymorphism,
which were identified in normal individuals, were found in these cell
lines {data not shown). This result is consistent to a report by Paige et
al, (12), indicating that cancer progression is rarely caused by muta-
tion of WWOX. :

Our immunohistochemical analysis in most specimens examined
showed expression of WWOX in cancer cells is rather elevated by
comparison with that in noncancerous cells. Therefore, we did not
find predicted evidences of WWQOX as a tumor suppresser. Aberrant
transcripts of WWOX could be produced as a result of chromosomal
instability in 16q23.3-24.2 region, where another tumor suppressor
gene might reside. Thus, at present, we cannot conclude that WWOX
is a tumor suppressor. ‘

We next examined localization of WWOX protein. A consistent
picture of the subcellular localization of WWOX has yet to emerge:
localization of ectopic WWOX in Golgi apparatus was observed by
Bednarek et al. (17), whereas Chang et al. (11) reported that endog-
enous WWOX is localized in mitochondria and translocated to nuclei
after tumor necrosis factor a stimulation. The discrepancy between
two previous studies in the subcellular localization of WWOX may be
caused by the difference between endogenous and ectopic expression.
We confirmed that intrinsic WWOX localizes mainly in mitochondria
and translocates into nuclei under confluent cultre conditions. Be-
cause nuclear localization of WWOX was also detected in vivo, this
translocation may be relevant to its function. Our observations are
consistent with the report by Chang et al., who demonstrated inter-
action of WWOX with p53 (11) and phosphorylation of Tyr*® within
WW domain by c-Jun NH,-terminal kinase 1 (22). Shifting of
WWOX localization may be controlled by phosphorylation of tyro-
sine within the WW domain.

In summary, to our knowledge, this is the first article describing
expression of WWOX protein in cancers. Our results show there is
little possibility that aberrant transcripts in cancer cells behave in a

dominant negative fashion. Besides, immunohistochemical analysis in
this study was not able to detect down-regulation of WWOX protein
in cancer. Thus, our result by .protein expression analysis using
specific antibody’ did not support WWOX as a tumor suppressor.
Additional characterization of WWOX protein such as mechanism of
WWOX translocation will be required to elucidate its function.
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Abstract

In the search for new cancer subtypes by gene expression profiling, it is essential to avoid
misclassifying samples of unknown subtypes as known ones. Therefore, it is necessary to evaluate
false positive error rates of various classifiers and to develop robust new algorithms. In this paper,
we evaluated several supervised learning algorithms through a ‘null-test’ by presenting classifiers
independent samples that do not belong to any of the tumor types in the training dataset. We
found that k-nearest neighbor (KNN) and support vector machine(3VM) could have very high false-
positive rates when the number of genes used in prediction is smaller. On the contrary, prototype
matching method produce robust predictions when suitable parameters are used. We also introduce
a statistical procedure to select optimal gene set for classification. The nonparametric Kruskal-
Wallis H test is employed to select genes that are differentially expressed in multiple tumor types.
To reduce the redundancy, we divide these genes into clusters with similar expression patterns
and select a piven number of genes from each cluster. We demonstrate the efficiency of the new
algorithm with four publicly available datasets and our own expression database.

Keywords: prototype maching, support vector machine, pattern recognition, cancer diagnosis

1 Introduction

Microarray technology is a promising tool for accurate cancer diagnosis and the searching for new
cancer subtypes [1, 2, 3, 4]. Nevertheless, expression data is often very noisy because only a small
portion of the genes are correlated with the distinction of tumor subtypes. Even for these genes,
variances in expression level can occur for various histological or technical reasons. Additionally, the
number of replicates is often limited due to difficulty in collecting human' samples. The great challenge
is to develop reliable algorithms that fit the needs of current situation.

The first step in such algorithms is to select a set of genes that express differentially in distinct
tumor types. In the terms of pattern recognition, this is a task of feature selection that should
be distinguished from classification itself. For the binary case concerning two cancer subtypes(l],
feature selection can be done by simply locking for those genes that are activated in one patient
group while suppressed in the other. In the multiclass problem involving three or more tumor types,
feature selection is computationally challenging. The direct approach is to combine multiple pair-wise
comparisons with the all-us-all or one-vs-all strategy. Due to its simplicity the one-vs-all approach
has been employed in several studies]7, 8], in which a given number of genes are selected if they have
high expression levels in one tumor type and low expression levels in the others. Selection of genes
can also be performed in an iterative manner by observing the performance of a classifier(5)].

In this paper we take a different approach for feature selection. Instead of searching the whole
list for genes with predefined expression patterns, an unsupervised procedure is proposed to select
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all existing patterns of expression that could be useful in classification. This is.made possible by
introducing clustering analysis techniques, such as K-means clustering, to feature selection.

For the classification of tumors, many machine Jearning algorithms are available. Besides the simple
methods like weighted voting scheme [1] and K nearest neighbor(KNN), support vector machine (SVM)
has been widely used by many researchers. Khan et al. demonstrated the application of artificial
neural networks for discriminating four subtypes of the small, round blue cell tumors (SRBCTS) of
childhood[5]. Nevertheless, some comparative studies seem to suggest that simple algorithms tend to
have a higher reliability than more complicated ones[11].

In the choice of classification algorithms, we find it important to ask the following questions. If
a classifier is trained to discriminate, for example, two subtypes of leukemia, what kind of prediction
will it produce for a sample of a newly discovered subtype it has never seen? What if the classifier is
presented with normal tissues, or even tissues of stomach cancer? Ideally, these samples should not
be classified as either of the two subtypes; otherwise, it would be counted as false positive. Therefore,
the above questions lead to the test of false positives. Validation of classifiers in previous studies
has bheen mainly focusing on the false negative cases as most samples for independent tests belong
to one of the training subtypes. Despite the importance of avoiding false positives, especially in the
process of defining new cancer subtypes and in the detection of metastatic cancers, extensive test of
false-positive error rates of various classification schemes have not been reported in the literature.

In this paper, we test the false positive rates of various classification schemes through a ‘null-
test’ in which a classifier is presented with a large number of samples that do not belong to any
of the tumor types in the training dataset. To achieve a relatively large dataset, data from 230
microarray experiments performed in several laboratories are pooled together to test the false positive
of one classifier. We compare both the false-positive and false-negative error rate of KNN, SVM, and
prototype matching (PM), which is perhaps the simplest pattern recognition technique.

2 Method

The whole process of our approach is summarized in Fig. 1A.

2.1 Statistical feature selection

Kruskal-Wallis H test. Kruskal-Wallis H test is the non-parametric counterpart of analysis of vari-
ance (ANOVA), which is a standard statistical tool for detecting differences in multi-group comparison.
We choose the non-parametric test because it avoids making the assumption that the expression levels
are normally distributed with equal variances within groups. It is believed that nonparametric statis-
tical tests are nearly as powerful in detecting differences among populations as parametric methods
when the data are normal. They are more powerful in situations where the data does not meet the
underlying assumptions of parametric methods. Some statisticians advocate the use of nonparametric
methods.

For each gene, a statistic H is calculated accordmg to the ranks of its expression levels between

multiple groups. The score is defined as: H = m Y " —3(N+1), where N is the number of tumor
types in question, r; is sum of ranks of tumor type ¢ which has n; samples. The higher H is, the higher
the degree of association. The score tells us to what extent the gene expresses differently between eny
two groups. This score is directly related to P values because it follows a x? distribution with N — 1
degrees of freedom. For N = 3 case, if a gene's score is above the critical value of 9.21, we can tell
with P<0.01 that this gene correlates significantly with group distinctions. Genes that fail to reach
this level of significance are eliminated without further analysis. Note that the statistical significance
does not decay with the increase of N. The reason statisticians invent ANOVA and Kruskal-Wallis H
test is to avoid the accumulation of errors in multiple pairwise T-test or Mann-Whiteny U test. This
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Figure 1: A, Outline of cancer classification procedure. Based on non-parametric statistics, a cluster-
and-select strategy is employed in the selection of informative genes. False positive errors are tested by
null test and leave-one-class-out cross validation (LOCOCV). B, Prototype matching. A new sample
(open circle) is compared with the existing prototypes. .

could happen in one-vs-all and all-vs-all approaches, where the selection of informative genes is based
on O(N) and O(N?) statistical tests, respectively.

Redundancy reduction: classification of genes for the classification of samples. All
those genes that passed the H test convey information that could be useful in classification. But still
there are toco many of them. We noted that many genes have very similar expression patterns. So it is
possible to reduce the size of feature set without incurring classification accuracy. This is the so-called
redundancy reduction problem in feature selection{12].

Another issue is that the H score does not tell us which pair-wise distinction a certain gene is
associated with. It is possible that there are more genes associated with A-B distinction than those
with B-C and C-A, when three subtypes A, B, and C are considered. To improve the overall accuracy
of classification, the choice of genes should be made in balance.

We tackle these two problems at the same time through a cluster-and-select strategy. The idea is
to select a relatively small number of representatives from each cluster of similarly expressed genes.
Methods for clustering analysis have been the subject of extensive research in bicinformatics, and
there exist many algorithms. Here we borrowed such techniques for another purpose: gene filtering,
We used the simple k-means clustering method, which divides a set of genes into a predefined number
of clusters by maximizing the between group variance. In the resultant grouping, some clusters may
contain more genes than others. But we select a given number (S) of genes from all clusters to increase
the signal-to-noise ratio in classification. Because the H score indicates the significance of association,
the genes with higher scores are selected from each group. This is what we call a local filter.

2.2 Prototype matching

Prototype matching is a simple method for pattern recognition. Basically, it stores prototypes and
compares a new sample with them. As depicted in Fig. 1B, each tumor type is characterized by an
expression prototype Gi and a radius of cluster Ry, where k = 1,2,3. Prototypes are simply calculated
as the average of the expression pattern in training samples, while the radius of each cluster is the
average distance between samples and this prototype. Distances are calculated by: d;; = 1~ P;;, where
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P;; is the Pearson’s correlation coeflicients between two expression patterns ¢ and 7. As Py e [~1,1],
we have d;; € [0,2].

To demonstrate how PM algorithm works, we use the configuration in Fig. 1B as an example. For
a new sample shown in the top right, we calculate its distance to all prototypes and find that dj, the
distance to prototype (71, is the shortest. Therefore, it is temporarily assigned to type 1. The distance
to the second nearest prototype G is also calculated (ds). The confidence of prediction is measured
by the following scores:

m = (dg—d;)/d, (1)
d. = di/Ry, (2)
C = m/d,. (3)

The parameter m characterize the margin of the winner prototype. For an ideal match, where dj < d,
we have m =~ 1. By calculating the parameter 4., we compare the distance d; with the radius of the
prototype G;. Ideally d. should be about 1.0 or smaller, as R is the average distance. Less typical
samples will have a larger d,. As a larger m and a smaller d, indicates a confident prediction, we
found it is convenient to define a confidence score as € = m/d,. To make confident prediction, we
require that the score is larger than a certain threshold (0.08-0.15).

In the example shown in Fig.1B, the new sample is confidently classified as type 1 if C is greater
than 0.08. If C fails to reach the threshold value, a ‘null’ prediction is made. This may be caused
by a small m, which indicates that the new sample is almost equally similar to the twe best matches.
Or, this may also happen if d. is much larger than 1. In this case, even though the new sample are
more similar to the prototype Gi, it deviates from most samples of this kind in the training set so
_ significantly that the difference can no longer be explained in terms of random variance. In addition,
the raw Pearson’s correlation coefficient between the new sample and prototype Gy should be larger
than 0.2. All together, these criteria help the algorithm avoid false positives. The simplicity of the
PM algorithm makes it convenient to impose various common-sense based constraints for making
predictions without the significant influence on false negative error rates.

These measures of prediction confidence are chosen empirically. More rigorously, one could assume
that the distances to a prototype follow a Gaussian distribution. Thus the mean and standard deviation
could be used to evaluate the likeliness that a new sample with distance d; belongs to a group. Such
P values can be calculated for each of the prototypes and the new sample is assigned to the one with
the smallest P value. Again, both the absolute P value and the margin should be taken into account
to avoid false positives. However, since the number of biological replicates within each cancer type
is usually very limited, the mean and standard deviation may not be very reliable. Such approach is
not used in the present study. Rather, we used the empirical formulae that are believed to be more
robust for small sample size.

For comparison, we also used the closely related KNN and SVM. KNN has many variations in the
way that prototypes are chosen from training data and in the ways that votes are weighted[13]. Here
a new sample is compared with all the samples in the training dataset. (Unlike PM, KNN uses all the
samples in the training dataset as prototypes. } Then the 8-10 nearest neighbors vote with a weight of
1/r, where r is the rank. The class that receives most votes wins. Confidence is simply characterized
by the margin in the percentage of vote. The threshold to make diagnosis prediction is set to as high
as 80%, which requires that most of the k neighbors should belong to one class. For SVM, we used
an implementation of SVM-FU (www.ai.mit.edu/projects/cbel) developed by Ryan Rifkin.

2.3 Validation: sensitivity vs. reliability

There are three kinds of predictions errors. A false negative error refers to the case that a null
prediction is made for samples that actually belong to the tumor types in the training set. On the
contrary, a false positive error corresponds to the case that a positive prediction is made for those
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samples that do not belong to any of the tumor types. Also, samples that belong to one of the tumor
types may be misclassified. Such cases are usually rare. The performance of classification system
should be evaluated with regard to both false negative and false positive.

The false negative error rate is usually evaluated through two tests. In leave-one-sample-out cross
validation (LOSOCV), each sample in the training set is withheld and used to test the performance of
the classifier trained on the remaining samples. In the 'positive test’, independent samples that belong
to the training subtypes are presented to a classifier. These samples should be confidently assigned
into one of the classes.

To evaluate the false positive error rate, we introduce a ‘null test’. In this test, we present a
classifier samples that do not belong to any of the categories in the training dataset. Such samples can
be, for example, normal tissues or those from other organs. For these samples, a reliable algorithm
should produce a ‘null’ prediction because they should not be assigned to any of the subtypes known
to the classifier. Otherwise, a false positive error is registered.

Sometimes, however, null test is impossible due to the lack of samples. An alternative procedure
called leave-one-class-out cross validation (LOCOCV) is used. Withholding all the samples that belong
to one tumor subtype, we train a classifier with the remaining samples. Then the classifier is tested
against false positive error by presenting the samples that are left out. Basically it is a generalization
of LOSOCYV. The difference is that one withholds a cancer subtype instead of a sample. Note that
LOCOCY is only applicable to larger datasets with more subtypes so that the elimination of one
cancer subtype does not influence significantly the performance of the classifier. In the next section
we apply this procedure to a dataset of 11 cancer types.

2.4 OQOutliers in the training dataset

The training dataset may contain a small number of outliers due to a variety of reasons such as
sample preparation, array experiment, clinical diagnosis, etc. A small number of outliers in the
training dataset could seriously degrade the performance of classifiers. As indicated in Fig. 1A, we
eliminate such samples from the training dataset according to LOSOCYV. We reasoned that the training
dataset should be consistent with itself. In our calculation, a sample is considered an outlier if (a) it
is misclassified with a high C value when it is not used for training and (b) this single sample exerts
un-proportionally large influence on the overall classifier. But one should be very careful with the
elimination of samples because the effect of eliminating different samples might be inter-dependent.
Additionally, the total number of samples to be eliminated should be kept small (less than 5%). For
the detection of outliers, it would be helpful to examine the dataset with some outside programs such
as hierarchical clustering and data visualization algorithms.

3 Datasets and Results

Leukemia dataset and the hidden false-positives. The main purpose of the first case of ap-
plication is to test the efficiency of our statistical feature selection scheme and the robustness of the
PM against false positives. For the training dataset, we used the leukemia dataset [1]. This dataset
contains expression patterns of samples for acute lymphoblastic leukemia (ALL)} and acute myeloid
leukemia (AML). As ALL samples can be further divided into two groups: T-cell lineage and B-cell
lineage, we consider three subtypes in this dataset. There are 38 samples in the training dataset( 11
AML, 19 B-ALL and 8 T-ALL), and 34 independent samples for positive-test. Microarrays used in
the experiment are Affymetrix HuFL which contains probes for 6817 human genes. Expression level
of a gene is characterized by the average difference score of multiple match and mismatch probe pairs.

To test the false positive rates, we incorporated datasets from several laboratories as the HuFL
chip has been widely used and many datasets are available to the public. Qur null-test data includes
an ovary dataset [6], a dataset of stomach and liver tissue samples, and a variety of other samples from
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Figure 2: The change of false positive (left) and false negative (right) error rates with the number of
genes used for prediction. KNN has the highest false positive error rates and the lowest false negative
error rates. For SVM, although we raise the prediction threshold so high that its false negative error
rate increases to about 20%, its false positive error rates are still higher than that of PM. This suggests
that SVM is intrinsically vulnerable to false positives. The performance of PM are reasonable in both
kinds of errors.

our collaborators. These 239 samples are of various origins; they can be any types of human tissues
except AML and ALL. See supplementary information for more information about all those samples.
Expression scores on each array are normalized to have the same mean and standard deviation to
make the data from different laboratories compatible.

In pre-processing, we first eliminate those genes that do not change significantly by requiring that
the difference and ratio between the maximum and minimum expression level be larger than 300 and
2, respectively[l]. We also require that the standard deviation and its ratio to mean value be larger
than 100 and 0.1. Those genes with a Kruskal-Wallis H score smaller than 9.21 are eliminated as their
expression profiles do not correlate with tumor distinction with a statistical significance level P=0.01.
The expression levels of the remaining 736 genes are log-transformed. Normalization is done simply
by dividing the raw data by the length of a gene’s expression vector so that each gene is characterized
by a unitary vector. We found that the classification accuracy can be significantly degraded if we
follow the popular way of normalization that makes all genes have the same variance.

According to their similarities, these genes are divided into 20 groups by K-means clustering. -
From each group we selected a small number of genes and construct a feature set. Based on these
selected genes, prototype matching is used to make predictions on new samples. The threshold for the
‘prediction confidence C is set to 0.15. By changing the number of genes selected from each cluster,
the changes of false negative and false positive error rates are plotted in Fig. 2.

Surprisingly, a large difference is observed in the false positive rates of different c13331ﬁcat10n
methods. When less than 100 genes are used, KNN could have a false positive error rate as high as
50%. SVM also has a relatively high error rate of about 20%. On the contrary, PM has an error rate
smaller than 10%.

Even with as few as 19 predictor genes, most samples in the positive-test can be correctly classified.
This could misleadingly suggest the use of small feature set. But null-test indicates that the false
positive rates could be as high as 92% for KNN, 89% for SVM and 38% for PM. Therefore, whatever
the classification algorithms, it is important to include several hundreds of genes in the feature set.
This shows the importance of null-test: those seemingly irrelevant datasets serve as a background
based on which we can tell whether a feature set enables the unique definition of expression prototype
for a certain cancer type.
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B-ALL AML T-ALL

Figure 3: A set of 227 genes chosen for classification of B-cell acute lymphoblastic leukemia (B-ALL},
T-cell acute lymphoblastic leukemia (T-ALL), and acute myeloid leukemia (AML)[1]. Instead of
searching the whole gene list for predefined expression patterns, we try to find all existing patterns
that could be helpful in cancer classification. Black indicates high expression.

From Fig. 2, we also observed that the error rate of PM is not sensitive to the number of genes
used in prediction, as long as the number is not too small. Optimizing the balance between two kinds
of errors, we finally select 227 genes in our final feature set. In LOSOQCYV, most of the samples in the
training set are correctly classified except 3 false negatives. In the positive and null test, PM has 4
false negatives (11.8%) and 8 false positives(3.3%).-

Figure 3 gives these informative genes. The feature set contains all 6 possible alternative expression
patterns in a 3-class problem. From top to bottom in the figure, there are genes of type {1,0,1},
{1,0,0}, {1,1,0}, {0,1,0}, {0,1,1}, {0,0,1}, with 1 representing high expression and 0 low expression.
Unsurprisingly, at the top region of the figure we find a large number of genes that are shared by
B-ALL and T-ALL. We include these genes because we believe they can help achieve a high signal-to-
noise ratio. Such genes are ignored in the one-vs-all gene selection method used by {7, 5, 8], as only
genes of type {1,0,0}, {0,1,0}, {0,0,1} are selected.

This is further justified by Fig. 1 in supplementary information, in which the false positive error
rates using two feature sets are given. With PM, the cluster-and-select method yields more reliable
predictions, especially when smaller feature sets are used. This might be attributed to the fact that the
new feature selection method includes some very informative genes that are ignored by the conventional
method. When more than 500 genes are included in the feature set, error rates tend to be very close.
When SVM is applied to these two feature sets, a similar tendency is observed. However, the difference
in false positive error rate between feature selection procedures is subtle in comparison with that due
to classification algorithms, especially when more genes are used for prediction.

Finally, Fig. 4 shows the distribution of all samples with regard to prediction parameters m and
dr. The z axis is the relative distance to the nearest prototype, while the y axis represents the margin °
of this prototype over the second nearest one. These two parameters have intuitively simple meanings
that could be more easily understood by biologists than parameters like vote percentage or the output
of artificial neurons. Because both z and y axes relate to the distances of samples, we refer to such
a plot as distance-distance (DD) plot. Most samples in the training and the positive test dataset are
located in regions with a large m and small d,. On the contrary, samples in the null-test dataset have
a small m and a large d,. The decision line for confident prediction m = td, is also drawn. Here
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Figure 4: Distribution of samples plotted by two prediction parameters d, and m. Parameter dy is
the relative distance to the nearest prototype and m is the margin over the second nearest. Positive
predictions are made for the samples that lie above the dashed line.

t = 0.15 is the slop. In general, the choice of the £ can be made according to a plot like Fig. 4, which
helps to balance false negative and false positive error.

Extensive testing on other datasets. We then tested the PM algorithm on several other
datasets including a lymphoma dataset[4], a SRBCT dataset {5], and the dataset of Su et al.[7].
Prediction results are summarized in table 1. More information is available in the Supplementary
Information. The classification scheme proposed in this paper has a relatively lower rate of both false
positive and false negative error in these datasets.

Table 1: Summery of four datasets and the performance of PM algorithm. Given in parentheses
are the number of misclassified cases observed in leave-one-sample-out-cross-validation (LOSOCYV) or
independent test. Note that the false negative error rate is calculated according to both LOSOCV
and positive test. For the dataset of Su et al, which no independent data for null test is available, a
leave-one-class-out-cross-validation (LOCOCV) procedure is employed. '

# Tumor | - Samples size False False | # Genes
Dataset types Traning Positive test Null test | negative positive used
Leukemia [1] 3 37 (3) 34 (4) 239 (8) 11.8% 3.3% 227
Lymphoma [4] 3 40 (7) 26 (6) 27 (2) 19.7% 7.4% 328
SRBCT [5] 4 63 (6) 20 (2) 6 (0) 9.6% 0% 390
- Su et al. [7] 11 97 (13) 74 (14) —(12) 15.8% 12.4%* 400

4 Discussion

There are a wealth of statistical and machine learning tools that could be useful for the classification
of cancers. How to pick up the right tools and integrate them is an important issue. Such choice
should be made based on knowledge of underlying computational principles. Classification algorithms
like SVM and KNN define a hyperplane or hypersurface according to which a multidimensional space
of samples are divided into two or more regions (Fig.5). Implicitly, it is assumed that all samples
presented to the classifier belong to at least one of the predefined tumor types. This might be true
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A. Prototype matching (PM) B. Support vector machine (SVM)

Figure 5: Prototype matching (PM) and support vector machine(SVM) belong to two different
paradigms for pattern recognition. While SVM makes prediction for all samples that are far enough
from the hyper-plane, PM makes positive predictions only if a new sample is sufficiently similar to a
prototype. K-nearest neighbor method is very similar to SVM. As a result, classifiers like PM tend to
have more false negatives {(e.g. the sample in the bottom right) while those like SVM and KNN may
suffer seriously from a high false positive rates(e.g. the sample marked by a triangle at the top).

in some classification tasks such as metastatic vs. non-metastatic tumor([9], or curable vs. incurable
DLBCL patients[10]. These are ‘true’ binary problems, in which SVM and KNN can make accurate
predictions. But ‘pseudo’ binary classification tasks are more fregent: there could exit a third class
missing in both training and test dataset. Clinically, the existence of new subtypes of cancers are
always possible and it is very difficult to obtain a ‘complete’ training dataset as required by SVM and
KNN. 5VM and KNN may have high false positive rates when presented with samples of novel tumor
types. This is confirmed in this study (Fig.2).

Unlike SVM and KNN, PM defines a closely bounded region in the multidimensional space to
represent each tumor subtypes(Fig.5). There is a large rejection zone that a ‘null’ prediction will be
outputted. The uniqueness of each subtypes is recognized by an expression prototype. Although PM
can have a slightly higher false negative rate, false positive error is found to be much lower. Avoiding

false positives is essential in the process of discovering new cancer subtypes. Therefore, we believe
PM and methods alike might be more suitable for cancer classification. '

Our results also give some hints to the question of how many predictive genes should be used in
cancer classification. With the inclusion of more genes, we found that false positive errors decrease
accordingly. But the opposite tendency is often observed for false negative error. Therefore, the
optimal choice should be made by seeking a balance. This could be done by the minimization of the
total error rate. *

The searching of differentially expressed genes in two or more groups is one of the fundamentally
important tasks in the bioinformatics of gene expression analysis. Besides cancer classification, the
cluster-and-select feature selection procedure proposed here might be useful in this context. The
procedure is able to detect different patterns of gene expression in multiple groups.

To select features from the highly redundant measurements in expression profiling, we employed
k-means clustering in addition to a statistics score. Unsupervised classification techniques themselves
are used in the process of feature selection for the purpose of supervised classification. ‘This strategy
might be useful in other pattern recognition tasks where redundant measurements are involved.
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Oatpl4/blood-brain barrier-specific anion {ransporter
1 (Slc21ald) is a novel member of the organic anion
transporting polypeptide (Oatp/OATP) family. Northern
blot analysis revealed predominant expression of
Qaipl4 in the brain, and Western blot analysis revealed
its expression in the brain capillary and choroid plexus.
Immunchistochemical staining indicated that Oatpl4 is
expressed in the border of the brain capillary endothe-
lial cells. When expressed in human embryonic kidney
293 cells, Oatpld transports thyroxine (T,; prothyroid
hormone) (K, = 0.18 pum), as well as amphipathic organic
anions such as 178 esiradiol-D-178-glucuronide (K,, = 10
pm), cerivastatin (K, = 1.3 pm), and troglitazone sulfate
(K,, = 0.76 pm). The uptake of triiodothyronine (Ty), an
active form produced from T,, was significantly greater
in Oatpl4-expressed cells than in vector-transfected
cells, but the transport activity for T; was ~6-fold lower
that for T,. The efflux of T,, preloaded into the cells,
from Oatpld4-expressed cells was more rapid than that
from vector-transfected cells (0.032 versus 0.006 min~),
Therefore, OQatpl4 can mediate a bidirectional transport
of T,. Sulfobromophthalein, taurocholate, and estrone
sulfate were potent inhibitors for OQatpld, whereas
digoxin, p-aminohippurate, or leukotriene C,, or or-
ganic cations such as tetraetheylammonium or cimeti-
dine had no effect. The expression levels of Oatpl4d
mRNA and protein were up- and down-regulated under
hypo- and hyperthyroid conditions, respectively. There-
fore, it may be speculated that Qatpl4 plays a role in
maintaining the concentration of T, and, ultimately, T,
in the brain by transporting T, from the circulating
blood to the brain.

Brain capillary endothelial cells are characterized by tightly
sealed cellular junctions (tight junctions) and the paucity of
fenestra and pinocytotic vesicles, which prevent free exchange
between brain and bleod (1, 2). Therefore, the uptake of nutri-
ents by the brain oceurs through the brain capillary endothelial
cells via specific transport systems (3—7). Metabolic enzymes
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and efflux transporters expressed in the brain capillaries facil-
itate the elimination of endogenous wastes and xenobiotics
from the brain, and restrict their brain accumulation (3-7).
Because of these characteristics, the brain capillaries are re-
ferred to as the blood-brain barrier (BBB).!

The organic anion transporting polypeptides (Oatps in ro-
dents and OATPs in human) belong to the growing gene family
of organic anion/prostaglandin transporters that can mediate
sodium-independent membrane transport of numerous endop-
enous and xenobiotic amphipathic compounds (8, 9). Fourteen
members of the Oatp/OATP gene family have been identified in
rodents and humans, and they are classified within the gene
superfamily of solute carriers as the Slc21a/SLC21A gene fam-
ily (Human Gene Nomenclature Committee DataBase) (8, 9).
Several members of the Oatp/OATP family have been identi-
fied in the brain (Oatp1-3 and moatl in rodents and OATP-A in
human) (10-14). Especially, in the BBB, rat Oatp2 and human
OATP-A have been shown to be expressed in the plasma mem-
brane of the brain capillary endothelial cells {15, 16). Involve-
ment of rat Oatp2 in the uptake and efflux transport of its
substrates was investigated in vive (17, 18). The uptake of
[p-penicillamine®®]-enkephalin (DPDPE) from the blood to the
brain was determined by the brain perfusion technique in the
presence and absence of Oatp2 inhibitors (17). The brain up-
take of DPDPE was increased in Mdrla (P-glycoprotein) gene
knockout mice, and the uptake in Mdrla knockout mice was
inhibited by the substrates and inhibitors of rat Oatp?2 such as
digoxin and 178 estradiol-p-17B-glucuronide (E;178G). Vice
versa, when E,178G was microinjected into the cerebral cortex,
the subsequent elimination of E;178G from the brain was
carrier-mediated (18}, and the elimination of E;178G was com-
pletely inhibited by co-administration of taurocholate and pro-
benecid, whereas digoxin had only a partial effect (18). Partial
inhibition by digoxin suggested that additional efflux transport
system(s) for E;178G, which is taurocholate- and probenecid-
sensitive, is involved in the brain capillary.

Li et al. (19) recently identified BBB-specific anion trans-

! The abbreviations used are: BBB, blood-brain barrier; Qatp, erganic
anion transporting polypeptide; BSAT, BBB-specific anion transporter;
HEK293, human embryonic kidney 293; CA, cholate; GCA, glyco-
cholate; LCA, lithocholate; CDCA, chenodeoxycholate; UDCA, urso-
deoxycholate; PGD,, prostaglandin D,; PGE,, prostaglandin E,; E3040,
6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothi-
azole; PBS, phosphate-buffered saline; DPDPE, [p-penicillamine®5}-
enkephalin; E;178G, 173 estradiol-p-178-glucuronide; T,, thyroxine;
TLCS, taurolithocholate sulfate; 4-MUS, 4-methylumbelliferone sul-
fats; TRO-5, troglitazone sulfate; RT, reverse transcriptase; MMI, me-

Tel.: B1-3-5841-4770; Fax: 81-3-5841-4766; E-mail: sugiyama@ thimazole; T,, triliodothyronine; ES, estrone sulfate; BSP, sulfobro-
mol.fu-tokyo.acjp. mophthalein; LT, leukotriene; D2, type 2 iodothyronine deiodinase,
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