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{2) Cut-level = 0,84 (b} Cut-level =0.79

{c) Cut-level = 0.74

Figure 6. Interactive Changes of Cut-levels

In CODM, there is a risk that a small overlap block may be hidden in a large block. To avoid this
problem, CODM allows the user to change the cut level interactively. If the user decreases the cut level,
some small blocks that are hidden in larger blocks will emerge. By considering the homogeneity of
clusters and the relationships with other gene information, the user can find important genes displayed as

blocks in the CODM.
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ABSTRACT

Motivation: Since DNA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with statistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis (PCA) are used to
roughly visualize the distribution of high dimensional gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize class information
when choosing axes. Thus clearly separable datain the original
space may not be so in the reduced space used in PCA.
Resuits: For visualization and class prediction of gene
expression data, we have developed a new SVM-based
method called multidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space to exhibit properties of the data
clearly and fo visualize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in our methed: solutions of mathematical programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our methed to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algarithm is
efficient and useful for visualization and class prediction.
Contact: kemura@hal.rcast.u-tokyo.ac.jp

1 INTRODUCTION

DNA microarray has been the key technélogy in modern
biology and helped us to decipher the biological system
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because of its ability to monitor the expression levels of
thousands of genes simultaneously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyzed with statistical methods to
extract the meanings of experimental results.

A great number of supervised leaming algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani ef al., 2002; Khan ef al.,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bioinformatics
including classification of gene expression data (Furey et al.,
2000). However, SVMs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function. As a result, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimensional space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data. Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlinear PCA. (Diamantaras and
Kung, 1996) and Kernel PCA (Schélkopf et al., 1998), are
most widely used for this purpose (Huang et al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be so in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class variance. However, itisreported that SVMs
often outperform discriminant analysis (Brown et al., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data. To this end, we have developed multidimensional
SVMs (MD-SVMs), a new SVM-based method that generates
multiple orthogonal axes based on margin between two
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the discriminability
of two classes, This method fulfills the requirement of both
visualization and class prediction. The basic properties of
SVMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear classification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of $VMs, In Section 3, we describe
the algorithm of MD-SVMs, In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction.

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R"i = 1,...,m will be denoted by x;,j =
1,...,n. Theinner product of two vectors x € R" and y € R”
will be denoted by x - y. For a vector x € R” and a scalar
aeRa<xisdefinedasa < x; foralli =1,...,n. For
an arbitrary variable x,x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly introduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to scparate two classes of
data based on m training samples x; e R",i = 1,...,m with
corresponding class values y; € {£1},i = 1,...,m. SVMs
map a data x € R” into a higher, probably infinite, dimen-
sional space RY than the original space with an appropriate
nonlinear mapping ¢ : R* — RN, n < N. They generate
the linear decision function of the form f(x) = sign(w -
¢(x} + b) in the high dimensional space, where v € RV
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while b € R is
a bias which moves the hyperplane parallel to itself. The
optimal decision function given by SVMs is a solution of an
optimization problem

min -uwn2 +cZe.,

i=1

S-t-yi(w'¢(x!)+b)21_5ii i=1!""mi€20! (1)
with C > 0. Here, £ € R™ is a vector whose elements
are slack variables and € € R is a regularization parameter
for penalizing training errors. When C — ©0, no training
errors are allowed, and thus this is called hard margin

classification. When 0 < C < 0o, this is called soft margin

classification because it allows some training errors. Note that
a geometric margin y between two classes is defined as I_%H"
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors, The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier ¢ € R™ and replacing
@ (x;) - ¢(x ) by kemel function K (x;,x;) = ¢(x;) - ¢(x;)
to be solved in an elegant way of dealing with a high
dimensienal vector space. The dual problem is

max —-EZa;uJy,yjK(x:, il +Z'¥£.

i=l j=I i=]

st0<e< C,Za:yi =0. (2)
i=1

By virtue of the kernel function, the value of the inner
product ¢{x;} - ¢(x;) can be obtained without explicit
calculation of ¢ (x;) and ¢(x;). Finally, the decision func-
tion becomes f (x) =sign(¥_j% o yi K (i, %) + b). by using
kernel functions between training samples x;,i = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In order to overcome the drawback that SVMs cannot generate
more than one decision function, we propose a SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensionai SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set {w, b, §) which corresponds to
a decision function, while our MD-SVMs give the multiple
sets (w*, b*,£5),k = 1,2,...,! with ! < n, so that all the
directions wy are orthogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensional space by means
of projection, Here the first set (w', b1, £ is equivalent to
that obtained by conventional SVMs. Now we only refer to
the steps of obtaining (w*, b, §%),k = 2,3,..., L. In practice,
the k-th set (w*, b%, §5)k = 2,3,... 1 are found with iterative
computations of the optimization problem

min -—]Iw I + cz.g

i=l1
styi(X - pa) +P = 1-Efi=1,....m,
gF>0,wf w =0,j=1,...,k—1. (3)
This problem dlffers from that of conventional SVMs in the

last constraint w* - w/ = 0. The weight vector w/,j =
.,k — 1 should be computed in advance by solving
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other optimization problems (3). The optimization problem
is modified by introducing lagrange multipliers af, y* € R™
B* € R¥~! and kemne! functions. The primal Lagrangian is

H]

] 2 m
L(w', b5, 85 = Sk "+ C )t
i=l

n

+ Y a1 — £ =yt (xy) + B4Y)

i=l

k-1 m
+) Bt w) =Yyt @)
Jj=1

i=1
Consequently, the optimization problem is

mn m
1

max =3 Z Eaf"afy;y;K(x;,x;)

+ gt
P i=l j=1

l kake i o0 & k
2i ﬂ[ﬁ;(w w)+Za|':

1 i=1

T

m
st 0 <ok < C,Zafy,- =10,

i=l

D @) w)=0,j=1,.. k=1 (5

i=1
Here ¢(x;) - w? and w” - w® are calculated recursively as
follows:

n

g1
Slrp)-wl =Y ol yiK(xp,xi) — ) Bldx,) - w'),
i=]

i=1

(6}
w” - wh = Ezaf“fny’jK(x:,xj)
i=1 j=I

m p—I -1 ‘
=Y o nBle) wh+ Y et w)

i=1 j=1 i=1

m p—1! ‘
- Z Z afy;ﬁf(qb(x,-) - w'), (7

i=1 j=1

where ¢(xp) - w! = Y7, o] yiK(xp,x;) and wlw! =
el yi(@(xi), w'). As can be seen, there is no need to
calculate nonlinear map of data ¢ (x) in preblem (5) because
all nonlinear mappings can be replaced with kernel functions.
Note that this optimization problem is a nonconvex quad-
ratic problem when £ is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2
or 3. We note the experimental results are still encouraging,

The corresponding Karush-Kuhn—Tucker conditions are

of {1l — &F — yi(wh - ¢ (xs) + 5%} = 0, ®)
-0y =0,i=1,...,m. )

These are exactly the same as conventional SVMs. We
highlight the other properties conserved from conventional
SVMs:

« Projecting data into high dimensional space is implicit,
using kernel functions to replace inner products.

» The solutions e* of the optimization problem is sparse.
Then the corresponding decision function depends only
on few ‘Support Vectors’.

Since each decision function is normalized independently to
hold w® - ¢ (x;) +b* = y; fori = 1,... ,m, data scales of the
axes should be aligned with first axis (k = 1) for visualization.
The margin y*, the L2-distance between support vectors of
each class of k-th axis, is

m m

k=1 -3
Z Zaf“f)’iJ’jK(Inxj) - Zﬁf‘ﬁf(w‘ -w")) )

i=l j=| i=1

(10)
So a scaling factor s* = ! /y¥ is

m m

Z “slﬂf})’fJ’jK(xf,xj)

i=1 j=I
m m -1 . {10)
YD ety K@nx) - B! - w)

N i=1j=1 i=1

The decision function of k-th step has the form f*(x) =
sign{3"7, of v K (x;,x) + b*). Since the right hand side of
the equation has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R™ in three dimensional space is

(sk1gh (x), sh2 g4 (x), 5P g0 (), (12)

where gh(x) = T0, afyiK (x;,x) + bk, The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS

4.1 Method

In order to confirm the effectiveness of our algorithm, we have
performed numerical experiments, MD-SVMs can generate
multiple axes, up to the number of features. Here we choose
three axes, & = 1,2, 3, to simplify the experiments. When k is
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2 or 3, we use local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are normalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than 0.35. Then we calculate a score F{(x(j)) =
(et ()=~ (D)/ (e () +o~ (), fortheremaining genes,
Here ut(j) (1~ (§)) and o (j) (o~ (j)) denote the mean and
standard deviation of the j-th gene of the samples labeled
+1(-1), respectively. This score becomes the highest when
the corresponding expression levels of the gene differ most
in the two classes and have small deviations in each class.
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments.

The regularization parameter C in problem (5) is set to 1000.
This value is rather large but finite because we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kernel K(x;,x;) = x; - x; and RBF ker-
nel K(x;,x;) =exp—y|x; —x; ||> with ¥ = 0.001 in the
experiments of MD-SVMs.

4.2 Materials

Leukemia dataset (Golub etal., 1999) This gene expression
dataset consists of 72 leukemia samples, including 25 acute
myeloid leukemia (AML) samples and 47 acute lymphoblastic
lenkemia (ALL) samples. They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are labeled +1 and ALL samples are
labeled —1.

Lung tissue dataset (Bhattacharjee et al., 2001) This dataset
consists of 203 sarnples from lung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip containing probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 samples from
cancerous tissue. Test set inciudes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal tissue are labeled +1 and samples from cancerous
tissue are labeled —1.

5 RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables 1 and 2. The distributions obtained by MD-SVMs
on the leukemia dataset and the lung tissues dataset are given
inFigure 1-(1) and 1-(3), respectively. Those obtained by PCA
are given in Figure 1-(2) and 1-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2, In these tables, the class of the samples is
predicted based on decision functions f kex),k = 1,2,3,
corresponding to each of the three axes.

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions,
However, as shown in Figure 1-(2) and 1-(4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis. These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them, Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by arrows in
Figure 1-(3)). Thoughthis sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significantly deviates in MD-SVMs. This may arise
from the fact that MD-SVMSs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-SVMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f k(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables 1 and 2. In such cases, the simplest method
for prediction is to use only the 1st axis, which corresponds to
the decision function generated by conventional SVMs. The
idea is supported by the fact that the 1st decision function clas-
sifies the samples most correctly in almost all cases in Tables 1
and 2, The more advanced method is weighted voting. Sealing
factor or normalized objective values in problem (5) are the
candidate of the weight.

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column *3 axes’
of test sample of the lung tissues dataset with RBF kernel in
Table 2. This sample is misclassified by all decision functions,
so we can say that this data contains some experimental error.
The hierarchical clustering method alse supports our result.
These results indicate that MD-SVMs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visualization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMSs perform bet-
ter than the other classification algorithms, but they generate
only one axis for class prediction. (2) PCA chooses multiple
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Fig. 1. (Top row) Distribution obtained by MD-SVMs for the leukemia dataset with linear kernel. (Second row) Distribation obtained by
PCA on the leukemia dataset. (Third row) Distribution obtained by MD-SVM:s for the lung tissues dataset with linear kernel, The sample
indicated by arrows appears to be an ontlier. (Fourth row} Distribution obtained by PCA for the lung tissues dataset. The sample indicated by
arrows is the same as in the third row but with less deviates. (a) Cross shot, (b) 1st axis (x axis) and 2nd axis (y axis), (c) 2nd axis (x axis) and
3rd axis (y axis), (d) 3rd axis (x axis) and st axis (y axis). Black objects and white objects indicate AML samples (or normal tissues) ALL
samples (or cancreous tissues), respectively. Training data and test data are expressed as a sphere and a cube, respectively.

Table 1. Number of classification errors in the MD-SVMs for the lenkemia dataset. The columns *n-th axis’, 7 = 1,2, 3, indicates the number of samples

misclassified by n-th decision function. The columns *n axes’, n = 1,2, 3, indicates the number of samples misclassified by n decision functions
Kemel Sample # of samples Ist axis 2nd axis Ird axis I axis 2 axes 3 axes
Linear Training 62 o 1 2 1 1 0
RBF Training 62 0 2 7 5 2 0
Linear Test 10 1 1 2 2 1 0
RBF Test 10 0 2 ] 2 0 0
Table 2. Number of classification errors in the MD-SVMs on the lung dataset. See the caption of Table 1 for other explanation
Kernel Sample # of samples Istoxis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 170 0 i 1 0 1 0
RBF Training 170 0 3 5 2 3 0
Linear Test 33 1 0 0 i 0 0
RBF Test 33 1 1 1 0 0 [
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orthogonal axes, but it cannot predict classes of samples
without other classification algorithms. We have tried to
cover the shortcomings of both methods. MD-SVMs choose
multiple orthogonal axes, which correspond to decision
functions, from high dimensional space based on a margin
between two classes. These multiple axes can be used for
both visualization and class prediction.

Numerical experiments on real gene expression data indic-
ate the effectiveness of MD-SVMSs. All axes generated by
MD-SVMs are taken into account for separating class of
samples, while the 2nd and the 3rd axes by PCA are
not. The samples in the distributions by MD-SVMs gather
into appropriate clusters more vividly than those by PCA.
MD-SVMs can predict the classes of the samples with
multiple decision functions. We also indicate that MD-
SVMs are useful for outlier detection with multiple decision
functions.

There are several future works to be done on MD-SVMs:
(1) application of our method to wider variety of gene expres-
sion datasets, (2) investigation of gene selection for preprocess
of analysis and (3) investigation on class prediction method
with multiple decision functions. Firstly, the use of more
suitable samples may show that the axes chosen by MD-
SVMs separate samples more clearly than those by PCA.
Secondly, since the conventional SVMs show good general-
ization performance especially with large number of features,
it is expected that MD-SVMs show much better performance
than PCA with increasing the number of genes used in the
numerical experiments. Since the element of weight vector
generated by SVMs is one of the measures of discrimina-
tion power of the corresponding genes (Guyon et al., 2002),
that generated by MD-SVMs can be used for gene selec-
tion. Thirdly, the classification with probability as well as
the weighted voting mentioned in Section 4 may be achieved
in our scheme since the conventional SVMs have been already
expanded for the purpose with sigmoid functions (Platt, 1999).
We hope that our method sheds some lights on the future study
of gene expression experiments.
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Abstract: We have theoretically examined ihe relative binding affinities (RBA) of typical ligands, 17j3-estradiol (EST),
17ec-estradiol (ESTA), genistein (GEN), raloxifene (RAL), 4-hydroxytamoxifen (OHT), tamoxifen (TAM), clomifene {CLO),
4-hydroxyclomifene (OHC), diethylstilbestrol (DES), bisphenol A (BISA), and bisphenol F (BISF), to the a-subtype of the
human estrogen receptor ligand-binding domain (hER« LBD), by calculating their binding energies. The ab initio fragment
molecular orbital (FMQ) methed, which we have recently proposed for the calculations of macromolecules such as proteins,
was applied at the HF/STO-2G level. The receptor protein was primarily modeled by 50 amino acid residues surrounding the
ligand. The number of atoms in these model complexes is about 850, including hydrogen atoms. For the complexes with EST,
RAL, OHT, and DES, the binding energies were calculated again with the entire ERaLBD consistin g of 241 residues or about
4000 atoms. No significant difference was found in the calculated binding energies between the model and the real protein
complexes. This indicates that the binding between the protein and its ligands is well characterized by the model protein with
the 50 residues. The calculated binding energies relative to EST were very well comelated with the experimental RBA (the
correlation coefficient » = 0.837) for the ligands studied in this work. We also found that the charge transfer between ER and
ligands is significant on ER-ligand binding. To our knowledge, this is the first achievement of ab nitio quantum mechanical
calculations of large molecules such as the entire ERaLLBD protein.

© 2004 Wiley Periodicals, Inc.  J Comput Chem 26: 1-10, 2005

Key words: ab initio fragment molecular orbital (FMO) method; estrogen receptor o ligand-binding domain;
binding energy; charge transfer

Introduction such as the glucocorticoid receptor (GR), androgen receptor (AR),

retincic acid receptor (RAR), and so-called orphan receptors,
The steroid hormone estrogens play important roles in the regula- These NRs function as ligand-activated transcriptional factors. The
tion of growth, differentiation, and homeostasis in a variety of NRs with ligands and their coactivator form complexes that bind to

tissues. These effects are induced by the binding of estrogens to the
intranuclear estrogen receptors (ER}, for which two subtypes, ERa

and ERS, have been identified.’® ERs are members of the nuclear Correspandence fo: K. Fukuzawa; e-mail: Kaori.fukuzawa @gene. mizuho-ir,
receptor (NR) superfamily that includes other endocrine receptors co.jp
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specific sequences called response elements in the promoter re-
gions of the target genes, and then transcription of various target
genes is mediated. The NR family possesses common domain
functions and structures—that is, variable N-terminal transactiva-
tion domains, conserved DNA-binding domains (DBD), variable
hinge regions, conserved ligand-binding domains (LBD), and vari-
able C-terminal regions.5~'! The characteristic ligand-induced mo-
tion of NRs is the conformational change of the helix12 (H12) at
the C-terminal of LBD. When agonists bind to NR LBDs, the
active conformation of HI2 is formed, which possesses the coac-
tivator binding surface. Antithetically, when antagonists bind to
LBD, the coactivator binding surface is not produced because H12
is prevented from reaching its comect position.'*"

Because a variety of unknown compounds might bind to ER
LBD snd exert hormone-like effects on humans and wildlife, ER
fias become an important research target for the development of
therapeutic agents™'*!* ag well as for the screening of endocrine
disruptors.'®!7 A number of experimental and theoretical studies
have been carried out to clarify the mechanism of the ER-ligand
binding. The binding affinities of severa} compounds to ER have
been measured experimentally, and some of them are shown in
Table 1,% as the relative binding affinities (RBAs) of each com-
pound relative to the xenoestrogen, 173-estradiol (EST, 1). Since
1997, the crystal structures of ER LBD with several ligands have
been solved including 1ERE, 1ERR, 3ERT, and 3ERD, complexed
with 17B-estradiol, raloxifen, 4-hydroxytamoxifen, and diethylstil-
bestrol, respectively,'>'***=2! These crystal structures have re-
vealed the mode of binding between ERs and the ligands in detail.
Figure 1 shows the ligand-binding site of hER« with 1783-estra-
dicl, which is constituted by the ligand and the surrounding polar
and charged amino acid residues.'>'® The hydrogen bonds, which
occur directly between the ligand and the surrounding residues, as
well as through the mediation of a single water molecule, have
been shown to stabilize the ER-ligand binding.'%1*18

Using available three-dimensional structures on a public data-
base, numerous computational studies have been performed, most
of them using empirical force fields.**~*® However, force field
approaches may not be reliable enough to predict binding energies
between proteins and ligands. On the other hand, ab initio quantum
mechanical calculations have played an important role in the study

Table 1. RBA for ERe and ERS Subtypes [Experimental Values for
Humans,? RBA of Each Ligand Is Calculated as Ratic of Concentrations
of EST or Competitor Required to Reduce the Specific Radioligand
Binding by 50% (=Ratio of IC,; Values)].

Ligand ERa ERB
EST (1) 100* 100
DES (2) 236 22
RAL (3) 69 16*
OHT (4 257 232
GEN (5) 4 g7
TAM (6) 4 3
ESTA (9) 7 2
BISA (10) o001 0.01

*PDB crystal structures are published.
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Figure 1. Hydrogen bond network at the ligand binding site of ER

complexed with EST (1). Dotted lines indicate hydrogen bonds.

I

of molecular interactions as well as of the structures and properties
of molecules. Although there has been increasing interest in the
application of quantum mechanical calculations to bio-macromol-
ecules, the requirement of huge computational resources has made
such application very difficult. Recently, several research groups
have worked on this issue and have succeeded in the quantum
mechanical calculation of bio-macromolecules such as cytochrome
¢ with about 100 amino acid residues.*~** Hoping to establish a
time-saving and versatile computational procedure for bio-macro-
meolecules, we are developing a quantum mechanrical method and
a program package——that is, the fragment molecular orbital (FMO)
method?>*? and the ABINIT-MP program (available from hitp:#/
www.fsis.iis.u-tokyo.ac.jp/en/result/softwaref). The FMO method
enables the calculation of proteins consisting of ~500 amine acid
residues and polynucleotides of similar size with ab initio MO
quality and with practical computational time.

In the present article, we report the first systematic study of the
ab initio quantum mechanical calculations of proteins with more
than 200 amino acid residues: the FMO method at the HF/STO-3G
level was applied to the calculations of the binding energies of
ligands with hERx LBD (241 residues).*

Molecular Modeling

The ligand molecules examined here are displayed in Figure 2,
with the binding sites indicated in red and blue: the xenoestrogens
EST (1) and ESTA (9), the phytoestrogen GEN (5), the synthelic
estrogens DES (2), RAL (3), OHT (4), TAM (6}, OHC (7), and
CLO (8), and the industrial chemicals BISA (10) and BISF (11). In
this article, we focused on the hydrogen bond networks in Figure
1, and performed the calculations in two steps. First, the most
stable geometries of the hydrogen bond network were calculated
using small model complexes, MODEL3, as described below.
Second, the binding energies were calculated using larger model
complexes, MODEL1 and MODEL2, with the hydrogen-bond
geometries obtained at the first step.

Model Systems

We used three models for the ER-ligand complexes. Figure 3
shows MODEL 1 and MODEL 2 for the complex of ER and EST

~ {1). MODEL 1 contains the entire LBD of the receptor protein,
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Figure 2. Estrogen-like compounds used in ER-ligand binding calculations.

consisting of 241 amino acid residues (residues 307-547). In
addition to the challenge of calculating the bio-macromolecules,
we are also interested in finding a reliable model for the efficient
screening of ER-ligand docking, which plays an important role in
the in silico pracess of drug discovery. Therefore, the large-scale
cateulations of MODEL 1 were performed only for four ligands,
and most of the caleulations were carried out using the efficient
model, MODEL?2. As suggested in Figure 1, the most important
residues for ER-ligand binding are expected to be located in the
vicinity of the ligand, where electrostatic and geometric interac-
tions and hydrogen bondings seem to play the main role. We
therefore anticipated the first-layered a-helices of the ligand to be
a minimum model receptor, and MODEL 2 consists of a ligand, a
water molecule, and 50 residues of ER around the ligand (residues
342-354, 382-395, 403-405, 417-429, and 520-526),

MODEL 3 was used for geometry optimizations of the hydro-
gen bond networks displayed in Figure 1. This model consists of
a ligand, a water molecule, the side chains of the residues Glu353,
Arg394, and His524, and the main chain of Leu387, and was
further divided into two pieces, MODEL 3a and MODEL 3b, for
the two ends of the ligand (Fig. 4). MODEL 3a consists of the
ligand, Glu353, Arg394, Leu387, and a water molecule; MODEL
3b consists of the ligand and His524. The side chains of Glu353,
Arg394, and His524 were truncated at Cy, C8, and CB, respec-
tively, and were capped with methyl groups. For MODEL 3a, the
ligands were regarded as phenols with the exceptions for TAM (6)
and CLO (8) that do not have hydroxy groups and were modeled
by benzene, In MODEL 3b, the lizands were replaced by ROH :
isopropy! alcohol for EST (1) and phenol for DES (2), RAL (3),
and GEN (5) {the blue-colored parts of Fig. 2). All water mole-
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Figure 3. Ribbon display of the ERa LED complexed with EST (1).
MODEL |, including 241 residues, is displayed as the whole complex,
and in the inside, residues belonging to MODEL 2 (50 residues) are
displayed as a purple ribbon surrounding the ligand (pink) and a water
molecule (light blue). The position of Helix 12, which characterizes
the agonism/antagonism of ER, is also indicated.
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Figure 4. Structures of MODELSs 3a and 3b used in geometry opti-
mization of hydrogen bond networks. MODEL 3a, shown in (a),
jncludes a portion of the ligand, a water molecule, Glu353, Arg394,
and Leu387; MODEL 3b (b) includes a portion of the ligand and
His524, Dotted lines indicate hydrogen bonds, and the distances (r,—tg)
and the angles (A,—Ag) are the hydrogen bond length (A) and angles
(degrees), respectively.

cules were eliminated except the one which directly mediates
ER-ligand binding (Fig. 1).

Molecular Geometries

The geometries of the complexes were constructed based on the
structural data obtained from the Research Collaboratory for Struc-
tural Bioinformatics (RCSB) Protein Data Bank (PDB);*' the
entries are 1ERE, 3ERD, IERR, and 3ERT for the ERa-ligand
complexes of EST (1), DES (2), RAL (3), and OHT (4), respec-
tively.'>'* Missing hydrogens, side chains, and main chains in the
PDB files were complemented manually using the molecular
graphic software Insightll.*' Hydrogen atoms were added with
both ends of the peptide chain and all the dissociative and asso-
ciative residues in their charged states.

Eleven ER-ligand complexes were examined in this study. The
initial atomic coordinates of the ER complexes with EST, RAL,
DES, and OHT (1-4) were taken from the PDB files for 3ERE,
1ERR, 3ERD, and 3ERT, respectively. Because the coordinates
for the ERa complexes with the other ligands (5-11) were not
available in the PDB database, the initial binding geometries of
these complexes were modeled as follows. First, geometries of
ligands were modeled, The geometry of GEN (5) was taken from
the PDB entry for IQKM, which was the ERB-GEN complex.
TAM, OHC, and CLO (6-8) were modeled with the Insight IT
system™ based on the geametry of OHT (4). TAM (6) was made
by replacing the 4-hydroxy group of OHT (4) with H, and OHC (7)
was made by replacing an ethyl group of OHT with the Cl atom,
and the two methyl groups of OHT with two ethyl groups, CLO (8}
was made by replacing the 4-hydroxy group of OHC (7) with H.
The geometries of the other ligands, ESTA, BISA, and BISF
(9-11), were optimized by conventional ab initie MO calculations
at the HE/6-31G(d) level. Second, binding geometries of ER and
ligand were modeled. For ESTA (%) and GEN (5), the positions
were determined by superimposing the phenol groups, which col-
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ored red in Figure 2, on that of EST (1} in 1ERE. For the other
ligands, either the phenol group or the phenyl group was super-
imposed on the phenol group of OHT (4) in 3ERT as well.

For the geometry optimization of the whole complexes, all the
positions of hydrogen atoms, side chains, and backbones added in
the previous procedure were oplimized by CHARMM force field
calculations®® with the other heavy atoms fixed at the positions
given in the PDB data. Then the geometries of the water molecule
and hydrogen atoms of MODEL 3a and MODEL 3b that constitute
the hydrogen bond network between ER and the ligand were
optimized at the HF/6-31G(d) level. It appears that only the hy-
drogens of red and blue colored hydroxyl groups of ligands in
Figure 2 and the hydrogen atoms of the water molecule were
changed in this ealculation.

Finally, to construct the structure of ER-ligand complexes with
the optimized hydrogen bond network, the atomic coordinates of
MODEL 1 and MODEL 2 were replaced with the corresponding
optimized ones obtained from the MODEL 3 calculations.

Method of Calculations

Energy Calculations

The single-point energy calculations were carried out on MODEL
[ and MODEL 2 using the ab initio FMO method at the Hartree~
Fock (HF) level with the STO-3G basis set (FMO-HF/STO-3G).
Such large-scale calculations were achieved with the ABINIT-MP
program (available from http://www.fsis.iis.u-tokyo.ac.jp/en/
result/software), which was developed by our group for the calcu-
lations of bio-macromotecules.?>>° The conventional HF method
with the 6-31G(d) basis set was used for the energy calculations of
MODEL 3 and the geometry optimization of some ligands, using
the Gaussian98 program package.*® Solvation energies of ligands
were also calculated at HF/6-31G(d) with the Polarizable Contin-
uum Model (PCM). The CHARMM force field calculations,*
which is packaged in molecular graphic software InsightIL*! were
used for minimization of hydrogens and also for ER-ligand bind-
ing energies. In the binding energy calculations, ligands and their
complexes were optimized with the harmonic atom constraint
(force constant = 10.0} for backbone atoms, and then single-point
energy calculations of them were performed without constrains.

The calculations were performed on a HITACHI SR8000 su-
percomputer at the Tsukuba Advanced Computing Center
(TACC), on 16 Dual Pentium I 1-GHz clusters (32 CPUs), and
on eight Dual Xeon 2.2-GHz clusters {16 CPUs). Mast of the FMO
calculations were done on the Dual Pentium ITT clusters. The
elapsed time was ~6000 s for MOEL?2 (50 residues} and ~50,000
s for MODEL 1 (241 residues).

The FMO Method

A brief description of the FMO method at the HF level is as
follows. A molecule or a molecular cluster is divided into N
fragments, and MO calculations on the fragments (monomers) and
the fragment pairs (dimers) are perforrned to obtain the total
energy and the properties of the system. In the following descrip-
tion, we assume that the monomers and the dimers are closed
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shells. The Fock equation for the monomer [ and the dimer /7 are
solved,

Frer =5Cs, n

Here, x = I for the monomer and x = I/ for the dimer. F*is a
modified Fock matrix and, using the conventional notation, is
wrilten as

F: - ['_'Ir + G",
B, = H 4+ VA, D Bl (), @
]

where the one-electron Hamiltonian Hf‘,, is modified from the
original one, H},,, by adding the electrostatic potential V * and the
projection operator terms. The electrostatic potential consists of
the nuclear attraction and two-electron term from the surrounding
monomer X,

=3 {Emr( Zie— ey + 3 DX mvlm)] @

K{#x) | AEK ArEX

. The projection operators are placed on atoms, where covalent
bonds are detached for fragmentation, to divide and assign basis
functions on the atoms into disconnected fragments.

The compulational procedure of the FMO method is as follows.
First, a set of the Fock equations {eq. (1)] for the monomers is
solved repeatedly until all monomer densities become self-consis-
tent. Second, the equations for the dimers are solved under the
electrostatic potential from surrounding (N—2) monomers. Finally,
using the total energies of the monomer E; and the dimer E,,

= L i+ Py 4+ S

N

the total energy of the system E is calculated by the following
equation:

E=ZEU—(N—2)ZE;- (5}
> !

EX® in eq. (4) is the nuclear repulsion energy.

In the practical calculations of the FMO method, one can save
computational time by using the following approximations without
losing significant accuracy. One is the Coulomb interaction ap-
proximation for well-separated dimers, which avoids to solve the
HF equation (dimer-es). The others are related to the environmen-
tal electrostatic potentials defined in eq. (3): the fractional point
charge approximations (esp-ptc} and the Mulliken orbital charge
approximation (csp—aoc).39 In this work, the dimer-es, the esp-pte,
and the esp-aoc approximations were applied to fragments whose
separations were more than 2.0, 2.0, and 0.0, respectively, where
the distances were given in units of the sum of the van der Waals
radii of the closest contact atoms.
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Fragmentation of Protein and Charge States of
Amino Acid Residues

For FMO calculations, a molecule is divided into fragments.
Generally, adoption of large fragments yields a total molecular
energy approximating that from the conventional ab initio MO
calcolations but takes much computational time. The manner of
dividing a molecule is thus a compromise between accuracy and
computational time. It has been shown that the difference in total
energies between the FMO and ab initic MO calculations at the
HF/3TO-3G level is less than | kcal/mo! for several polypeptides
and small proteins, when the fragmentation is done at o carbon
atoms in blocks of two amino acid residues.®” Tn this work, we
applied this division scheme to the ER LBD protein (Fig, 5),
expecting that the error in the total energy would be less than a few
keal/mol. The ligand molecules were not particularly large and
thus were treated as a single fragment.

Several amino acid residues dissociate or assuciate with pro-
tons in aqueous solution. It is problematic to determine their
charge states for electronic structural caleulations. In this work, we
assumed that the N-terminus and lysine and arginine residues were
protonated and the C-terminus and aspartic and glutamic residues
were deprotonated, although our calculations did not take the
solvent into account. Thus, the total charge of the protein was —7e,

Results and Discussion

We calculated the binding energies between ER LBD and 11 Ygands
in Figure 2. Most estrogenic ligands have a phenol group, such as the
steroid A ring, whose hydroxy group binds to the residues Glu353,
Arg3%4, and Leu387 of ER through hydrogen bonds mediated by a
single water molecule (Fig. 1). The endogenous steroidal iigand, EST
(1), possesses the other hydroxy group on the D ring, which also
makes a hydrogen bond with His524. The 11 ligands examined in this
article can be classified into three types according to the number of
hydrogen bonding sites. EST, DES, RAL, and GEN (1-3, 5) form
hydrogen bonds with ER at two sites shown in red and blue in Figure
2, and are classified into type I The intramolecular distances between
the two hydroxy groups of the type I ligands are conserved around
11-12 &, indicating that these ligands form consistent hydrogen
bonds with ER. OHT (4) and OHC (7) have cne hydrogen bonding
phenol group and belong to type II. ESTA, BISA, and BISF (9-11)
are also classified into type I despite their having two hydroxy
groups, because these groups are structurally hindered from binding
simultaneously. The hydrogen bonding sites of the type II kigands are
also colored red in Figure 2. TAM (6) and CLO (8) do not have a
hydroxy group and are classified into type HI. The binding of these
two ligands with ER might be weak because they cannot make a
hydrogen bond.
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Table 2. Optimized Bond Lengths (in A) and Angles (in Degrees) Related to the Hydrogen Bond Network

between the ER and Ligand.

EST(1) DES{2) RAL{3) OHT({) GEN() TAM(6) OHC () CLO(8) ESTA(9)  BISA(10) BISF (11)
r 1.344 1.616 1.399 1415 1.614 — 1.416 — 1.490 1.520 1.523
ra 1.784 1.792 2.014 1.788 1.832 1.637 1.786 1.615 1.786 L.774 1.761
Fy 2.050 1.835 2,147 1,733 L.776 1.755 1.730 1.751 2,048 1.767 1.782
ry 2233 2213 2.015 2.047 2.005 _ 2,045 — 2217 2,036 2.038
ry 2101 2,778 2460 2,780 2,409 — 2.780 — 1.817 2720 2719
s 2.507 2.144 2.208 2.242 2446 2.260 2.244 2.279 2.677 2.260 2298
ry 2,309 3.081 2,995 2.987 2489 2.029 2.985 2.030 2,307 2,951 3.009
rg 1.926 §.792 1.330 — 1.617 — - — — —_ —
A 176.2 176.0 178.7 1769 174.6 — 176.5 —— 157.4 1729 173.2
A, 169.5 1543 160.6 1622 169.3 162.6 162.4 1632 167.3 163.1 161.6
A,y 149.6 159.7 1612 170.2 160.2 1452 170.3 145.5 149.6 159.3 160.6
Ay 150.0 162.9 156.5 161.3 150.0 —_ 161.3 —_ 150.8 159.6 1594
Ay 125.6 110.7 114.2 106.4 118.8 — 106.4 — 140.8 108.5 109.2
Ag 118.9 155.8 131.2 1504 1423 146.5 1503 146.1 106.9 149.7 1518
Ay 134.6 124.3 1331 1215 126.3 1323 1214 132.2 134.5 124.4 124.0
Ay 1479 146.1 147.4 — 128.8 —_ — — —_ — —

Structures of Hydrogen Bond Networks

Because the hydrogen bonds play a key role in the ER-ligand
binding, it is very important to construct the proper model struc-
tures and to calculate the energy of hydrogen bonds with reason-
able accuracy. We employed an ab initie quantum mechanical
approach for the optimization of the hydrogen bond networks
using a small model, MODEL 3. For the type T ligands, both
MODELS 34 and 3b were used for describing the two binding sites.
For the type II ligands, only MODEL 3a was used to optimize the
hydrogen bond structure at one binding site. Concerning the type
M1 ligands, we did not perform the optimizations of the structures,
because these ligands do not make hydrogen bonds with the
protein.

The optimized structure of the hydrogen bond network is
shown by dotted lines in Figure 4. The geometrical parameters, the
hydrogen bond lengths, r;—ry, and the angles, A,~Ag, are given in
Table 2. Glu353 and the phenol group of the ligand are strongly
bound: the distances (r,) are short, 1.3-1.6 A, and the angles (A,)
are almost linear, 173-179°, except for ESTA (9). The water
molecule is situated among Glu353, Arg394, Leu387, and the
hydroxy group of the ligand (Fig. 42). Normal hydrogen bonds are
seen between the water molecule and Glu3s3 with 1.6-2.0 A (r3)
and 155-170° (A,), between the water molecule and Arg394 with
1.7-2.2 A (r3) and 145-170° (A,), and between the ligand and
Arg394 with 2,0-2.3 A {r,) and 150-160° (A,). One of the
hydrogen atoms of the water molecule is involved in both hydro-
gen bonds with the ligand (rg: 1.9-2.8 A and A,: 105-140°) and
with Leu387 (rg : 2.1-2.7 A and Ag: 105-155°). Thus, the water
molecule makes a bridge between the ligand and Leu387 through
the hydrogen bonds, The hydrogen bond between Arg394 and the
water molecule appears for the type ITI ligands, TAM (6) and CL.O
(8), with the bond length (r;) of 2.03 A and the bond angle (A,) of
132°. Here, the hydrogen atom of Arg394 makes a hydrogen bond
with the water molecule instead of with the hydroxy group of the
type I and type II ligands. For MODEL 3b, hydregen bonds are
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made between His524 and the other hydrogen bonding site of the
type I ligands: the lengths are 1.6-1.9 A (1) and the angles are
125-150° (Ay).

Binding Energies between ERa and Ligands

The binding energies were calculated at the FMO-HF/STO-3G
levels, and for comparison, the CHARMM force field is also used.
The energy of each of the three systems, that is, the receptor,
E ccepior the ligand, Eypon,, and the ER-ligand complex, E_qmplexs
were calculated, where the hydrogen bonded water molecule was
included in the receptor. The binding energy for a given ligand,
AE;; g000 can be obtained as a difference in the encrgics of complex

and of its components as follows,

A‘Eli|;|md. = Ecnmpl:x - (E:cc:pmr + Eligand)- (6)

and the binding energies of a ligand relative to that of EST,
AAE;, g, are defined as

AAElignnd = AE[i_gm! — AEgst. )]

Then, the correlation between AAE ., and the experimental
RBA (Table 1) was examined. Here, we have ignored the geom-
etry changes before and after binding, assuming that the binding
energy changes resulted from geometrical relaxation of each li-
gand-ER complex are equivalent,

In the CHARMM results, the AAE,__ ; values were plotted
against the experimental values of log(RBA/100) in Figure 6. For
the eight compounds, 1-6, 9, and 10, no correlation was found
between AAE;, 4 and log (RBA/100); the correlation coefficient
r was 0.035. These calculations suggest that the intermolecular
interactions between ER and ligands are poorly estimated by the
CHARMM force field.
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Figure 6. Relationship between calculated relative binding energies
(AAE) vs. experimental RBA of eight ligands to ER LBD. Calcula-
tions were performed for MODEL 1 using the CHARMM force ficld,

The FMO results are described below. The AAE;,,,., values
obtained from the MODEL 2 calculations are given in Table 3 and
plotted against the experimental values in Figure 7, The ligands
1-6, 9, and 10, whose RBA values are known experimentally, are
indicated by circles. Using the correlation equation obtained by the
least-square fitting procedure, the log (RBA/100) values of ligands
7,8, and 11, whose RBA are unknown, can be predicted from the
calculated AAE value; These are marked by squares, For the eight

Table 3, Experimental RBA. Calculated Binding Energies (AE), and
Relative Binding Energies (AAE) of Several Ligands with ER.

MODEL2 (50
residues}

MODEL1 (241
residues)

Ligand Log(RBA/100) AE AAE AE AAE

EST (1) 0.00 =37.80 0.00 -3765 0.00
DES (2) 0.37 —26.70 1110 -2833 9.32
RAL (3) —0.16 -35.30 250 -26.13 1152
OHT (4) 0.41 —-4173 ~392 -3819 -0.54
GEN (5) —1.40 —0.42 28.38 —_ —
TAM (6) =1.40 10.62 48.42 — -
QHC (7) - -47.62 -9.82 — —
CLO (8) — 529 43.10 - -
ESTA (9) =115 =25.07 12.73 — —
BISA (10) —4.00 19.22 57.02 —_ —
BISF (11) — =2223 15.57 — —

Energics are in keal/mol.
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Figure 7. Relationship between calculated relative binding energies
(AAE) vs. experimental RBA of 11 ligands to ER LBD, Calculations
were performed using MODEL 2 at the FMO-HF/STO-3G level of
theory.

compounds, 1-6, 9, and 10, the correlation between AAE and log
(RBA/100) was good; the correlation coefficient r was 0.837. In
particular, there was a very good correlation (» = 0.931) for seven
of the eight ligands, with TAM (6) being the exception.

TAM (6} is an outlier of the correlation line. This may be due
to the artificially imposed orientation of the ligand in the active site
resulting from a superimposition of TAM on OHT (4) in the
crystal structure, TAM cannot form a hydrogen bond with ER due
to lack of a hydroxy group. There is thus no reason to restrict the
ligand in the active site in the same manner as other hydrogen
bonding ligands such as OHT. Despite that, we were simply
substituting TAM for OHT in the crystal structure. This might
bring artificial instability of the caleulated binding energy and shift
the position in the plot lower than where it should be in Figure 7.
For the same reason, the predicted RBA of CLO {8) should be
shifted upward to some extent, Regarding BISA (10), although the
plot is almost in the correlation line, the repulsive binding energy
implies low reliability of the calculated energy. To avoid these
deficiencies, it is necessary to optimize the structure of the ligand
and the surrounding residues together. This is, however, almost
impossible at the present time, because too much computer time is
required. '

Using MODEL 1, the AAE values are also calculated for the
complexes of ER with the ligands EST, DES, RAL, and OHT
{1-4). The calculated binding energies (AE) are also shown in
Table 3. The AE values of MODEL 1 are almost identical with
those of MGDEL 2. The differences in AE between the two models
are below 3 kcal/mol for the complexes of EST (1), DES (2), and
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Table 4, Solvation Free Energy of Ligands (Giiuqa)-

Ligand Githea AGH v
EST (1) -13.07 0.60
DES (2} =-12,17 0.90
RAL (3) —-19.26 . —-6.19
OHT (4) —-10.73 232
GEN (5) -18.69 —5.62
TAM (6) —4.60 8.38
OHC (7) -10.56 251
CLO (®) ~4,99 8.08
ESTA (9) -11.07 2.00
BISA (10) -10.96 2.1
BISF (11) -12.24 083

They are energy differences between ligands in gas phase (Ef{L.,) and in
water of PCM (G}jSH,), and the relative solvation free energics of ligand
(AGH® Y were calculated relative to that of EST (AGE).

li gand.

OHT (4). In the case of RAL (3), however, a rather large discrep-
ancy is observed between the two models. This is thought to be due
to the fact that Leu3536 and Leu539, which are not included in
MODEL 2, are located close enough to interact with the ligand,
which is not the case for the other three ligands, Thus, MODEL 2
with the 50 residues is a reliable model for describing the inter-
action between ER and the ligands, but for a large ligand such as
RAL, additional residues which make contact with the ligand
should be included.

There would be considerable contribution of many effects to
the binding affinity, which were ignored in our calculations. A
typical one is the solvent effect. To consider the solvent effect on
ER-ligand binding, we estimated solvation free energies of ligands

Gf,“;md) using the PCM model as a difference between ligand
energies in the gas phase (E¥gana) and ligand free energies in water
of the PCM model (Gl,smd).

thnad = G::f:nzl Elg:: ' (8)
AG:l[;land Gll;nnd Gsi-?}r (9)

As shown in Table 4, the differences of solvation free energies
between EST(1) and other ligands were calculated to be less than 8.4
keal/mol, and the ligand sensitivity on the solvent effect of the relative
hinding enerey in eq. (7} is expected lo have a less order of magnitude
because the cancellation of selvation energies would occur among

G ptexs Grobeptor A0 Giiga in binding energy calculations synon-
ymous with eg. (6). Another effect, that is, hydrophobic interaction
and induced fitting, were ignored and the dispersion energy is not
included in the HF calculations. Qur calculated results nevertheless
obtained a nice comelation with the experimental results, and there-
fore, the relative binding affinity is thought to be comelated with the
enthalpic relative binding energies, and other effects for each ligand
could be assumed to be similar.

Charge Distribution

The difference in the net charges between a complex and individ-
ual component molecules is shown for several residues, the water
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molecule, and the ligands in Table 5 and Table 6 for MODEL 2
and MODEL 1, respectively. Because these two models give
similar results, the following discussions are given based on
MODEL 2. In ER-ligand complexes, the total net charges of
ligands are negative by —0.001~-0.181e, and of the same order
of positive charges are induced on Glu353 by +0.006~+0.198e.
The changes in the total net charges of Leu387, Arg394, His524,
and the water molecule are very small. The type III ligands, which
make no hydrogen bonds with ER, show very little change in their
charge states. Therefore, considerable electrons are supplied from
GLU353 to the ligands with the exceplion of the nonhydrogen
binding ones, which is consistent with the fact that a strong
hydrogen bond is formed between these ligands (proton donors)
and GLU353 (a proton acceptor).

The number of electrons transferred from ER to the ligands is
highly related with the binding energy; AE becomes larger or the
complex becomes more stable with the increase in the negative
charge of the ligand (Table 5). Thus, most of the stabilization in
the ER-ligand docking arises from the ligand-Glu353 interaction.
This fact suggests that the hydrogen bond between ER and the
lizand plays an important role in characterizing the charge transfer
and the concerted stabilization of the ER-ligand complex. This
does not mean that a simple model that assumes the additivity of
individual hydrogen bonds between the ligand and the residues
suffices for the description of the interactions between the protein
and the ligand. We note that not only the hydrogen bonds but also
the electrostatic interactions between the ligand and the surround-
ing residues contribute to the protein-ligand docking.

Conclusions

‘We have calculated the binding energies between ER and its 11
ligands using the ab initio FMO method, which allows the calculation
of large molecules. We took particular note of the hydrogen bond
network formed between ER and the ligands. Three models of the
protein were used for the description of the proper hydrogen bonding
network: MODEL 1, MODEL 2, and MODEL 3, respectively con-
sisting of 241, 50, and 4 amino acid residues. Although the classical
CHARMM force field calculations for the entire ER LBD gave poor
correlation, the relative binding energies obtained from the MODEL
2 FMO calculations were in good correlation with the experimental
RBA {logRBA), with a correlation coefficient of 0.837. These results
show the advantage of FMO calculations, and suggest that the ER-
ligand interaction is localized in the binding region and is properly
described by considering the amino acid residues in the first layered
a-helices of the ligand. The entire ER LBD should be treated for the

study of postbinding, including repositioning of Helix12 due to the

binding of agonists or antagonists. It was also found that the binding
energy was trelated to charges transferred from the protein to the
ligand upon the complexization; as the transferred charge increased,
the binding energy also became larger.

The methods presented herein may provide a powerful tool for
assessing the affinity of putative xenoestrogens in silico prior to
biological experiments. Our results show that the FMO method
and ab initio quantum mechanical calculations are efficient and
valid tools for predicting the binding affinities of ligands to pro-
teins. However, further development of quantum mechanical
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methods will be needed to obtain more reliable binding encrgies
from the calculations. It will be necessary to allow optimization of
the geometry of entire complexes, particularly induced-fit com-
plexes, and to enter the effects of the solvent into the calculations.
We are currently developing the FMO method along these lines.
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Summary l

Evidence is accumulating to stroengly suggest that drug transporters are one of the
determinant factors governing the pharmacokinetic profile of drugs. Hitherto a variety of
drug transporter genes have been cloned and classified into either solute carriers (SLC) or
ATP-binding cassette (ABC}) transporters. Such drug transporters are expressed in
various tissues such as the intestine, brain, liver, and kidney, to play critical roles in the
absorption, distribution and excretion of drugs. However, at the present time, information
is limited regarding the geretic polymorphism of drug transporters and its impact on the
function, In this context, we have undertaken the functionai analyses of the
polymorophisms identified in drug transporter genes. This review addresses part of our
most recent studies to exemplify the importance of genetic palymorphisms in drug
transporters,
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Introduction

In the last decade of the 20th century, the development of
high throughpu screening and combinatorial chemistry tech-
nologies accelerated the drug discovery process. In the 21st
century, emerging genomic technologies (i.e., bioinformat-
ics, functional genomics, and pharmacogenomics) are shift-
ing the paradigm of drug discovery research and improving
the strategy of medical care for patients. Identifying
human DNA sequences, genomic structures, and human
genetic variations, along with changes in gene and protein
expression allows rescarchers and clinicians to more precise-
ly define diseases and, in turn, to achieve the goal of “per-
sonalized medicine”.

In order to realize the personalized medicine, it is criti-
cally important to understand molecular mechanisms under-
lying inter-individual differences in the drug response, name-
ly, pharmacological effect vs. side effect *. The occurrence
of the variations among persons in the drug response may
involve many different causes, for example, genetic variations
and/or expression levels of drug target molecules including
membrane receptors, nuclear receptors, signal transduction
components, enzymes, ctc. as well as those of drug metabo-
lizing enzymes and drug transporters (Fig. 1). Observations
of inter-individual variacions in different drug responses have
led to che development of pharmacogenetics and phara-
macogenomics.

Genetic polymorphisms in drug
response-related genes

Drug transporters and drug-metabolizing enzymes are impor-
tant because they play pivotal roles in decermining the
pharmacokinetic profiles of drugs and, by extension, their
overall pharmacological effects (i.e., drug absorption, drug
distribution, drug metabolism and elimination, drug con-
centration art the target site, and the number and morphal-
ogy of target receptors), The effects of drug transporters on
the pharmacokinetic profile of a drug depend on their expres-
sion and functionality. Indeed, the expression of drug trans-
porters can be modulated by endogenous and exogenous fac-
tors, including drugs, themselves. It is also now known
that inherited differences among individuals may also affect
drug efficacy and toxicity. Such inherited differences include
genetic polymorphisms in drug targets and drug-metaboliz-
ing enzymes, as well as in drug transporters. Hicherto, phar-
macogenctics, the field dealing with such inherited differ-
ences and their effect on pharmacokinetics, has significantly
contributed to our understanding of genetic causes under-
lying differences in drug metabolism (e.g., cyrochrome P-450
mediated drug metabolism). In fact, recent technological
advances allowing massive molecular sequencing have in turn
allowed us to identify single nucleotide polymorphisms (SNPs)
as one possible cause of variable drug response among indi-
viduals 23, In light of such advances, it is important to
carefully examine the clinical significance, if any, of poly-
morphisms in drug response genes, including drug crans-
porters.

Driig Target Mp_[e_ciules:'(Er;zymés.'fRECeptqrs;'e_!rc.) )

| Drug Metabolizing Enzymes 5L
1 Drog Transporters v _}-Pharmacokinstics
" Pharmacol Effect vs. Side Effect

-Genetic Polymorphism and Gene Expression. i :
|
3

Fig. 1: Impact of the genetic polymarphism and/or gene expres-
sion of drug targets, drug metabolizing enzymes, and drug
transporters on the drug response.

SLC and ABC transpotrter families

There is accumulating evidence to strongly suggest that drug
transporters are one of the determinant factors governing the
pharmacokinetic profile of drugs. Indeed, drug trans-
porters are expressed in various tissues such as the intestine,
brain, liver, and kidney, to play eritical roles in the absorp-
tion, distribution and excretion of drugs. Hitherto, a vari-
ety of drug transporters have been cloned, and remarkable
progress has been made in charactering the molecular prop-
erties and functions of these transporters. Such trans-
porters have been classified as cither primary or secondary
active transporters. The primary active transporters include
ATP-binding cassette (ABC) transporters char ucilize the AT
hydrolysis as the driving force for solute transport *3. On the
other hand, the secondary transportets, e.g., many of solute
carrier (SLC) transporters, are driven by an exchange of
intralextra-cellular ionsé?. Each gene family of transporters
comprises of 2 multiplicity of members. The human Gene
Nomenclature Commiteee has classified transporcers by stan-
dardized names such as the SLC family and the ABC trans-
porters. Table 1 summarizes major drug transporters expressed
in small incestine, blood brain barrier, liver and kidney.

The Functions and substrate specificities of drug trans-
porters have been characterized by several in witro and in vive
techniques using cells expressing the transporer gene or using
gene-knockout animals. In particular, construction of n vitra
expression systems using human transporter cDNA clones
provides as useful models to evaluate the substrate specifici-
ty. In addition, tissue distribution and levels of expression
of the drug transporters convey importanc information for
the prediction of the in vive pharmacokineric profile of drugs.

There are many factors that can affect che function as well
as the expression of drug transporters. Those factors may
involve genetic mutations, SNPs, splicing, transcriptional reg-
ulation, stability of mRNA, post-translational modificarion,
and intracellular localization (Fig. 2). Evaluation of such fac-
tors is critically important to understand the whole picture
of pharamacogenomics of drug transporters. Functional analy-
sis of the polymorphism of drug transportess is one of such
important approaches.
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Organ/Tissue  ABC Transporter

SLE Transporter

Peptide transportar

Anion transporter

Cation transporter

Small intestine ABCB1 {P-gp/MOR1)

ABCB4 {(MDR2)

ABCC2 {cMOAT/MRP2)
ABCC3 (MRP3)

ABCC4 (MRP5)

ABCCS (MRPS)

ABCCE {MRPB)

ABCG2 (BCRP/MXR/ABCR)

Blood brain

ABCB1 {P-gp/MDR1)
barrier

ABCC1 (MRP1)
ABCG2 {BCRP/MXR/ABCF}

Liver ABCB1 {P-gp/MDR1)
ABCBA4 (MDR2)
ABCB11 (SPGR/BSER)
ABCC2 (cMOAT/MAP2)
ABCC3 (MRP3)

ABCG2 (BCRP/MXR/ABCP)

Kidney ABCB1 (P-gp/MDR1)
ABCC1 {MRP1}

ABCC2 {MRP2)

PEPT1 (SLC15A1)

PEPT1 (SLC15A1)

PEPT2 (5LG15A2)

MCT1 (SLC16AT)
MCT4 (SLC16A4)
MCTS (SLC16AS)
MCT8 (SLC16A8)
OATP-B (SLC21AD)
OATP-D {SLC21A11)
DATP-E (SLC21A12)
PGT (SLC21A2)

AE2 (SLE4AZ)

ASET (SLC12A2)

MTC1 (SLC16A1)
MCT2 (SLC16A2)
0AT1 (SLC22A6)
DAT3 (SLC22A8)

OATP-A/DATP (SLC21A3)

OATP-B (SLC21A9)

CATP-GALST-1 (SLC21A6)

DATP-8 (SLC21A8)
NPT1 (SLC17A1)

DAT1 ({SLC22A6)
0ATS (SLC22A8)
0AT4 (SLC222A9)
NPT1 (SLC17A1)

0CT1 (SLC22A1)
DCTNT (SLC22A4)
CCTNZ (SLCR2A5)

OCTNZ (SLG22A5)
0072 (SLC22A1)
OCT3 (SLC22A5)

OCT1 {SLC22A1)
OCTNZ (SLG22A5)

NTCP (SLG10A1)

OCTY (SLC2241)
06T2 {SLC22A2)
0CT4 {SLC22A3)
OCTN1 (SLC22A4)
OCTNZ (SLC22A5)

Table 1: ABC and SLC Transporters expressed in small intestine, bload brain barrier, fiver and kidney

meon fundamental data necessary for
research into drug responsiveness in
the Japanese population. In the PSC
project, we have underaken the func-
tional analyses of SNPs discovered in
drug transporter genes®. Fig. 3 sum-
marizes the strategy of our funcrion-
al analysis. Accordingly, this review
addresses part of our recent studies to
exemplify the importance of genetic
pelymorphisms in drug transporters.

Naturally occurring
SNPs in ABCB1 gene
ABCB1 (P-glycoprotein/fMDRI1)
is gaining attention for its involvement
in drug absorption by the small intes-
tine and drug penetration into the
brain; it is expressed in a variety of
normal cells and organs, and its mod-
ulation in these tissues can influence
the activiey and bioavailability of drugs.
In the intestine, for instance, modu-
lation of ABCB1 may control the
degree of drug uptake after drug inges-
tion. At the blood-brain barrier, high
P-glycoprotein levels can limit the
uptake of desired drugs into the brain;
conversely, low ABCBI activity can
lead to abnormally increased accu-

On 6 September 2000, the 43 members of the Japan
Pharmaceutical Manufacturers Association (JPMA) estab-
lished the Pharma SNP consortium (PSC} to conduct reseatch
into pharmacokineric gene polymorphism in the Japanese
population®. During the period of 2000 to 2003, using blood
samples donared by about 1000 Japanese volunteers, the PSC
identified SNP in approximately 180 pharmacokinetic genes
including drug metabolizing enzymes and drug transporters.
The PSC project then created a darabase of SNPs and
information from expression and functional analyses of
protein variants. The overall objective is to gather com-
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mulation and undesirable side effeces.

To date, genetic variations of the human ABCBI gene
have been most extensively scudied. Hitherto about 50 SNPs
and 3 insertion/deletion polymorphisms in the ABCBI
gene have been reported *42, In addirion, twelve novel SINPs
of ABCB1 were reported in Japanese patients with ventric-
ular rachycardia who were administered amiodarone 'S, Several
preclinical and clinical studies have provided evidence for the
naturally occurring polymorphisms in ABCBI and their effects
on drug absorption, distribution and eliminarion. Hoffmeyer
et al. " first reported multiple polymorphisms in the
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Fig; b Strategy for the functional analyéié of nbn-syﬁéhymous
SNPs in drug transporters,



