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The present results suggest that sequence variations in 5'UTR, exon 1, and part
of intron 1 of OPRM are not genetic markers for MAP dependence/psychosis.
Further studies could usefully look for novel polymorphisms in the downstream
sequence of the OPRM gene and for any association between the polymorphisms
and MAP dependence/psychosis.
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ABSTRACT: Dopamine (DA) plays roles in circuits that are important for brain
reward and in striatal brain regions that are important for certain types of
habit learning. These processes in wildtype, heterozygous, and homezygous
dopamine transperter knockout (DAT-KOQ) mice, which were mildly food de-
prived and allowed to make nose-poke responses for food reinforcement, were
studied. The mice were given 20-min sessions of daily (a) baseline exposure to
the operant chambers, (b) acquisition of nose-poke responses fn which respons-
¢s were reinforced under a fixed ratio (FR5) schedule, (c) a progressive ratio
schedule in which the number of responses reqaired to obtain food was gradu-
ally increased, and (d) extinction of responses in which nose pokes were not fol-
lowed by food. Neither heterozygous nor hemozygous DAT-KO mice differed
from their wildtype litter mates in the namber of nose pokes displayed during
baseline exposures to the chambers, the number of sessions required for acqui-
sition, the number of responses under the FRS schedule, or the number of re-
sponses under the progressive ratio schedule. Interestingly, however, in the five
extinction sessions in which food was no longer delivered by nose poking, ho-
mozygous DAT-KO mice exerted significantly more responses than mice of ei-
ther of the other two genotypes. These lines of evidence suggest a greater
resistance of DAT-KOQ mice to the elimination of the response and support roles
of dopaminergic sysfems in habit memory.
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INTRODUCTION

The mesolimbic dopamine (DA) systern is known to play a critical role in medi-
ating the reinforcing effects of abused drugs.! Recently, the growing evidence indi-
cates that DA in the striatum also plays an important role in habit learning, which is
crucial in drug-taking behavior.2 Dopamine transporter knockout mice (DAT-KO)
are a valuable model to study the roles of DA in these systems. DAT-KO mice, in
which the clearance of DA from the synaptic cleft is about 100 times longer than the
normal mice, are known to be hyperactive in a novel environment and insensitive to
the motor-stimulating effect of cocaine.* Nevertheless, the reinforcing effect of co-
caine is manifested in these mice.5 So far, the behavioral characteristics of DAT-KO
mice pertaining to natural reward have not been well documented. In the present
study, we have examined the behavior of DAT-KQ mice regarding learning and mo-
tivation for food reward using the operant conditioning paradigm,

MATERIALS AND METHODS

Animals

A total of 24 female DAT-KO mice (8 homozygous, 8 heterozygous, and 8 wild-
types that were 134 to 218 (average 192.7) days old were used. The details of the
generation of DAT-KO mice have been described previously.’ These three genotypes
were obtained by crossing adult heterozygotes. Throughout the experimental period,
they were housed individually and their food supply was restricted to maintain ap-
proximately 90% of their free-feeding body weight. Tap water was freely available
in their home cages.

Apparatus

A standard operant chamber for mice was used (O’ Hara & Co. Ltd.). One wall of
the chamber had a hole equipped with a dim light and a photo beam. Poking the hole
interrupted the beam and resulted in the delivery of a 20-mg food pellet into the hole.
Four identical chambers were used in sound-attenuating boxes, The experiment was
controlled by the MED-PC system (MED-Associates, Inc.) using in-house software.

Procedure
The mice were given 20-min sessions of the following five stages daily;

(1) Baseline exposure to the chambers: The number of spontaneous nose-poke
responses was recorded.

(2) Training of the food-reinforced response; A food pellet was delivered con-
tingent on the nose poke. Initially, the response was reinforced under a fixed ratio
(FR) 1 schedule, in which each response was followed by the delivery of food. The
training continued until the animal got at least 10 reinforcements in a session (the
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response criterion). When the criterion was met, the ratio was set to two and finally
to five, The number of sessions required to meet the criterion under an FR5 sched-
ule for three consecutive sessions was recorded.

(3) Progressive ratio (PR) schedule: The number of responses required to obtain
food was gradually increased. Initially, the number was set to five. Every time the
animal got the food within 300 s, the ratio was increased to 7, 10, 14, 20, 28, 40, 57,
80, and 113. If the animal failed to get food within the limited time, the test was ter-
minated and the ratio immediately before termination was defined as the breaking
point.

(4) Retraining of the response under an FR5: Before going to the next stage, it
was confirmed that the responses had not deteriorated,

(5) Extinction of response: Nose pokes were not followed by food, Five extinc-

tion sessions were given.

RESULTS AND DISCUSSION

Throughout the experiment the body weight of the homozygotes was significant-
ly lower than the other two genotypes (mean * SD: homo: 19.2 £ 1.2 g; betero:
223117 g wild: 22511.1 g) (ANOVA F(2 21) =14.16, P = .0002, with theposz
hoc Fisher's PLSD test).

Baseline Level

Mean numbers of responses in a 20-min session are shown in the leftmost column
of TAsLE 1. Although there was little difference among genotypes in the number of
responses, the difference was not statistically significant. Thus, the homozygous
DAT-KO mice were not spontaneously hyperactive in this particular experimental
situation.

Training of the Food Reinforced Response

Two out of eight wildtype mice failed to obtain 10 reinforcements under the FR1
schedule despite the extensive training by more than 15 sessions. The data of these
mice were not included in the further analysis, This might be attributable to one of
the background strains of DAT-KO (129/sv). The median oumber of sessions re-
quired to meet the criterion under the FRS schedule was 7.5 (range 5-16) for ho-
mozygous, 5 (range 3-12) for heterozygous, and 7.5 (range 3-21) for wildtype mice.
The mean numbers of responses under the FRS schedule are shown in TasLE 1. No
statistical difference among genotypes was found in both of these measures.

Progressive Ratio (PR) Schedule

The median value of the breaking point was 34 (range 5-113) for homozygous,
70.5 (range 20-113) for heterozygous, and 40 (range 14-80) for the wildtype mice.
There was no significant difference among genotypes. We also calculated the re-
sponse rate per minute under each response requirement, and again there was no sig-
nificant difference among genotypes (data not shown). The PR schedule test is
known to be a standard method for testing the reward value and/or motivation to get
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TABLE 1. Mcan numbers of nose-poke responses in a 20-min session, with standard
deviation in parentheses

FRS Extinction day
Baseline (average of
response 3 days) 1 2 3 4 5
Homozygous 43.3 i10.3 2351 2218 936 1204 110.3
(n=8) (12.2) (30.0) (919 (80.3) (527 (70.00 (72
Heterozygous 513 922 360.8 191 1263 915 835
(n=8) 1z.n (49.2)  (154.9) (1114) (49.7) (329) (342)
Wildtype 35.8* 80,7 2512 112 65.3 455 50.7
(n=16) .0 (185)  (985) (50.9) (60.2) (238) (28.5)

*n=8.

the reward.® Thus, the present data suggest that the DAT-KO mice were the same as
the wildtype mice with respect to motivation to get the food reward.
Retraining Under an FRS Schedule

-No response deterioration was found in any of the three genotypes.

Extinction of Response

During the course of extinction, the number of responses decreased within a ses-
sion and also across sessions in all of the animals. However, the homozygous mice
exerted more responses relative to other genotypes. TABLE 1 shows the mean daily
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FIGURE 1. Nose-poke response of homozygous (n = 8), heterozygous {(n = 8), and
wildtype (n = 6) DAT-KO mice during five extinction sessions. Number of responses in a
5-min period was recorded and converted into the percentage of the number of responses in
the first 5-min period in each day. Homozygous mice showed greater resistance to resonse
elimination of response than cther genotypes, especially on days one and two.
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number of responses for each genotype. There was a statistically significant interac-
tion between genotypes and the number of extinction sessions (ANQVA with repeat-
ed measures, df = 8, F = 3.161, P = .0038), though the main effect of genotype was
not significant (df = 2, F = 2.300, P = .1275). The post hoc Fisher's PLSD test re-
vealed that the homozygotes exerted significantly more responses than the wildtype
mice during extinction days two, four, and five. There was no significant difference
between homozygotes and heterozygotes on these days, and between heterozygotes
and wildtype mice due to the large individval difference among heterozygotes.
When we looked at the response decrement within the day, the decrement was not
apparent in homozygotes except for day three (FiG. 1). These data indicate that the
homozygotes were resistant to extinction of response. Thus, these mice showed a
stronger habit. Another measure confirmed this point. If we employ the arbitrary cri-
terion of extinction of tesponse as no response for five consecutive minutes, only one
homezygous mouse out of eight met the criterion. In contrast, six out of eight het-
erozygous and six out of six in wildtype mice met the criterion.

SUMMARY

Homozygous DAT-KO mice showed no clear evidence of hypetactivity in this op-
erant conditioning situation. Acqnisition and maintenance of responses for food re-
inforcement as well as the motivation to get food tested by the PR schedule were not
markedly altered in these mice. However, greater resistance to extinction was found
in these mice. Although this study was preliminary in nature, the results indicate that
the DA system is involved in the habit memory system when we used food as a re-
ward. Since resistance to extinction of response induced by envirenmental cues is
important for drug-secking behavior,” further behavioral phenotyping of DAT-KQ
mice related to learning and extinction might provide useful information concerning
drug dependence.
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ABSTRACT: Methamphetamine (MAP) dissipates proton gradients across the
membranes of synaptic vesicles, enhances cytoplasmic dopamine (DA) concen-
trations, and canses calcium-independent, nonvesicular DA release inte syn-
apses. MAP is taken into the cytosol by the dopamine transporter (DAT) on the
synapitic terminals of DA neurons, and endogenons DA is concurrently re-
leased through the transporter by carrier exchange mechanisms, resulting in a
robust increase in DA concentration in the synaptic clefts. The enhanced DA
release through DAT by MAP is the main mechanism for the reinforcing ef-
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fects of MAP. The complexes of a-synuclein and DAT facilitate membrane
clustering of the DAT, thereby accelerating DA uptake in vitro. a-Synaclein
has been shown to be overexpressed in the midbrain DA neurons of chronic co-
caine abusers. The present study was performed to study the association be-
tween the a-synaclein gene polymorphisms and MAP psychosis/dependence in
Japanese population. Since the TI0AT polymorphic site at the 5’ end of the
nencoding exon 17 in the o-synnclein gene is highly polymorphic, we analyzed
the noncoding exon 1 and intron 1, including this polymerphic site by sequenc-
ing. We confirmed four single nucleotide polymorphisms (SNPs) within 1.38
kbp of the T10A7 polymorphic site. No significant difference was found in gen-
otype or allele frequencies in the T10A7 polymorphic site between MAP psy-
chotic/dependent and control subjects. We found significant association
between three SNPs in the vicinity of this polymorphic site in iotren 1 and
MAP psychosis/dependence in female subjects, but not in males. These results
snggest an association of the a-synuclein gene polymorphisms with MAP
psychosis/dependence in our female subjects. Further analyses are necessary
to clarify the gender difference, by using a larger sample size and/or different
ethnic groups, as well as functional variations in the a-synuclein gene,

Kevworps: methamphetamine; dopamine transporter; w-synucleing
mesclimbic dopaminergic pathway

INTRODUCTION

o-Synuclein is a major component of nigral Lewy bodies in Parkinson's
disease.!? o~-Sypuclein is a soluble presynaptic protein and is abundart in neurons,3
but its function is yet to be elucidated. Lee and colleagues found that complexes of
e-synuclein and dopamine transporter (DAT) facilitate membrane clustering of the
DAT, thereby accelerating dopamine (DA) uptake in vitro.* Excess o-synuclein
potentiates production of reactive oxygen species by DA, which may cause cell
death.>® Modulation of DA transmission by ct-synuclein is probably involved with
neurodegenerative and neuropsychiatric disorders such as drug dependence.

The mesolimbic dopaminergic pathway has an important role in addiction to
psychostimulants and reinforcement. [PH]-WIN 35428 binding sites, which reflect
DAT protein amount and/or function, were increased in postmortem brains of
cocaine abusers.? Mash and colleagues found overexpression of o-synuclein protein
in DA neurons in cocaine abusers. *® These findings provide further support for the
involvement of a-synuclein in regulating dopaminergic neurons !0 Methamphet-
amine (MAP) dissipates proton gradients across the membranes of synaptic vesicles,
enhances cytoplasmic DA concentrations, and causes calcium-independent, nonve-
sicular DA release into synapses. MAP is taken into cytosol by DAT on the synaptic
terminals of DA neurons, and endogenous DA is concurrently released through the
transporter by carrier exchange mechanisms, resulting in a robust increase of DA
concentration in the synaptic clefts. The enhanced DA release through DAT by MAP
is the main mechanism for the reinforcing effects of MAP.}+12 It has been reported
that long-term MAP abuse induced development of psychosis. These findings sug-
gested the importance of ai-synuclein on MAP abusers and prompted us to study the
association between the a-synuclein gene and MAP psychosis/dependence in Japa-
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nese population. A highly polymerphic sequence variation (T10A7) has been reported
at the 5’ end of the noncoding exon 1’ of a-synuclein gene.!3 In the present study, we
have investigated whether the polymorphic sites in the noncoding exon 1’ and intron
1, including T10A7, are associated with MAP psychosis/dependence in Japan.

MATERIALS AND METHODS

Subjects

This study was performed following approval from the ethics committees of each
institute of the Japanese Genetics Initiative for Drug Abuse (JGIDA); all subjects
provided written informed consent for the use of their DNA samples for this
research. The subjects were 170 unrelated patients with MAP-dependence disorder
meeting ICD-10-DCR criteria (F15.2 and F15.5), who were outpatients ot inpatients
of psychiatric hospitals of JGIDA, and also 161 geographical origin-matched
healthy controls, mostly medical staff who had no past or family history of drug
dependence or psychotic disorders. Patients were exclnded if they had a clinical
diagnosis of schizophrenia, another psychotic disorder, or an organic mental syn-
drome. All subjects were Japanese, born and living in certain areas of Japan, includ-
ing northern Kyusyu, Setouchi, Chukyou, Toukai, and Kantou. Blood samples were
drawn for DNA extraction from 170 patients {male 138, female 32) and 161 controls
(male 83, female 78). The mean age of the patients was 37.6 + 12.0 years (male: 39.5
* 12.0 years; female: 29.4 + 7.4 years), The mean age of the controls was 38.6 +
12.0 years (male: 38.2 + 11.1 years; female: 39.1 % 12.9 years). Genomic DNA was
extracted from peripheral blood by the phenol/chloroform method.

Defining Variation with the o-Synuclein Gene

The 5 end of the noncoding exon 1’ in the o-synuclein gene (accession no.
AF163864) was amplified by PCR, and the products were sequenced in both direc-
tions using BigDye terminators (Applied Biosysterns). Amplification primer pairs
were 11F: CAT CTC CCA TCC ATC TTG GC and 12F: AGA AGC TCT GAC
AAA TCA GCG GTG. The PCR product was 1.38 kbp and was sequenced using
four primers (11F, 11R: AAA TCT GTC TGC CCG CTC TC, 12F, 12R;: ACC CGG
TGT TCT CCA GGA TTT CCA). Genotyping and sequencing were performed on
an ABI3100 Genetic Analyzer (Applied Biosystems). The position numbers of poly-
morphic variants are quoted with respect to the National Center for Biotechnology
Information (NCBI) single nucleotide polymorphism (SNP) consortium database.

Statistical Analysis

Data for each locus were used to estimate allele and genotype frequencies and to
test for Hardy-Weinberg equilibrium (HWE), using the chi-squared method or the
Arlequin program available from http://anthropologie.unige.ch/arlequin.'¥ The al-
lele and genotype frequencies of patients and control groups were compared using
the chi-squared method and the Monte Carlo type CLUMP analysis program. 3
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RESULTS

Our subjects were 170 MAP psychotic/dependent patients and 161 controls,
DNA samples from 16 of the patients were sequenced in 1.38 kbp around the T10A7
polymorphic site at the 5" end of the noncoding exon 1” of the o-synuclein gene. We
confirmed four SNPs (rs#1372520, 3756063, 2870027, 3756059) in these patients in
addition to the T1I0A7 polymorphic site. All these four SNPs were in intron 1. The
genotype and allele frequencies of these four SNPs were all in Hardy-Weinberg
equilibrium (HWE), indicating no sample bias in our case and control samples.
These four SNPs showed no association in genotypic or allelic analysis according to
the chi-squared test (TABLE 1a). We found four allelic variations in the T10A7 poly-
morphic site (TABLE 2a). The genotype frequencies of the MAP psychotic/dependent
group and control group were in HWE (control P = .73, MAP P = .77). Genotype
frequencies were compared using the CLUMP analysis program and showed no as-
sociation (P = .677, T1 = 4.00). Allele frequencies also showed no association
based on the chi-squared test (P = .622, chi-squared = 1.77).

Since there were many more MAP psychotic/dependent males than females, we
analyzed the associations in each gender. In males, there was no difference in the
four SNPs and the T10A7 polymorphic site between patients and control samples
(TaBLEs 1b and 2b). In females, genotype frequencies were significant in rs#1372520
(P = 03), 15#3756063 (P = .03), and 1s#3756059 (P = .03) (TaBLES 1c and 2¢).

DISCUSSION

We have analyzed the sequence variation (T10A7) at the 5° end of the noncoding
exon 1’ in the o-synuclein gene and found no significant difference in genotype or
allele frequencies between MAP psychotic/dependent subjects and controls, We
confirmed four SNPs in intron 1 and found a significant difference of genotype in
three SNPs in MAP psychotic/dependent females, but not in males. Association in
the T10A7 polymoerphism was first studied by Autere and colleagues. They found no
statistically significant differences in Parkinson's disease patients in Finland.!3
Since the T10A7 polymorphic site has many variations, this site is thought to be a
good marker for an association study of the a~-synuclein gene. Our results at this site
do not suggest any role for the «-synuclein gene in MAP psychosis/dependence. We
nevertheless found significant association between three SNPs in the vicinity of this
polymorphic site and MAP psychosis/dependence in female subjects, though not
males. The reason for this gender difference is not clear, although recent evidence
suggests women and men differ in their progression to dependence and abuse. In
preclinical and clinical studies, it has been suggested that ovarian hormones, partic-
ularly estrogen, are involved in gender differences in drug abuse. '8 Koizumi and col-
leagues also found a correlation between glutathione $-transferase M1 gene deletion
and MAP abuse by females (Koizumi and Iyo, unpublished data). The data in our
study should be carefully treated, as the samples were divided into two groups by
gender. The significance was corrected to P = ,025 by Bonferroni corrections, and
the P value of these sites was .03, suggesting weak association.

The functional alterations caused by these SNPs are not clear in the present study,
but there are several possibilities. First, the SNPs or relating linkage disequilibrium
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positions may change DAT and o-synuclein complex formation. MAP is taken into
cytosol by DAT on the synaptic terminals of DA neurons, and endogenous DA is
concurrently released through the transporter by carrier exchange mechanisms.

o-Synuclein forms functional protein-protein complexes, thereby modifying
dopaminergic neurotransmission.* Overexpression of a-synuclein in mice increased
the density of the DAT.!? Mutation of the o-synuclein gene may affect complex for-
mation with DAT, modulating dopaminergic neurotransmission. Modulated expres-
sion from the mutated a-synuclein gene may then alter the development of MAP
psychosis/dependence.

As a second possibility, the SNPs or relating linkage disequilibrivin positions
may change the transcriptional expression level. Several positron emission tomog-
raphy studies found that DAT in the caudate/putamen of MAP abusers was signifi-
cantly reduced.’®1? Some patients showed a lasting reduction of DAT for several
months after detoxication. Sekine and colleagues also showed reduction of DAT in
the caudate/putamen, and also in the nucleus accumbens and prefrontal cortex of
MAP dependents.!® Elevated DA concentration in the synaptic clefts is removed
rapidly by reuptake through DAT. Reduced DAT density in MAP dependence may
delay DA clearance and contribute to the persistence of a hyperdopaminergic state,
Cocaine potentiates dopaminergic neurotransmission in a different way from MAP,
binding to the DAT, blocking neurotransmitter uptake, and giving rise to marked
elevations in synaptic DA. It has been reported that chronic cocaine abuse increases
o-synuclein levels in midbrain DA neurons.!® a-Synuclein levels in the DA cell
groups of the substantia nigra/ventral tegmental complex were elevated threefold in
chronic cocaine users compared with normal age-matched subjects. These results
suggest that overexpression of c-synuclein may occur as a protective response to
changes in DA turnover. Since the three SNPs were in intron 1, it is possible that
these variants contribute to changes in expression of the o-synuclein gene.

In conclusion, our findings suggest a weak association of the ¢~-synuclein gene
with MAP psychosis/dependence in our female samples, Further work is necessary
to clarify the gender difference, using a larger sample size and/or different ethnic
groups of MAP psychotic/dependent subjects as well as functional variations in the
a-synuclein gene,
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