H. Kawdai et al. / Biochimica et Biophysica Acta 1693 (2004} 101-110

(A)
140 1 j12
120 pd4a i
[]
g 1007 ) 108 3
B T | e
> . {106 ~
b =<
m 60 =
«© 9]
£ 40} 04 =
= x XX ——
20 :‘ W,& 402
i) " " h_ 0
150 200 250 300 350
time {min}
(€
120 1.2
100 1
;'. 80 kwe, 08 3
[=]
£ 80 06 =
@ =
3]
£ 40t 0.4 =
20 ¢ 0.2
0 - . . 0
50 100 150 200 250
time (rnin)
(E)
180 1.4
160 1.2
__ 140 ]
3 120 3
2 X 08 5
2 100 *5
g 80 0.6 §
' 60¢ 04
40 t ’
20 } 0.2
0 . . —~ 0
50 100 150 200 250
time (min)

107

(B)

intensity (a.u.)
& 3
r u 5
r:«"‘ n.fb
- -
- oM N A
(2/A) oBea

o
o

"
bt
[

200 250 300 350 400
time (min)
G)
14
1.2
3 L.
e 08 5
2 2
w0
£ 65
k= 0.4
0.2
. . . 0
100 150 200 250 300
time (min)
(F)
160 1.2
140 | soppmsac ‘_‘-' P
~120
< 10 | ’-\\ 1%
o
%‘ 80 | 06
g 60 . 1048
40 ¢ %
20 | e ’ﬁ,‘ 102
0 . . 0
50 100 150 200 250
tima (min)

Fig. 6. Fluorescent changes during cell death. HeLa cells expressing the IC-sensor (A, C) or EC-sensor (B, D, E, F) were incubated with 200 ng/ml of TNF-a
(A, B) or 3 uM of staurosporine (C, D, E, F). Fluorescent images as shown in Fig. 5 were obtained from each experiment, and then the YFP/CFP ratio and the
fluorescence of CFP, YFP, and TMRM for the whole single cell area were quantified and plotted. A —D each show a representative example of each treatment.
Filled square (cyan): CFP; filled diamond (yellow): YFP; open triangle: ratio (YFP/CFP); X : TMRM (red). The vertical axes show the mean pixel intensity of
the whole cell region (left; CFP, YFP, and TMRM) and the mean pixel emission ratio of the whole cell region {right; YFP/CFP ratio}, a.u., arbitrary units,

activated and the mitochondrial membrane potential re-
duced, just as in the TNF-a-treated cells (Fig. 5). The
temporal relationship between the caspase activation and
the morphological changes probably differs in these two
treatments. We speculated that other factor(s) are necessary
for the morphological changes during cell death to occur,
and that these factors are activated almost simultaneously
with the caspase in TNF-a-treated cells, whereas it takes
time to activate them after the caspase activation in staur-
osporine-treated cells.

3.6. Temporal relationship of caspase activation and
mitochondrial depolarization

Fig. 6(A)-(D) shows typical examples of the fluores-
cent changes that occurred in each treatment. The fluo-

rescent intensity of the caspase-sensor and TMRM, and
the ratio of the YFP and CFP fluorescence of the caspase-
sensor were plotted. The horizontal axes indicate the time
after the cell death-inducer treatment. Each graph
shows the results from a respective single cell. (A) and
(C) show the results from cell #1 in Fig. 5(a) and (b),
respectively. The emission ratio of YFP/CFP was dramat-
ically reduced, indicating that the caspase was activated at
this point in that cell. The fluorescence intensity of
TMRM was reduced, indicating that the mitochondria
depolarized at this point in that cell. Fig. 6(E) and (F)
shows examples with a large time difference between the
caspase activation and the mitochondrial depolarization.
Caspase activation was cbserved 44 min earlier than the
mitochondrial depolarization in the cell shown in Fig.
6(E), whereas caspase activation was observed 42 min
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later than the mitochondrial depolarization in the cell
shown in Fig. 6(F).

The YFP emission should have decreased with the
caspase activation in ideal FRET system. However, the
YFP emission remained constant or increased in some cases
(Fig. 6). We considered this to have occurred because the
cells shrank immediately after caspase activation, especially
in the TNF-a-induced cell death, as shown in Fig. 5. This
caused the concentration of the fluorescent protein in the
cell, resuiting in an increase of the CFP and YFP signals in
the confocal slice. This concentration ¢ffect was cancetled
out by ratiometric analysis. YFP showed unexpected fluo-
rescent changes in some cases, but we were able to evaluate
the FRET change properly by analyzing the fluorescent ratio
of YFP and CFP.

Sensor proteins were transiently transfected, and the
concentration of the sensor proteins was shown to be
different in each cell. Some cells expressed a high level of
sensor proteins and showed bright fluorescence, and other
cells expressed a low level of sensor proteins and showed
dim fluorescence, However, we found that the expression
level of the sensor proteins did not affect the slope of the
ratio trace.

In order to study the temporal relationship between the
caspase activation and the mitochondrial depolarization, we
carried out a quantitative analysis and estimated the relative
timing of the initiator- and effector-caspase activation and
mitochondrial depolarization. The starting point of the
reduction of the YFP/CFP ratio (A, indicated by an arrow
in Fig. 7(2)) and that of the TMRM fluorescence (B,
indicated by an arrowhead in Fig. 7(a)} were determined
as the time point after which the value decreased during four
continuous points or more, the value decreased more than
20% in total, and the reduction of the value was the last cne
in the experiment. We determined these points in each ¢ell,
and calculated the time interval from B to A. We analyzed
31-47 cells in at least seven independent experiments for
each treatment, and plotted the results in Fig. 7(b). Here,
each plot represents the result from a cell, with time 0 being
the point at which the TMRM fluorescence started to
decrease. If the plot is on — 10, for example, this means
that the caspase activation occurred 10 min earlier than the
mitochondrial depolarization in that cell. This analysis
clarified the temporal relationship between mitochondrial
depolarization, initiator caspase activation, and effector
caspase activation.

Although Fig. 7 shows some scatter, which suggest that
the relationship between caspase activation and mitochon-
drial depolarization is not firm, we can estimate the rela-
tionship between the two by quantitative analysis. A trend
was seen in which the median vatues and mean values of the
time interval were estimated to be nearly 0 in all treatments.
This means that the caspase activation and mitochondrial
depolarization are likely to start within a short amount of
time in the majority of cells, compared with the duration
from drug treatment to these events, which takes anywhere

(a)
~ 60} M
=3 H -
: i 1w
8 : =
2O wapg 2
2 2
$ 20 ks)
£
P SRR
50 K (min) B (min) 250 {min)
l time interval (min) = A - B I
(b)
MTIC & &y s
(n=46) 4 4 “’qu‘ h

(B)T.EC *e

. v
31)

{D)s,EC Poo & % oghho Yoo g
@7
-100 -50 0 50

time interval (min)

Fig. 7. The time intervals between mitochondrial depolarization and caspase
activation. {a} We defined the difference between the two time points
indicated by the arrow and amowhead as the time interval, Details are
described in the text. (b} We calculated and plotted this parameter for each
cell. Each plot represents one cell, The vertical lines, crosses, and bars
represent the median, mean, and 95% confidence interval for each group.
The number of cells used in each analysis is shown in parenthesis. Filled
mark (A, B): TNF-¢; open mark (C, D): staurosporine; triangle (A, C). IC-
sensor; circle (B, D). EC-sensor.

from 1 to over 10 h. Because initiator caspases are proteases
that cleave and activate effector caspases, the initiator
caspase might be activated earlier than the effector caspase.
Our results suggest that the effector caspase activation
occurred immediately after the initiator caspase activation.

4. Discussion

In this study, we described a method for measuring
changes in the initiator or effector caspase activity and
mitochondrial membrane potential simultaneously in single
living cells in real time by means of bioimaging, which
revealed the kinetics of the caspase activation and the
relationship among the caspase activities, mitochondrial
membrane potential, and morphological changes during cell
death, The time schedule of cell death is different in each
cell, but dying cells show caspase activation and a reduction
of the mitochondrial membrane potential. In a dying celt, it
takes a long time, 1—10 h or more, from the addition of cell
death-inducers to start initiator caspase activation, and it
takes a relatively short time from the initiator caspase
activation to start effector caspase activation. This finding
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suggests that the caspase cascade proceeds within a short
amount of time at the last stage in the entire biochemical
process leading to cell death.

Luo et al. [34] reported that the activation of caspase-
8 occurred much earlier than that of caspase-3 in TNF-a-
induced apoptosis. They calculated the time difference
between these activations as about 120 min on average,
which differed from ours. They measured the timing of the
caspase activation by comparing it with the timing of the
morphological change, which is very difficult to determine.
In our experiments, we compared the timing of the caspase
activation with that of mitochondrial depolarization, which
is much easier to analyze objectively, especially in the case
of staurosporine-induced cell death, which showed little
morphological change (Fig. 5). Therefore, we feel that our
conclusion is more reliable.

It is widely accepted that TNF-a brings about cell death
via binding with its receptor, receptor trimerization, binding
of the intracellular domain of the receptor with adaptor
proteins, cleavage (activation) of the initiator caspase (cas-
pase-8), and cleavage (activation) of the effector caspase
{caspase-3} {1]. In this study, we investigated the time
course of this pathway, and revealed that it takes a long
time after drug treatment, more than 10 h in some cases, to
start caspase activation. We speculate that this is 2 period in
which initiator caspase activation is prepared for. There are
likely some unknown factors which are essentizl to activat-
ing the initiator caspases. These factors delay the cell death
process and they determine the timing of cell death. Once
these events occur, the activation of caspases and further cell
death processes may proceed immediately,

The wide distribution of the plots in Fig. 7 suggests that
caspase activation and mitochondrial depolarization are not
firmly linked. Some cells showed mitochondrial depolariza-
tion earlier than caspase activation, and the other cells
showed mitochondrial depolarization later than caspase
activation, suggesting that these two events are indepen-
dently induced in cell death machinery. When cell death is
induced via mitochondrial change, cyt. ¢ is released from
the mitochondria to the cytosol, which is a critical event for
cell death [1,8,9]. Cyt. ¢ release leads caspase activation by
the formation of apoptosome in the cytosol. Both caspase
activation and mitochondrial depolarization relate to mito-
chondrial change, so these reactions occur within a short
amount of time in the majority of cells. But these reactions
occur with a large time interval in some cells because their
relationship is indirect and not rigid. The time schedule of
the process leading to each event may respectively depend
on individual cellular conditions. Luetjens et al. [40] have
reported on the mode of cyt. ¢ release, and showed that cyt.
¢ was released within 10 min in the majority of cells,
whereas cyt. ¢ was released stepwise with an intermediate
plateau about 30 min in duration in 13% of the release
events they observed. In some cells, a certain amount of cyt.
¢ was released from the mitochondria to cytosol, which was
enough to cause the apoptosome formation and the follow-

ing caspase activation, but not enough to cause the mito-
chondrial depolarization because the cyt. ¢ remaining in the
mitochondria can maintain the membrane potential. Early
caspase activation and late mitochondrial depolarization
would be observed in this case.

Cyt. ¢ release and mitochondrial depolarization have
been analyzed using GFP-tagged cyt. ¢ and potentiometric
dye such as TMRM [41]. It is likely that mitochondrial
depolarization is not required and is not sufficient for ¢cyt. ¢
release [42], but the temporal relationship between cyt. ¢
release and depolarization is still controversial. Some
researchers have showed that cyt, ¢ was released a long
time before mitochondrial depolarization [43,44], whereas
others have reported that ¢cyt. ¢ release followed mitochon-
drial depolarization [45]. The timing of mitochondrial
depolarization seems to depend on various factors, including
the cell death stimulant, cell type, and individual cell
condition. The relationship between caspase activation and
mitochondrial changes (cyt. ¢ release, depolarization) needs
to be studied further.
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Abstract
The present investigation was conducted in order to
determine whether lysophosphatidic acid (LPA) in-
duces itch-scratch responses (ISRs) in mice. Intrader-
mal administration of LPA induces ISRs; furthermore,
the time course for LPA-induced ISRs was similar to that
for histamine-induced responses. Comparative study
of the pruritogenic activity revealed that histamine pos-
sessed a potenteffect characterized by a dose-response
relationship; however, prostaglandin D, failed to induce
this response. Pretreatment with ketotifen, a histamine
H, receptor antagonist, and capsaicin inhibited LPA-in-
duced ISRs. Additionally, LPA-induced ISRs were abol-
ished by Y-27632, an inhibitor of Rho-associated protein
kinase (ROCK). These findings suggest that LPA-in-
duced [SRs are attributable to histamine- and sub-
stance-P-mediated pathways. Moreover, the Rho/
ROCK-mediated pathway may be involved.

Copyright © 2004 S. Karger AG, Basel

Introduction

Lysophosphatidic acid (LPA), the stmplest of the wa-
ter-soluble phospholipids, is produced in significant quan-
tities by cell activation [1-3], a phenomenon that is sug-
gestive of a possible role of LPA as a potent phospholipid
mediator of diverse biological activities. Application of
exogenous LPA to responsive cells induces various bio-
logical effects [4, 5]. Moreover, LPA can evoke enhance-
ment of airway smooth muscle in vitro [6, 7]. Previously,
we demonstrated the induction of airway hyperrespon-
siveness by LPA and infiltration of eosinophils and neu-
trophils in vivo; additionally, we described the role of LPA
in histamine and superoxide release in vitro [8-10].

To alarge extent, the LPA production appears to occur
via hydrolysis of phospholipids following cell activation.
Secretory phospholipase A leads to the accumulation of
various phospholipids. Furthermore, as a result of con-
comitant activation of phospholipase C or D and diacyl-
glycerol kinase, phosphatidic acid accumulates. Phospha-
tidic acid is converted to LPA by secretory phospholipase
As. Increased levels of secretory phospholipase A, are
present in bronchoalveolar lavage fluid of sensitized guin-
ea pigs and of antigen-challenged allergic asthmatics [11,
12]. On the basis of these observations, we hypothesized
that LPA may contribute to the pathomechanisms of al-
lergic disorders such as bronchial asthma.

A © 2004 8. Karger AG, Basel
KARG E R Q03 1-7012/04/0721-0051521.0040
Fax +41 61 306 12 34
E-Mail karger@karger.ch

www.karger.com

Accessible online at:
www karger.com/pha

Hisavuki Chata

1-5-8 Hatanodai, Shinagawa-ku

Tokyo 142-8555 (Japan)

Tel. +81 3 3784 B2t 2, Fax +81 3 3784 3232
E-Mail ohatag@pharm.showa-u.ac.jp

— 332 —



Itch is an unpleasant sensation that provokes a desire
to scratch. Itch is widely recognized as a major symptom
in various allergic disorders such as atopic dermatitis
[13), allergic conjunctivitis [ 14], and allergic rhinitis [15].
However, progress in terms of understanding of the
pathophysiological mechanisms of itch has been ham-
pered by the absence of a suitable model. Kuraishi et al.
[16]in 1995 reported that subcutaneous injection of some
pruritogenic agents into the rostral region of the back in-
duced scratchingbehavior in mice; moreover, this scratch-
ing of the injection site was due to itch, and not to pain.
Woodward et al. [17] in the same year also demonstrated
that a conjunctival itch-scratch response (ISR) was pro-
duced by topical instillation of various pruritogenic agents
in guinea pigs. It is currently accepted that these models
will permit convenient, systematic characterization of the
pharmacology of itch; additionally, antipruritic effects of
various drugs were examined utilizing these models [18-
20].

More recently, Renbiick et al. [21, 22] noted that LPA
possessed nociception-producing activity on sensory neu-
rons through substance P release from nociceptor endings
[21] and through histamine release from mast cells [22].
These findings indicate that LPA is likely to induce ISRs
in inflamed sites, as inflammatory mediators such as his-
tamine, substance P, and prostaglandins (PGs) are re-
sponsible for itch [23].

The present study examined whether LPA induces
ISRs in mice. Furthermore, in order to assess the precise
mechanisms governing the LPA-induced ISR, the effects
of ketotifen, a histamine H, receptor antagonist, capsa-
icin, and Y-27632, an inhibitor of Rho-associated protein
kinase (ROCK), are described.

Materials and Methods

All experiments were conducted in accordance with the Guid-
ing Principles for the Care and Use of Laboratory Animals ap-
proved by The Japanese Pharmacclogical Society.

Animals

Male ICR mice {Charles River Japan, Tokyo, Japan) weighing
26-36 g were used. The animals were maintained in an air-condi-
tioned animal room at 23 # 3°C, with 50 * 20% relative humid-
ity and a 12-hour light-dark cycle (lights on 08.00-20.00 h). The
mice were fed a standard laboratory diet and provided with water
ad libitum. Each group of mice consisted of 4-8 animals.

Materials

Monooleoyl phosphatidic acid monosodium (LPA) was ob-
tained from Avanti Polar Lipids (Alabaster, Ala., USA). Addition-
al reagents included the following: ketotifen fumarate (Sigma
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Chemical, St. Louis, Mo., USA), Y-27632 (Calbiochem-Novabio-
chem, Darmstadt, Germany), PGD, (Cayman Chemical, Ann Ar-
bor, Mich., USA), histamine dihydrochloride {(Wako Pure Chemi-
cal, Osaka, Japan), and capsaicin (Wako Pure Chemical).

LPA was dissolved in physiological saline, PGD; in 2% Na,CO;4
and neutralized with 0.1 & HC], and capsaicin was dissolved in
physiological saline containing 10% ethanol and 10% Tween 80.
The remaining reagents were prepared in physiological saline.

Behavioral Observation

Prior to the experiments, the hair of the rostral region of the
back was shaved; furthermore, the animals were placed in an ob-
servation cage for acclimatization. LPA or another pruritogenic
agent (50 pl) was administered intradermally into the rostral region
of the back. Immediately after administration, the mice were again
placed in an observation ¢age (3 animals/cage). The number of ISRs
was monitored utilizing a video camera (Sony, Tokyo, Japan)
equipped with a zoom lens according to the method of Kuraishi et
al. [16], i.e., the scratching of the rostral region of the back with
either hind limb was counted.

LPA-Induced ISRs

LPA (100 pg/site) and histamine (10 pg/site) were administered
intradermally, and the ISRs were monitored as described above,
The number of ISRs was counted every 10 min for 60 min follow-
ing agent administration. When the dose-response relationship was
examined, LPA (10 or 100 pg/site), histamine (1, 10, and 100 pg/
site), and PGD; (100 and 1,000 pg/site) were administered; subse-
quently, the number of ISRs was counted for 30 min.

Roles of Histamine, Substance P, and ROCK in LPA-Induced

ISRs

These studies were designed to determine the contribution, if
any, of histamine, substance P, and ROCK with respect to the LPA-
induced ISRs. For this purpose, | mg/kg of ketotifen or Y-27632
was administered intravenously. Five minutes after administra-
tion, 100 pg/site of LPA and 10 pgfsite of histamine were admin-
istered intradermally; subsequently, the number of ISRs was mon-
itored for 30 min. Several experiments involving capsaicin-treated
animals were performed to clarify the involvement of substance P.
Capsaicin desensitization was performed via administration of a
total dose of 75 mg/kg s.c. over 2 days, as previously described
[24).

Statistics

The values are expressed as mean * SE. Student’s t test or
Dunnett’s multiple-comparison test was employed to calculate the
statistical significance of differences between the mean values of
the test and control groups. p < 0.05 was considered statistically
significant.

Results

LPA-Induced ISRs

Intradermal administration of LPA (100 pg/site) elic-
ited scratching of the rostral region of the back with the
hind limb (fig. 1); the effect peaked during the initial 10-
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Fig. 1. Time course of [SRs induced by LPA and histamine in mice.
LPA (100 pg/site) or histamine (10 ug/site) was administered intra-
dermally into the rostral region of the back. The number of ISRs
was observed and recorded every 10 min for 60 min following the
injection. Each column represents the mean * SE of 6 animals.
Significantly different from the saline-treated group: * p < 0.05;
** p<0.01 (Dunnett’s multiple-comparison test).

min period. The number of ISRs during the initial 10-min
period was 11.0 + 4.13. The number of ISRs gradually
decreased and nearly subsided by 30 min following ad-
ministration; however, significant differences were evi-
dent between the LPA-treated and the saline-treated
groups during the initial and the second 10-min period
(p <0.05). Histamine (10 pg/site) also induced ISRs sim-
ilar to LPA; the peak number of ISRs was 11.7 £ 6.53.
Statistically significant differences were observed with re-
spect to the initial (p < 0.01) and the second (p < 0.05)
10-min period.

The dose-response relationship of LPA-induced ISRs
is displayed in figure 2. The number of ISRs at 10 pg/site
was 3.83 * 0.95. Nosignificant differences were detected
in comparison with the saline-treated group. In contrast,
100 pg/site of LPA increased the ISR number (12.0 +

LPA-Induced Itch-Scratch Responses
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Fig. 2. Comparison of ISRs induced by LPA, histamine, and PGD»
in mice, LPA, histamine, or PGD; was administered intradermal-
ly into the rostral region of the back. The number of ISRs was ob-
served and recorded for 30 min, Each point represents the mean +
SE of 4-6 animals, Significantly different from the saline-treated
group: * p < 0.05; ** p < 0.01 (Dunnett’s multiple-comparison
test).

1.32) for 30 min following agent administration. Hista-
mine also induced ISRs in a dose-dependent manner;
moreover, the numbers of ISRs at 1, 10, and 100 pg/site
were 9,25 + 1,70, 23.8 = 8.02,and 32.8 * 4.31, respec-
tively. In addition, significant differences were observed
at 10 pg/site (p < 0.05) and 100 pg/site (p < 0.01). How-
ever, PGD, failed to induce ISRs at 1,000 pg/site,

Effect of Ketotifen on LPA-Induced ISRs

Figure 3 presents the effects of ketotifen on LPA- and
histamine-induced ISRs, The number of LPA-induced
ISRs was 21.5 * 4.70. Moreover, the value differed sig-
nificantly from that of the saline-treated group (p < 0.01).
Ketotifen, a histamine H; receptor antagonist, signifi-
cantly lowered the LPA-induced number of ISRs to ap-
proximately one third of that of the vehicle-treated group.
Significant differences were observed between the ketoti-
fen- and the vehicle-treated groups (p < 0.03). Ketotifen
substantially reduced the number of histamine-induced
ISRs (p < 0.05).

Effect of Capsaicin Desensitization on LPA-Induced

ISRs

The potential involvement of substance P in LPA-in-
duced ISRs was investigated. The number of LPA-induced
ISRs was 13.5 * 3.48. Repeated treatment with capsaicin
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number of ISRs was observed and recorded for 30 min. Ketotifen
(1 mg/kg) was administered intravenously 5 min prior to histamine
or LPA administration. Each column represents the mean * SE of
5-6 animals. Significantly different from saline group: * p < 0.05
(Student’s t test).
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Fig. 4. Effects of capsaicin desensitization on the ISRs induced by
LPA in mice. LPA (100 pg/site) was administered intradermally
mnto the rostral region of the back. The number of ISRs was ob-
served and recorded for 30 min. Capsaicin was administered sub-
cutancously into the caudal region of the back at increasing doses
(25 and 50 mg/kg) daily for 2 days. Each column represents the
mean * SE of 5-6 animals. Significantly different from the saline-
treated group: * p < 0.05 (Student’s t test).

induced a significant inhibition of the ISR formation. Sig-
nificant differences were evident between the capsaicin-
and the vehicle-treated groups (p < 0.05; fig. 4).
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Fig. 5. Effects of Y-27632 on ISRs induced by histamine (a) and
LPA (b) in mice. Histamine (10 pg/site) or LPA (100 pg/site) was
administered intradermally into the rostral region of the back. The
number of ISRs was observed and recorded for 30 min. Y-27632
(1 mg/keg) was administered intravenously § min prior to histamine
or LPA administration. Each column represents the mean + SE of
5-6 animals. Significantly different from the saline-treated group:
*p<0.05* p<0.01 (Student’s t test),

Effect of Y-27632 on LPA-Induced ISRs

The effect of Y-27632 was examined (fig. 5). The LPA-
induced number of ISRs was 16.7 *+ 3.85; moreover, this
value differed significantly from that of the saline-treated
group (p < 0.01). The. LPA-induced number of ISRs in
the Y-27632-treated group was 4.83 * 1.60. Moreover,
the value differed significantly from that of the vehicle-
treated group (p < 0.05). In contrast, Y-27632 scarcely
affected the number of histamine-induced ISRs. No sta-
tistically significant differences were observed with re-
spect to the vehicle-treated group.

Discussion

Afferent C fiber terminals in the skin are localized in
the proximity to mast cells. These terminals, which are
activated by various mediators produced by mast cells,
transmit this information to sites, where it may cause the
sensation of itch. Therefore, mast cells may play a key
role in the pathophysiology of itching. In the present
study, intradermal administration, consequent to its util-
ity in numerous ISR experiments, was employed for the
measurement of ISRs; furthermore, mast cells in the skin
are distributed predominantly in the upper region of the
dermis,
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The results of the present study indicate that LPA
causes ISRs in mice. We found that 100 pg/site of LPA
induced ISRs. Moreover, the maximum effect was ob-
served during the initial 10-min period; this effect nearly
subsided by 30 min following LPA administration. Con-
sequently, the number of ISRs was monitored for 30 min.
LPA at 10 pg/site failed to exert any effect; however, the
ISRs induced by LPA at 100 pg/site were of a consider-
able magnitude.

Diluted formalin (5 mg formaldehyde) applied to the
rostral region of the back did not induce ISRs[16]. Acetic
acid (10 mmol/1) produced no meaningful ISRs in guinea
pig eyes [17]. Inagaki et al. [18] also noted that ISRs in
mice may be induced by a sensation or a mechanism sim-
ilar to itching in humans; moreover, these authors con-
cluded that this model was suitable for the examination
of itching in humans. On the basis of these findings, we
hypothesize that the ISR does not occur in response to
pain-related and foreign body stimuli. Hence, it appears
likely that the LPA-induced ISR is due to itch and not to
pain. To the best of our knowledge, this is the first report
demonstrating LPA-induced ISRs.

PGD; and PGE, appear to possess pruritogenic activ-
ity in the guinea pig eye [17]. Despite this finding, the ISR
was not induced by intradermal administration of PGD;.
Greaves and McDonald-Gibson [25] noted that PGE,
itself’ did not cause itching; however, it did fower the
threshold of the skin to itching provoked by histamine as
well as by other mediators. The present findings with re-
spect to the absence of induction of ISR suggest that
PGD; may act synergistically to promote ISRs,

In the present study, ketotifen and capsaisin were
shown to exert inhibitory effects on the LPA-induced
ISRs. These results indicate that the release of histamine
and substance P was involved in LPA-induced ISRs. His-
tamine is well established as a classical pruritogenic sub-
stance [26)]. There is evidence regarding the ability of sub-
stance P to create an itch sensation in humans when
applied to the skin [27]. Hence, we hypothesize that LPA,
in addition to histamine and other mediators, may induce
an itch sensation in humans.

Although it is well known that substance P mduces
histamine release [28], we hypothesize that the hista-
mine-mediated pathway is not identical to the substance-
P-mediated pathway in LPA-induced ISRs. In the present
study, ketotifen partially inhibited LPA-induced ISRs;
however, this substance abolished histamine-induced
ISRs. If substance P contributes to the development of
LPA-induced ISRs via the histamine-mediated pathway,
the LPA-induced ISRs should disappear upon treatment

LPA-Induced Itch-Scratch Responscs

with ketotifen. Schmelz et al. [29] reported that endoge-
nously released substance P did not degranulate mast
cells in the healthy human skin. Andch and Kuraishi [30]
also reported that substance-P-induced scratching was
not suppressed by chlorpheniramine and that intrader-
mal administration of substance P increased the cutane-
ous concentrations of leukotriene B,. Substance P in-
duced by LPA may not cause the release of histamine;
other mediators, such as leukotriecne B4, may be in-
volved.

LPA-induced ISRs displayed 2 marked inhibition
upon treatment with 1 mg/kg of Y-27632, an inhibitor of
ROCK. This finding was indicative of the involvement
of the Rho/ROCK-mediated pathway in LPA-induced
ISRs. The relations between the Rho/ROCK-mediated
pathway and the histamine- or substance-P-mediated
pathway were not clarified in the present study. We hy-
pothesize that the Rho/ROCK-mediated pathway was
not involved in the activation of C fibers by the histamine
released; moreover, this pathway did not influence the
transmission of the itch sensation to the central nervous
system, as Y-27632 failed to attenuate histamine-induced
ISRs. The Rho/ROCK-mediated pathway may partici-
pate in the release of histamine and substance P.

To summarize, we conclude that LPA induces ISRs;
furthermore, our findings suggest that LPA-induced ISRs
may be attributable to the histamine-, substance-P-, and
Rho/ROCK-mediated pathways. Thiseffect indicates the
potential role of LPA in terms of its contribution to itch
accompanying allergic disorders such as atopic dermati-
tis, allergic conjunctivitis, and allergic rhinitis.

Pharmacology 2004;72:51-56 55
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Fig. 1 Ca™ response in aortic endothelial cells to fluid flow in the presence of LPA. Cells were stimulated by
fluid flow in the presence of 3 uM LPA. A: fluo-4 fluorescence image in the resting state, B: ratio images during
application of fluid flow, C: time course of Ca”™ response to fluid flow in three different regions shown in B.
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Fig. 2 Simultaneous confocal imaging of Ca® spots at apical and focal planes of lens epithelial cells using the
high-speed three-dimensional confocal imaging system. A: Relationship between changes in Z-axis position with
the Microscope Objective NanoPositioner controlled by electrical square waves and camera exposure. The de-
tailed protocol is described in the text. B: Confocal fluorescence images of fluo-4-loaded neuronal cell (upper)
and astroglial cells (lower) obtained by this confocal system.
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Fig. 3 Simultaneous confocal imaging of fluid flow-induced Ca™ response at apical and focal planes of endothe-
lial cells. Cells were stimulated by fluid flow in the presence of 3 uM LPA. A: fluo-4 fluorescence images in the
resting state at apical (upper image) and focal planes (lower image), B: successive ratio images of localized
Ca™ response at apical and focal planes, C: regions analyzed quantitatively at apical and focal planes, D: time
course of Ca” responses to fluid flow in the starting region and an adjacent region shown in A and C.
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Fig. 4 Possible contribution of LPA as mechanosensitizer in endothelial cell-related vascular function and ab-

normality.
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Abstract — Role of lysophosphatidic acid as a mechanosensitizer. Hisayuki OHATA, Takeharu NIIOKA, Myung-sook
KIM, Sanae ANDQ, Masayuki YAMAMOTOQ, and Kazutaka MOMOSE (Department of Pharmacology, School of
Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8535, Japan)

Folia Pharmacol. Jpn. (Nippon Yakurigaku Zasshi} 124, 329~335 (2004)

The mechanotransduction mechanisms play an important role in regulation of specific cellular response or mainte-
nance of cellular homeostasis in a wide variety of cell types. Increase in intracellular free Ca™ concentration
([Ca™],) is an important signal in the first step of mechanotransduction. Mechanosensitive {MS) cation channels
are thought to be a putative pathway of Ca* entry; however, the molecular mechanisms remain unclear. We have
previously demonstrated that lysophosphatidic acid (LPA), a bicactive phospholipid present in human plasma, sen-
sitizes the response of [Ca™]; to mechanical stress in cultured smooth muscle cells, cultured lung epithelial cells,
and cultured lens epithelial cells. Using real-time confocal microscopy, local increases in [Ca®]; in several regions
within the cell subjected to mechanical stress were clearly visualized in cultured bovine lens epithelial cells and cul-
tured vascular endothelial cells in the presence of LPA, We called the phenomenon “Ca® spots”. Pharmacological
studies revealed that the Ca”™ spot is an elementary Ca*-influx event through MS channels. In this review, possible
physiological and pathophysiclogical roles of LPA as a mechanosensitizer are discussed.

Keywords: lysophosphatidic acid; mechanotransduction; mechanosensitive ion channel; intracellular Ca* ion concen-
tration
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Peroxynitrite (ONOQO") is thought to be involved in the neurodegenerative process. To
screen for neuroprotective compounds against ONQO~induced cell death, we devel-
oped 96-well based assay procedures for measuring surviving cell numbers under oxi-
dative stress caused by 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1), a
generator of ONOO-, and sodium N,N-dietyldithiocarbamate trihydrate (DDC), an
inhibitor of Cu/Zn superoxide (0;) dismutase. Using these procedures, we obtained a
microbial metabolite that rescued primary neuronal cells from SIN-1-induced dam-
age, but not from DDC-induced damage. By NMR analysis, the compound was identi-
fied as neoechinulin A, an antioxidant compound that suppresses lipid oxidation. We
found that the compound rescues neuronal cells such as primary neuronal cells and
differentiated PC12 cells from damage induced by extracellular ONOO-, However,
non-neuronal cells, undifferentiated PC12 cells and cells of the fibroblast cell line 3Y1
were not rescued. Neoechinulin A has scavenging, neurotrophic factor-like and anti-
apoptotic activities. This compound specifically scavenges ONOO-, but not O, or
nitric oxide (NO). Similar to known neuroprotective substances such as nerve growth
factor and extracts of Gingko biloba leaves, neoechinulin A inhibits the SIN-1-
induced activation of caspase-3-like proteases and increases NADH-dehydrogenase
activity. These results suggest that neoechinulin A might be useful for protecting
against neuronal cell death in neurodegenerative diseases.

Key words: free radical scavengers, neoechinulin A, neuroprotective effect, oxidative

stress, peroxynitrite,

Peroxynitrite (ONOO-) is produced from superoxide (O,")
and nitric oxide (NO) (). O, is highly toxic to neurons as
it initiates the chain-reactive production of various reac-
tive oxygen species (ROS) during metabolism; protection
against Oy -induced toxicity is critical for neuronal sur-
vival (2, 3). NO has diverse physiological functions (4-7)
and is toxic to neuronal cells (8). NO reacts with O,-in a
diffusion-limited manner to form the more toxic oxidant
ONOO- (1), which induces the death of PC12 cells (9~-11)
and cortical neurons (12). In the central nervous system,
ONOO- can be generated by microglial cells activated by
pro-inflammatory cytokines or B-amyloid peptide and by
neurons (13). ONOQ- is far more selective than other
strong oxidant and preferentially reacts with thiols (14).
In addition, ONOO- also reacts with tyrosine to yield 3-
nitrotyrosine (15). Increasing levels of nitrotyrosine (16)
are associated with degenerating neurons in the Alzhe-
imer’s disease brain, suggesting pathogenic roles for
ONOO-.

SIN-1 (3-(4-morpholinyl)} sydnonimine hydrochloride)
is a vasodilator that spontaneously releases 05~ and NO
into the medium, thereby producing ONOO- (17, 18). The
compound causes a concentration-dependent increase in
cortical cell injury (19). It has been reported that neuro-
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trophic factors such as nerve growth factor (NGF) (20),
and free radical scavengers such as uric acid (21} and
manganese (III) tetrakis (4-carboxyphenyl) porphyrin
(Mn-TBAP) (22), rescue neuronal cells from SIN-1-
induced damage. However, these compounds prevent
oxidative damage caused by various ROS as well as
ONOQO- -induced damage.

Copper/zinc superoxide dismutase (Cuw/Zn-SOD) is
highly expressed in neurons (23). Thus, an SOD-inhibi-
tor, sodium N,N-dietyldithiocarhamate trihydrate (DDC)
elevates the amounts of intracellular O, and induces oxi-
dative damage through the chelathor of Cu®* in the active
site of Cu/Zn-SOD (24, 25). To obtain compounds that
specifically protect neuronal cells against ONOO--
induced oxidative damage, we screened microbial metab-
olites that rescue primary neuronal cells from SIN-1-
induced injury, but not from DDC-induced injury. We
obtained a microbial metabolite that specifically protects
against ONOO-~induced cell death. In this paper, we
describe the neuroprotective properties of this compound.

MATERIALS AND METHODS

Culture of Fungi and Extraction of Their Metabolite—
Fungi were isolated as described by Inoue et al. (26) and
incubated at room temperature for 21 d. Each culture
was filtered through cheesecloth to remove the mycelia,
and the components were extracted with CH,Cl,. The
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