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Characteristics of Dual Frequency Planar Monopole Antenna for

UWB System

SUMMARY  An antenna with a wide bandwidth is required for ultra-
wideband (UWB) system of the future, Several types of widcband antenna
that cover the whole frequency range have been proposed. Since the UWB
system would cover from 3.1 to 10.6 GHz, it is necessary to suppress the
interference from other systems using some of this frequency band. This
paper presents two types of novel planar monopole antenna: one consists
of two connected rectangular plates and another one is an orthogonal type.
The return loss characteristics, radiation patiern, and current distribution of
these antennas were simulated by using the FDTD method. The proposed
antennas had dual frequency and broad bandwidth characteristics at both
resonant frequencies. The return loss level at the eliminated frequency be-
tween the resonant frequencies was almost () dB. The radiation pattemns for
the whole frequency range were almost omni-directional in the horizon-
tal plane. The current distributions at each frequency were similar to that
of a planar rectangular monopole, The radiation pattems thus were omni-
directional in the horizontal plane at each resonant frequency. Therefore,
the results showed that wide bandwidth characteristics could be achieved
with such antenpas.

key words: menopole antenna, dual frequency, emni-direciional, ultra-
wideband, FDID method

1. Introduction

Several types of wideband antenna have been proposed for
future ultra-wideband (UWB) systems [1]-{5). These anten-
nas must be able to cover the entire frequency range of the
systemn and can be classified as to their structure; that is, they
have either a three-dimensional structure or a planar struc-
ture. The three-dimensional antennas include the double-
ridged gnided horn antenna (DRGHA), the log-periodic an-
tenna, and the monocone-like antenna (tear-drop shaped)
[1]. The planar antennas include the Vivaldi antenna, the
planar dipole antenna (e.g., bow-tie), the planar monopole
antenna, and the fractat antenna [2]-[5]. Not only the stan-
dard antennas but also smaller ones for PC cards, Compact
Flash, etc., as well as ones for base station antennas have
been studies in the above research. The latter antennas were
the subjects of the work presented in the current paper.
Since the UWB system would cover the frequency
band from 3.1 to 10.6 GHz, it is necessary to suppress in-
terference from other systems using some of this frequency
band. For instance, the frequency band of about 5-6 GHz is
used for wireless LAN systems. An antenna with a dual
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frequency capability and a wide bandwidth at both reso-
nant frequencies must be able to suppress parts of the 3.1
to 10.6 GHz frequency band. While it is possible to use
two wideband antennas (one for each frequency band), these
would take up more space than would one dual frequency
antenna,.

One way to make a dual frequency antenna is to place a
parasitic element near the radiation part. By using parasitic
elements, other resonances cecur, for which dual or multiple
frequency characteristics can be obtained [6].

Another antenna with dual frequency characteristics
and a two-layer geometry is described in [7]. This stacked
antenna consists of a lower top loaded monopole antenna
and an upper element. The upper element is connected to
the lower antenna by a short pin at the center of the lower el-
ement, The dual frequency characteristic in this case is due
that the antenna can be viewed as two top loaded monopole
antennas. Moreover, the radiation characteristics at each
resonant frequency are omni-directional in the horizontal
plane, since each pattern is radiated from each top loaded
monopole antenna. However, the bandwidth at each reso-
nant frequency is less than 500 MHz, obviously not broad
enough to cover the UWB frequency range. These antennas
are thus suitable for two narrowband applications but not for
two wideband applications.

To solve the above problems, this paper proposes two
types of novel planar rectangular monopole antenna, each
with dual frequency, wideband characteristics and an omni-
directional radiation pattemn in the horizontal plane. The re-
turn loss characteristics, radiation patterns, and current dis-
tribution of these antennas were calculated by using the fi-
nite difference time domain (FDTD) method.

2. Planar Rectangular Monopole Antenna

The planar rectangular monopole antenna was analyzed and
compared with a wire monopole. The analysis model of
the antenna is shown in Fig. 1. An infinite ground plane
was assumed. The height of the rectangular monopole was
H = 22mm, the width was W, and the length of the feed
pin was g = 1mm. The size of the rectangular part was
(H — g) x W. The antenna characteristics were simulated by
using the FDTD method. The FDTD parameters are shown
in Table 1. An eight-layer PML (perfect matching layer)
was used as the absorbing boundary condition (A. B. C.).
Figure 2 shows the return loss characteristics of the
planar monopole antenna for different monopole widths
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Fig.1 Geometry of planar rectangular menopole antenna.

Table1l  Analysis parameters.
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Fig.2 Retum loss characteristics of planar monopole antennas with
different widths W.

W. H was fixed at 20mm for the resonant frequency of
about 3.5GHz. By increasing the width so that the an-
tenna becomes rectangular, the antenna characteristics be-
come wideband and the return loss levels change because
of the change in impedance matching. It is evident that
the planar monopole has a wider bandwidth than that of a
wire monopole. If the return loss is suppressed to less than
—10dB, which is approximately equivalent to VSWR (Volt-
age Standing Wave Ratio) < 2, the maximum bandwidth is
from 3.0 to 6.4 GHz for W = 12mm,

The radiation characteristics of the planar rectangular
monopole antenna when W = 12mm are shown in Fig. 3.
These characteristics are in the horizontal plane at 3.0, 4.0,
5.0, 6.0 GHz. At these frequencies, this antenna model gives
a return loss of less than —10dB. The cross-polarization
characteristics of the antenna at each frequency are sup-
pressed to l€ss than —20 dBi {niot shown in this figure). The
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Fig.3 Radiation characteristics of planar monopole antenna in the
horizontal plane (xy-plane).

radiation patterns are similar to that of a monopole antenna,
and they become slightly distorted at the higher frequency
range.

3. Planar Monopole Antenna
3.1 Antenna Structure

Figure 4 shows the analysis model of the novel dual fre-
quency planar menopole antenna. The antenna consists of
an upper and lower part connected by a pin and is formed
by making slits in the vertical edges of the planar rectangu-
lar monopole antenna shown in Fig. 1. That is, the pin is
formed by making the distance between both slits thin like
a wire. For the simplicity of analysis, the shape of each an-
tenna element is considered to be rectangular. An infinite
ground plane is also assumed. The planar monopole height
is denoted as H and the length of feed pin is g = 1 mm. The
upper and lower rectangular areas are H, x W, and H; x W,
respectively. The length of the pin is z. Thus, H = H, +
z + H; + g. The antenna characteristics were simulated by
using FDTD method. The FDTD parameters were the same
as shown in Table 1.

3.2 Antenna Characteristics

This section examines the influence of the cut-out slits on
the characteristics of the planar rectangular monopole an-
tenna. The heights and widths are fixed as H = 20mm, W =
W,=W;=12mm, z=4mm, H, =2mm, and H; = 13 mm.

Figure 5 shows the return loss characteristics of the pla-
nar monopole with slits (novel)} and without slits. As can be
seen, the novel planar monopole antenna has dual frequency
characteristics. At the lower and higher resonant frequen-
cies, this antenna has broadband characteristics. The retum
loss level is suppressed to less than —10dB, from about 3 to
4 and 7.5 to 10GHz, or from 2.5 to 5 and 7 to 11 GHz for
VSWR < 3, while the level between resonant frequencies is
increased to over =3 dB, reaching almost 0dB.

The radiation characteristics of the novel dual fre-
quency planar monopole antenna are shown in Fig. 6. These
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Fig.4 Geometry of novel dual frequency planar monopole antenna
{upper element: rectangle, lower element: rectangle).
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Fig.5 Return loss characteristics of the antenna structures.
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Fig.6 Radiation characteristics of dual-frequency planar monopole in
the horizontal plane (xy-plane).

characteristics are in the horizontal plane for frequencies of
3.0 and 9.0 GHz, which are respectively near the lower and
upper resonant frequency. The cross polarization charactey-
istics are suppressed to less than —20dBi (not shown). The
radiation patterns at each frequency are similar to that of a
monopole antenna, that is, approximately omni-directional
in the horizontal plane. There is a small amount of distortion
in the radiation pattern of the higher resonant frequency.
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Fig.7 Return loss characteristics according to type of ground plane.
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Fig.8 Radiation characteristics in the horizontal plane {xy-plane).

Figure 7 shows the retum loss characteristics of the
planar monopole antennas shown in Fig. 4 when the ground
plane is the finite type or the ideal infinite type. The finite
ground plane was 20 mm square. Both planar monopole an-
tennas (i.e., using an infinite or finite ground plane) have
dual frequency characteristics with a wide bandwidth. The
return loss level between each resonant frequency exceeds
— 3dB, reaching almost 0dB.

Figure 8 shows the radiation characteristics of the pla-
nar monopole antenna when the ground plane is finite.
These characteristics are in the horizontal plane with fre-
quencies of 3.3 and 8.7 GHz. When using an infinite ground
plane, the cross polarization characteristics at each fre-
quency are suppressed to less than —20dBi. On the other
hand, the level of cross polarization when using a finite
ground plane is suppressed to less than —20 dBi at the lower
frequency and less than —15 dBi at the higher resonant fre-
quency. Even though the cross polarization characteristics
do depend somewhat on the ground plane type, for simplic-
ity of analysis, the infinite ground plane can be assumed in
the following.



2610

Return Loss [dB]

Hym0, Ha18 =i
= J Hy=2, H=20 = earnrensn
Hymd, H=22 i
-30
2 8 8 12
Frequency [GHz]

Fig.9 Retumn Joss characteristics for different upper element heights H,.

3.3 Return Loss Characteristics

The return loss characteristics are examined according to the
antenna parameters of the dual frequency planar monopole
antenna. The antenna impedance is affected by changing the
feed pin length g. If the detail of the feed part is taken to be
a parameter, it is difficult to model the feed part and analyze
it by using the FDTD method unless the subcell technique,
non-uniform mesh, etc, are used. For the simplicity then, g
is fixed at 1 mun.

Figure 9 shows the retum loss characteristics for differ-
ent upper element heights H,. This antenna’s widths are W,
=W, = 16 mm. z=4mm, and Hj is fixed at 13mm. H, is
a variable; therefore, when it increases, the antenna’s over-
all height H also increases, while the lower element’s height
does not change. H, = 0 means that the upper element is
a wire. This planar monopole antenna has dual frequency
characteristics and wideband characteristics at each reso-
nant frequency. The return loss level at the eliminated fre-
quencies between the resonant ones increases to over -3 dB,
reaching almost 0dB. When H,, goes from 0 mm to 4 mm,
i.e., H goes from 18 mm to 22 mm, the lower resonant fre-
quency shifts to alower value, from around 4 GHz to 3 GHz.
The return loss level of the lower frequency also changes
because of the change in the impedance matching. On the
other hand, the higher resonant frequency is not influenced
by changing H, and H.

Figure 10 shows The return loss characteristics for dif-
ferent upper element widths W,. W, is a variable, while W;
= 12mm. z =4mm, H;is 13mm, and H, is 2mm. When
W, goes from 8 mm to 20 mm, the lower resonant frequency
shifts to a lower value and the bandwidth decreases. On the
other hand, the higher resonant frequency is almost unaf-
fected by changing W,.

The return loss characteristics for different connector
pin widths w are shown in Fig.11. Changing the width of
the connector pin is the same as changing the depth of the
slits. When the pin becomes as thin as a wire, dual frequency
characteristics become evident and the higher resonant fre-
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Fig.11  Retum loss characteristics for different connector pin widths w.

quency appears, On the other hand, the lower resonant fre-
quency is almost unaffected by changing w.

Thus by changing each antenna element’s height, that
is H,, z, or H;, the lower resonant frequency is not much
influenced if the total antenna height A is fixed. However,
the higher resonant frequency does depend on the height of
the lower rectangle Hy. Changing the widths of the antenna
elements affects the bandwidth characteristics at each fre-
guency, the same as in the planar rectangular monopole an-
tenna case.

3.4 Comparison of Analysis and Measurement Result

Figure 12 shows the dual frequency planar monopole an-
tenna with a wire-like upper element that was used in the
measurement. The height and widths were H = 17 mm and
W, =W =16mm, and z = Smm, H; = 12mm, and H,
was infinitesimal (=0). The lower part was rectangular, as
in Fig. 4. The ground plane was finite in the measuretent.
Figure 13 shows the simulated and measured return
loss characteristics of the experimental antenna. The an-
tenna had dual frequency characteristics and wideband char-
acteristics at the lower and higher resonant frequency. The
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Fig.12  Geometry of experimental dual frequency planar monopole
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Fig. 13 Retum loss characteristics {upper element: wire).

return loss level in the eliminated frequency range was from
-3 to almost 0 dB. Either the rectangular element or the wire
element could be the upper element to make dual frequency
characteristics. This is because the lower resonant frequency
is affected by the total antenna size, especially H, and the
higher resonant frequency is affected mostly by the lower
patt, i.e., H;. The simulated and measured return loss char-
acteristics agree with each other.

Figure 14 shows the simulated radiation characteristics
of the antenna. These characteristics are in the horizontal
plane with frequencies of 4.0 and 8.0 GHz, respectively. The
cross polarization characteristics at each frequency are sup-
pressed to less than —20dBi (not shown). The measured
radiation characteristics are shown in Fig. 15. The simu-
lated and measured radiation patterns agree with each other.
Cross polarization characteristics appear in the figure, be-
cause the finite ground plane was used for the measurement
instead of the infinite ground plane and the cable effect was
apparent. From this figure, the radiation pattemns at each
frequency are similar to that of a monopole antenna, i.e., ap-
proximately cmni-directional in the horizontal plane. The
antenna radiation pattern when using the wire for the up-
per element is similar to that of the antenna with the upper
rectangle. However, there is a small distortion in the radi-
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Fig. 15 Radiation characteristics of experimental antenna (xy-plane.
upper element: wire).

ation patterns at the higher frequency. This is because the
antenna’s structure is planar; therefore, the radiation from
the antenna in the direction in which the antenna is on is
different from that in the direction in which the antenna is
crossed. To suppress the distortion in the radiation pattern,
a three-dimensional structure can be considered in place of
a planar structure,

3.5 Current Distribution Characteristics

Figures 16 and 17 respectively show the current distribu-
tions of the wire monopole and planar rectangular monopole
antennas at each resonant frequency shown in Fig.2. Al-
though the current magnitude is strong at the feed part, it is
suppressed to less than —30dB at the top of the monopole.
The results for the planar rectangular monopole are similar.

So far the analysis shows that the proposed planar
monopole antenna has dual frequency characteristics and
that a monopole-like radiation pattern can be achieved at
both rescnant frequencies. Figure 18 shows the current dis-
tributions of the antenna at each resonant frequency. Both
resonant frequencies are shown in Fig.5. Figure 18(a)
shows the current distribution at the lower resonant fre-
quency and (b) shows the one at the higher resonant fre-
quency.
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Fig. 17  Current distribution of planar rectangular monopole antenna
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Fig.18  Cumrent distribution of dual frequency planar monopole antenna.
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At the lower resonant frequency of 3.3 GHz, the mag-
nitude of current is strong at the feed and connector parts,
The current distribution at the vertical edges is almost the
same as that of a rectangular monopole, and the current level
is suppressed to less than —30dB at the top of the antenna,
as shown in Fig. 18(a). From Fig. 18(b), the current level
is strong at the feed pin at the higher resonant frequency
of 8.7GHz. The current distribution is similar to that of a
rectangular monopole at the vertical edges of the lower rect-
angle, and the current level is less than —30dB at the top of
the lower rectangle.

These current distribution characteristics indicate that
the lower resonant frequency is affected by the total height
of the planar monopole antenna, while the higher resonant
frequency is affected by the height of the lower rectan-
gle element. This is the same result as gotten from the
previous section’s retarn loss characteristics by changing
the size of the upper element. The current distributions
at each frequency are similar to those of a planar rectan-
gular monopole, so the radiation pattems become omni-
directional in the horizontal plane at each resonant fre-
quency. As a result, a wide bandwidth can be achieved.

4, Orthogonal Planar Monopole Antenna
4.1 Antenna Structure

Figure 19 shows the orthogonal dual frequency planar
menopole antenna. This antenna is made by crossing two
dual frequency planar monopole antennas identical to that
in Fig. 12. The two planar parts are at 90 degrees with re-
spect to each other. Thus, the plate clements of this antenna
are orthogonal and are of the same size.

The height of the planar monopole is H and the length
of the feed pin is g = 1 mm. The upper tectangular element
area is H, x W,, and lower one is Hy X W,. The length of
the connector pin between the upper and lower elements is
z. Thus, H = H, + z + H; + g. The upper parts of this
planar menopole antenna are wire-like and the lower parts
are rectangular. The antenna characteristics were simulated
by using the FDTD method. The FDTD parameters were
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Fig.19  Analysis model of orthogonal dual frequency planar monopole
antenna,
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Fig.21  Retum loss characteristics of orthogonal planar monopole
antenna.

the same as in Table 1.
4.2 Retum Loss Characteristics

The return loss characteristics of the dual frequency planar
monopole antenna and novel orthogonal planar monopole
antenna, whose analysis models are shown in Figs. 12 and
19 respectively, are compared in this section. The size pa-
rameters are the same as in the previous section. The re-
turn loss characteristics are shown in Fig. 20. From this fig-
ure, it is apparent that the novel orthogonal planar monopole
antenna has dual frequency characteristics. The resonant
characteristic shifts to a lower frequency range from that
of the dual frequency planar monopole because of the elec-
trical antenna’s size. At each resonant frequency, this an-
tenna has broadband characteristics. The return loss level
is suppressed to less than —6dB, from about 3 to 4.5 and
6 to 8 GHz for VSWR < 3, but the level increases between
both resonant frequencies. The retumn loss level is more than
—3dB, reaching almost 0dB, at the eliminated frequencies
around 5-6 GHz.

The previous antenna parameters give retum loss char-
acteristics that don’t cover the required antenna characteris-
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Fig.22  Radiaioncharacteristics of orthogonal planar monopole antenna
in the horizontal plane (xy-plane).

tics. In particular, the resonant frequencies should be shifted
to a higher frequency to cover the UWB frequency range
and eliminate the undesired frequency range. An orthog-
onal planar monopole antenna with the following parame-
ters was analyzed. The antenna’s height and width are H
= 17mm and W, = W; = 12mm. .z = 5mm, H, = 14mm,
and H,, is infinitesimal (= 0). The return loss characteristics
are shown in Fig.21. This can cover the UWB frequency
range and eliminate the undesired frequency range. The re-
turn loss characteristic is affected by the antenna’s size, asis
the case with the dual frequency planar monopole antenna.
When the shape of the upper element is rectangular instead
of wire-like, similar return loss characteristics to that of us-
ing a wire-like structure can be achieved.

4.3 Radiation Characteristics

Figure 22 shows the radiation characteristics of the orthog-
onal dual frequency planar monopole antenna and that of
the planar dual frequency monopole antenna. These charac-
teristics are in the horizontal plane with respect to 3.6 and
9.1 GHz. The cross polarization characteristics of the an-
tenna at each frequency are suppressed to less than —20dBi
(not shown). From this figure, the radiation patterns at each
frequency are similar to that of a monopole antenna, i.e., ap-
proximately omni-directional in the horizontal plane. Un-
like the radiation pattern of the planar antenna, there is no
distortion in the orthogonal planar monopole’s radiation pat-
tern. The radiation characteristics are thus improved by us-
ing the orthogonal structure. When the shape of the upper
element is rectangular instead of wire-like, the similar radi-
ation characteristics to that of using wire-like structure can
be achieved.

5. Conclusion
This paper presented two types of planar rectangular

monopole antenna. These novel antennas had either a pla-
nat structure or an orthogonal structure, and they consisted
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of upper and lower elements that were connected. Both can
be made by cutting slits into the vertical edges of rectan-
gular planar antennas. The return loss characteristics, ra-
diation pattern and current distribution were simulated by
using the FDTD method. Both antennas were shown to
have dual frequency and wideband characteristics, The re-
turn loss level at the eliminated frequency range between the
two resonances was more than —3 dB, reaching almost 0dB.
The radiation patterns over the whole frequency range were
almost omni-directional in the horizontal plane. The cur-
rent distributions were examined, and the characteristics at
each frequency were found to be similar to that of a planar
rectangular monopole.
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Linear maximum likelihood decoding of space - time
block coded OFDM systems for mobile

communications

G.T.F. de Abreu, H. Ochiai and R. Kohno

Abstract: A new linear decoder for space-time block codes is presented, which enables linear
maximum-likelihood decoding in scenarios beyond those described by block-fading models. The
new decoder employs linear combinations of received signals with weights designed so as to yield
orthogonal estimates for all encoded symbols regardless of channel variations within the block
transmission, provided that the channel is known. The combination weights are scalar functions of
the channel estimates, obtained through systematic rotations over the decoding matrices of the
linear maximum-likelihood decoder for the block-fading case. The proposed decoder yields good
performance with low-complexity and is therefore suitable for low-cost portable receivers
supporting space-time transmit diversity at the downlink of high data-rate wireless mobile
communication systems. Combined with OFDM technology, the technique yields a low-
complexity receiver that is effective in combating both time and frequency selectivities, and
provides a tool to add flexibility to wireless local area network systems and to offer high data-rate

services with support to mobility,

1 Introduction

Orthogonal block space-time transmit diversity, also
known as orthogonal space—time block codes (STBCs),
has attracted increasing attention since the proposal of the
Alamouti scheme [1] and its generalisation by Tarokh [2, 3).
In fact, when combined with maximum ratio combiner
(MRC) receive diversity schemes, this technique can transfer
a significant amount of the system complexity to the base
stations.

Although various space-time codes have since been
invented, orthogonal STBCs remain attractive for their
excellent balance of performance and low complexity.
Orthogonal STBCs were originally developed for high-
data-rate systems in flat, block-fuding channels, based on
the assumptions that symbol rates are much larger than
typical fading rates and that frequency selectivity can be
neglected. In such channels, a fundamental advantage of the
block structure, in comparison to the alternative trellis
structure such as those proposed in [4, 5], is the possibility of
decoupling symbol estimates thorough simple linear combi-
nations of the received signals, enabling low-complexity
symbol-by-symbol maximum likelihood decoding (MLD).
This technique, hereafter referred to as linear maximum
likelihood decoding (LMLD), was one of the main appeals
of Alamouti’s original scheme [I} and has been recently
generalised [6] to orthogonal space-time block codes of any
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order [2]. Linear maximum likelihood decoding of orthogo-
nal space-time block codes brings the complexity involved
in the application of such codes to implementable levels
(even with higher order modulation schemes). Unfortu-
nately, this attractive technique is presently known only for
space—time block codes in block-fading channels, which
inherently limits its applications to low mobility scenarios.

In the ever more information-hungry modern and future
societies, however, high-data-rate services are demanded not
only by stationary users, but also by users on the move. A
prominent example of practical interest is public wireless
local area networks (WLANs) increasingly found in public
places such as airports and train stations, and utilised by
people moving at different speeds, on foot and travelators,
as well as bicycles, karts and shuttles. Another is private
WLANSs supporting seamless indoor-outdoor transitions so
as to serve users not only inside buildings but also outside.

However, in such systems with support for moderate
mobility, the effect of time-varying frequency selectivity
over space-time code structures cannot be neglected. In a
single-carrier high-data-rate wireless system applying
STBCs, for instance, frequency selectivity causes encoded
blocks to overlap with random delays. The resulting
intersymbol interference (ISI) destroys the orthogonality
of the code and impedes {conventional) linear maximum
likelihood decoding.

Fortupately, frequency selectivity can be effectively
mitigated with orthogonal frequency-division multiplexed
{OFDM) technology [7]. Nevertheless, there are intrinsic
characteristics of OFDM systems that make the introduc-
tion of spacetime block codes into such systems less
straightforward than might be expected at first glance. For
instance, the symbol periods in OFDM systems are much
longer than that of a single-carrier system with the same
data-rate, such that a fading process slow enough to be
considered block-fading in a single carrier system, might not
be so in a system with an OFDM architecture. Similarly, in
the frequency domain, implementation issues limit the total
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number of carriers of OFDM systems so that adjacent
carriers are still significantly separated, which implies that
‘space—frequency’ implementations of space-time coding
techniques (as suggested in [8)) are also subject to =z
departure from the original assumption of a quasi-static
channel. To summarise, there are applications when neither
in the time nor in the frequency domains, can the OFDM
channel be considered quasi-static so as to support a
straightforward implementation of space-time block codes.

Aiming at combining the advantages of OFDM and
STBCs (with LMLD), so as to design low-cost high-data-
rate wireless communication systems with support for
mobility, applications of the Alamouti scheme to OFDM
systems were investigated in [8-11]. Due to the fact that
OFDM channels are not quasi-static, the results reported in
[8-11] were, however, less than satisfactory. Indeed, it was
observed that the bit error rate performances of space-time
block encoded OFDM systems saturated (reached error
floors) at higher signal-to-noise ratios. The same conclusion
was reached in a previous work where the Alamouti scheme
was applied in a non-block-fuding channel [12], tracked
with a (computationally costly!) Kalman filter.

What went unnoticed in all such works (ic., [8-12] and
their like), is that the error floors at high signal-to-noise
ratios observed with STBCs in non-guasi-static fading
channels are not an intrinsic problem of the codes, but a
consequence of inadequate decoding. In fact, strict ML is
theoretically always possible (see [3]), at the price of a higher
complexity (although this alternative is in most cases
prohibitively complex).

In additional to the low decoding complexity involved,
there are other good reasons that stimulate us to consider
LML decoded STBCs for low-cost, portable receivers in
mobile wireless OFDM systems in urban environments
(with moderate, yet non-block, fading channels). For
instance, highly accurate, low-complexity, two-dimensionat
channe! estimation techniques are available [13-15] for
OFDM systems in these scenarios. Since decoding ortho-
gonal STBCs is essentially a coherent process and as such,
dependent on the accuracy of channel estimation, this
property of OFDM systems highly favour STBCs as
opposed to space-time trellis codes. In fact, while the
fading processes typically faced by mobile wireless OFDM
systems in urban environments is fast enough to impair the
introduction of (non-coherent) differential space-time block
coding [16, 17], these are not fast enough to favour the use
of more complex trellis-based space-time diversity methods
{4, 5], which are, in general the best fit for fast-fading
channels. Finally, unlike the latter, STBCs with LMLD
enable real-time decoding of transmitted signals, required
by some applications,

2 Channel model

Consider an M-carrier OFDM system with bandwidth B
and center frequency f¢ in a multipath mobile wireless
channel with delay spread Az. The complex baseband
representation of such a channel is given by

Aty =Y _n{0)dt— ) (1)
%

where y{f) and 1, are the complex amplitude and the
normalised delay of the kth path, respectively.

Owing to motion, y.{#) are wide-sense stationary complex
gaussian processes, independent for each k& . In addition,
both their average power o7, and probability of occurrence,
decay exponentially with 1, [18].
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If v is the relative speed between transmitter and receiver,
the Doppler spread at the arth carrier is given by

v B B
pm=2(nZs+ic-2) @
where m=0, ..., M-1.

Typically, however, B<fc and fe>0 that fp{m) can be
considered the same at all carriers. The time varying
frequency response of the channel, H(s, f), can then be
written as

H(t )= ) nlhe 2 ()

The two-dimensional complex fading process H{¢, f) has an
envelope autocorrelation well approximated by [19]

J3(2nAtfp)

Ry(A,Af) = o 1+ (22A1A )

4)
where o% is the total average power of the channel and
Jo{ - ) is the Oth order Bessel function of the first kind. An
illustrative example of channels with this description is
shown in Fig. 1.
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Fig. 1 Typical OFDM channel through a 500 ms-hy-500 kHz
window

It is known that the two-dimensional autocorrelation
envelope of the time and frequency fading processes
observed in the OFDM channel given by (4) can be
separated if the normalised autocorrelation functions of all
v4(f) are the same [14). In this case it can be shown that {19]

Ry(At, Af) = o R(AOR (A S) (5)

where
R{Ar) = Jy{(2nAtfp) (6)
Rybn) = R Q

Comparing (1) and (3} we observe that for any given carrier
S the processes A{t) and H{(t,f,) have similar stafistics,
since the terms e~ 2%/»% only affect the phases of vu(2).
Indeed, in both cases, R,(Af) is parameterised only by the
Doppler spread fp. In other words, the time-domain fading
process observed at each carrier of an OFDM system is
equivalent to that observed in u low-data-rate single-carrier
system.

On the other hand, for a fixed instant ¢, all y(¢) are
constant, so that the frequency-domain fading process
depends on the instantaneous distribution of the
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magnitudes of y{t). The fading observed across the carriers
in an OFDM system is therefore not the same as the time-
domain fading process observed in narrowband single-
carfier systems, despite having the same (Rayleigh)
distribution. This is rather evident from the fact that the
autocorrelation function Ry(Af) is parameterised both by
the Doppler fp spread and the delay spread Az,

As an illustration to the fact that a typical OFDM
channel is not accurately described by a block-fading
model, consider the downlink of a wireless system operating
at the 5 GHz band towards a mobile with relative speed of
11 km/h, so that the Doppler frequency spread experienced
is 50Hz.

If the system is single-carrier and transmits symbols taken
from an 8PSK constellation with a data-rate of 10 Mbit/s,
the symbol period is of approximately 0.3 us. Assuming
Rayleigh fading, this means that the autocorrelation of
channel samples taken every, say, 100 symbols is virtually [.
In other words, the channel is quasi-static and the block-
fading assumption holds.

However, in a typical urban environment with a delay
spread of 3us [18], the single carrer system employing
STBC will expertence intersymbol interference. Suppose
that in order to combat intersymbol interference a 512-
carrier OFDM system is set up. The symbol period in this
system is approximately 0.1536ms and the carrier separa-
tion will be around 6.5kHz. In this case, the normalised
time domain autocorrelation of channel samples taken at
every symbol drops to 0.9999. This figure indicates that the
channel can be considered constant over the transmission of
a symbol, Over the transmission of an eight-symbol long
STBC, e.g. G; and G, the figure falls to 0.9907 and for
samples taken every 16 symbols (block-length of codes
GsG;) the number is 0.9631. Similarly, while the auto-
correlation of channel samples taken at every carrier Is 1,
the figure drops to 0.9976 for samples taken every 8 carriers,
and to 0.9903 for samples taken every 16 carriers.

In other words, even in typical urban channels with
relatively small Doppler frequencies and moderate delay
spreads, the fading experienced by OFDM signals is slightly
(vet not negligibly) different in both the time domain (from
symbol to symbol) and the frequency (from carrier to
carrier) domain.

Two important things are learned from the numerical
example given above. The first is that typical
channel variations are still slow enough that the channel
cant be considered constant over a symbol. This implies
that the problem of co<hannel (carrer-to-carrier) inter-
ference due to symbol distortion can be neglected (in fact
dealt with independently) when considering decoding of
STBCs in OFDM systems. The second is that while smooth
channel varation is observed across a block of a few
symbols, this is typically not strong enough to favour
space-time diversity methods designed for the fast-fading
scenario.

Given the above discussion, the model used throughout
this paper to describe the fading process faced by OFDM
signals in the time (across successive symbols) and
frequency {across adjucent curriers) domains is that
of highly correlated, symbol-by-symbol and carrier-by-
carrier Rayleigh fading. The accuracy of this model
is further enforced by the fact that a guard interval
between consecutive symbols i1s commonly use in OFDM
systems.

In the following, it will also be assumed that the channels
observed across different transmit antennas (space domain)
are statistically independent and identically distributed
(o).
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3 Decoding of Alamouti STBC in non-quasi-static
channels

Block space-time diversity schemes in OFDM systems can
be applied both in spacetime and space-frequency
arrangements. In a space-time arrangement, the STBC
structure is applied independently at each carrier, so that
codewords are transmitted over a nmumber of transmit
intervals. In a space-frequency arrangement, codewords are
transmitted over a number of adjacent carners simulta-
neously, so that at each transmit interval a new coded block
is transmitted.

It was shown in [I1] and [&] that depending on
channel conditions (determined by the delay spread
At and the Doppler frequency fp) and on system
parameters such as the symbol period At and the distance
between adjacent carders Af, one arrangement might
yield better results than the other. These works show that
in fact these two arrangements are equivalent in the sense
that the performances of the space-time and space-
frequency arrangements in a certain channel are equivalent
to those of corresponding space-frequency and space-time
arrangements in another channel where the fading processes
in frequency and time domains have inverted properties.
For these reasons we shall hereafter, without loss of
generality, use notation and language only based on a
space—time framework, ie, assuming that the STBC
is applied to every carrier using N-transmit antennas,
It is clear that the results hold also for OFDM systems
employing space-time codes in a spucefrequency
arrangement,

3.1 Conventional combiner

Let §; denote the data symbol transmitted by the ith
transmit antenna (through any arbitrary carrier) and H,[{]
its channel state at the th time interval,

As discussed in Section the preceding, it is assumed that
H.[#} is constant during the transmission of S, but changes
to H;[t+1] at the next transmit interval. In this case, the
received signals at times ¢ and 7+ 1 become

Y] = H[fs + L[S + W[ (8)

Yle+ U= Hfe+ S — Hife+ 1S3 + Wl +1] (9)

where W denotes zero-mean random white Gaussian
complex noise with independent in-phase and quadrature
components each with variance a7, ,.

Assuming that the channel is perfectly estimated, the
question that arises is what combination of received signals
and channel values must be used in order to obtain
orthogonal estimates of ;.

In previous works [8-12), the difference between H,[i]
and H;[t+1) is neglected and the pairs (H[¢]", Hy[/]) and
(Hz[t]', — H\[t]} are used to combine the received signals for
estimates of the transmit symbols, resulting in:

Sy =H[' Y[+ B[+ 1)
=(H [ + Ha[)Hale + 1)')8) + Hal(H [
—Ht+ 1S+ W[+ W+ 1] B[
(10)
Sy =Hy["Yi] - H\[|Y{t+ 1)
=l + B H e+ 117)8: + H (Rl
— Kt + 1))+ W — W+ 1) H [
(11
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This is equivalent to what a system designed for the block-
fading channel and employing the Alamouti scheme would
obtain as estimates in the presence of 4 non-quasi-stationary
fading process. Equations (10) and (11) clearly show that if
the channel values vary slightly from one fransmission
instant to the other (H,[f# Hi[t+1]), the estimates
obtained with the conventional linear decoder for Alamou-
ti’s scheme are (strictly) no longer orthogonal.

Let us quantify the average effect, in terms of intrasymbol
interference, that is caused by such a block-fading-oriented
decoding in the presence of a non-quasi-static fading
channe], Assuming that the fading rate is not too fast,
consecutive samples of the same process cun be related by
an auto-regressive mode! {12]

Hile+ 1} = il + ¥ild] (12)
where V; are zero-mean complex Gaussian random
variables uncorrelated to H, and «; is given by
o < EA T

i

(Af) = Jo(2mAtfp) (13}
OH,

In the equation above, E{-] denotes the expected value, o:‘,’{‘_

the variance (power) of the ith diversity branch H; and At is

the time lag between successive transmissions at f and ¢+1,

that is, the symbol period.

Strictly speaking, «, take complex values. However, if the
channe] varjation from instant ¢ to ¢+ 1 is not too fast, «;
have very small phase and can be approximated by real
numbers [19]. Then, the following approximation holds:

E[| 115 + rf e+ )|
~ (aif' +Jg(27IAth)O‘§ﬁ) (14)
Next, define the normalised interference coefficient p; 1s the
average of the absolute value of the ith channel variation
from H,[f] to H;[t+1]:
- \/(E[iHs{r] — Hift +1]]))?
i

2
T,

(15)

The coefficient that multiplies the interfering symbol §; in
the estimate of S; then becomes:

E[|HAH ) - Hle+ 1)) = eapE[|HA]}  (16)

Since E[|H;lt]|] is simply the average value of a Rayleigh
random variable, we finally have [20]

Bl - e+ 1)) = omponr (3) (1)
The coefficients p; are clearly dependent on the speed with
which the channel varies from symbol to symbol (fading
rate), which can be measured by the autocorrelation of the
channel. In order to simplify the notation it is hereafter
assumed that the diversity branches are balanced, ie.,
o} = 0, = g, so that the subscript i can be dropped
from a; and p;.

Expanding (15) and using the approximation given in
(14), the following is obtained for Rayleigh fading channels
with vatiance o% and the normalised autocorrelation
function given by (6):

p=4+/2(1—a) (18)
Although it was assurmmed that the channel Hfr] varies
slightly to H[t+ 1), it is found that (18} accurately models
the relationship between the interference coefficient p and
the autocorrelation of the channel even for higher fading
rates. Figure 2 illustrates this fact comparing results
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Fig. 2 Variation of the normalised interference coefficient against
the channel novmalived autocorrelation

obtained with (18) to those obtained directly from (15)
through computer simulations.

It is noticeable from Fig. 2 that p grows quickly even for
small deviations from the ideal autocorrelution x=1
{corresponding to a perfect block-fading channel). This
implies that in a channel that is slightly non-block-fading,
significant intrasymbol interference is caused by the linear
combiner described through equations (10) and (11).

Indeed, the performance of the STBC in a non-quasi-
static fading channel with balanced diversity branches is
driven by the following average signal-to-interference-plus-
noise ratio (SINR)

(1 + Jo(2nAtfp) ool

¢ 26%, + +/2(1 = Jo(2rAtfp))I (3) o} 0%

(19)

where o2 is the average energy of the transmit symbols
{encrgy of the signal constellation).

While the diversity order achieved by the code is
given by (1+Jy(2rAtfp)) €2, the denominator term
V2(1 = Jy(2rAtfp))I(1.5) in the denominator accounts
for the orthogonality loss caused by the inadequacy of the
decoder facing a non-block-fading channel. In noisy
scenarios (o, > o2), or in channels with absolutely no
variation within blocks (p = 0) (19) reduces to

2 2
_ Tyls

Equation (20) indicates that, in noisy non-block-fading
channels, the Alamouti space-time diversity scheme with
the above decoder performs approximately as well as in a
block-fading channel.

In typical OFDM systems however, the channel is non-
quasi-static {p # 0) and the case of practical interest for
high-data-rate wireless mobile communication is that
of a low-noise scenario (g% <o3). In this case, a floor
on the SINR inversely proportional to the term
+/2(1 = Jo(2rAtfp))I(1.5) is reached. This indicates that
there is a signal-to-noise-ratio beyond which no improve-
ment is observed on the bit error rate performance of the
space-time coded OFDM system, as observed in [8-11].
Identical results are obtained if the pair of channel states
(Hilt + 1", Hyft+ 1)) and (Ht+ 1), —Hi[t+1)) are
respectively used to obtain estimates for S, and S,.
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Taking another look at {10} and (11) we see that if the
fading rate is too fast that E[H;{{)H;{r+ 1]'] = 0, p reduces

to agv/2 and E“l]‘i’,[t]l2 + Hi[d) [t + l]*” to a%. Conse-

quently, the diversity order deteriorates to 1 (no diversity
gain), and the interference increases to a maximum level of

V/2I'(1.5). In this case, the SINR becomes:
- ohat
26% +V2I (3 }02

This scenatio corresponds to the Alamouti scheme in a fast
fading environment. We emphasise that this analysis is
purely illustrative since, if the fading rate is that high,
channel estimation itself would represent a difficult
problem, not to mention that channel variation within the
transmission of a symbol (which is a cause of co-channel
interference in OFDM systems) could not be neglected.
Equation {21}, however, is helpful to illustrate why Iinear
combining is no longer effective if STBCs are used in fast
fading channels. In fact, it is known that in fast-fading
channels other space-time coding techniques, which never-
theless require more complex maximum likelihood decod-
ing, outperform STBCs {4,

Fast-fading channels, which are related to very high
mobile speeds and low carrier frequencies, are not typical in
OFDM systems, but can be artificially created by the use of
interleaving, However, in typical urban scenarios with small
Doppler frequencies, very long interleavers would be
required in order for fast-fading space—time codes to yield
significant gain, at the cost of higher complexity and
sacrificing real-time decoding,

In contrast, the technique presented in this paper is aimed
at enabling real-time, low-complexity (symbol-by-symbol)
maximum likelihood decoding of orthogonal STB coded
OFDM systems in typical non~quasi-static {yet not fast)
fading channels. The analysis and application of space-time
coding schemes to OFDM systems in fast-fading scenarios
are therefore out of the scope of this work.

g

(21)

3.2 Maximum diversity combiner
Alternatively to the conventional combiner shown in the
previous subsection, (F\{f", Hhlt+1]) and (Fh[H,
—Hi[e + 1]) could be respectively used to obtain estimates
for §) and 8, ensuring that the maximum diversity order is
achieved. In this case we have:

Si=H['Y[+ Kt + 1)¥[e+ 1}
=(n [P + R + 1%)8 + Ll [
— Hylt + NH [+ )8, + WA )"

Wit 1] Hafe+ 1] (22)

%]
[+

=H['Y[f] - B[t + 1]¥e+ 1]°
=(|Hi [t + 1" + [0Sy + (& [0

— H[t + )H[t + 1]")8, + WL’

~ W+ 1"Hi[t+ 1] (23)
If H;[] and Hy[f] are uncorrelated, zero-mean, complex
Gaussian processes with variances o7, and J%E" respectively,
the process Hi[H;{f]" is also a zero-mean complex
Gaussian process with variance a}"ﬂ aqu. Therefore, we have:

E{|HhAH; 1 ~ Bl + U+ 11
=ogom,v/2(1 — Jo(2nAtfp)) (24)
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Again, for balanced diversity branches, the average SINR
resulting from the use of this combiner is given by:

_ 20%,0%
208 + /2(1 — J(2nAtfp))o k03

Equation (25) means that although full diversity is achieved,
this decoder is also not orthogonal in the presence of 4 non-
block-fading channel. In addition, with this combiner, an
even larger amount of intrasymbol interference is observed
since the factor I'(1.5)~0.886 is no longer in the
denominator of the SINR formula. Consequently, higher
ergor floors on the bit-error-rate curves will also be observed
at the low noise region.

¢ (25)

3.3 Orthogonal combiner
From the results obtained with the analysis shown in
Sections 3.1 and 3.2, we infer that pursuing a combiner that
delivers maximum diversity is not necessarily the right
approach in a non-block-fading channel.

Let us combine Y[f] and Y[t+1] using the pairs
(H[t+1]*, Ho[f]) and (Hy[t +1]*, —Hi[f)), to obtain §
and 85, respectively. In this case we have:

Sy =(H [+ 1" + B[+ 1178
+ WH [+ 1) + W+ 1) Hy[f] (26)

S‘z =(H[ [t]Hl [t+ l]* +H2[I]H2[!‘+ l]‘)Sz
+ WL+ 1" - W+ 1] H[f] (27)

Unlike all the methods above, this combiner is capable of
completely decoupling the estimates S1and $,, regardless of
the values of H;. As before, in case the fading process is slow
enough, the average signal-to-noise-ratio (SNR) obtained
becomes:

_ 2(2rAtfp)elo}
20%

Equation (28) suggests that the full orthogonality provided
with this decoder comes at the expense of reducing the
diversity order achieved, which is given by 2Jy(2nAtfp),
clearly less than 2 for fp # 0. In a block-fading scenario
{Atfp = 0) however, as with all other methods above, this
combiner reduces to the conventional (maximum-ratio-like)
linear combiner for Alamouti’s code [1].

In all the linear combiners discussed here, estimates for
the symbols §) and S; are first obtained and then compared
to the  symbols of the transmit constellation. Therefore,
the order of complexity of the corresponding decoders is
0(20).

In contrast, with strict maximum likelihood decoding, no
decoupled estimates of the transmit symbols are computed.
Instead, decoding is based on the computation of the metric
given below, for all possible pairs of §; and S in the
constellation, which gives a decoding complexity in the
order of O(Q).

Dy =|Y[] - (Hi [ + HaldS2) P + | [t + 1]
~ (&l + 15t — m e+ 1)) (29)

In order to illustrate the difference in terms of complexity,
consider that an 8PSK constellation is used. Decoding a
pair of symbols with strict maximum likelthood requires the
computation of 64 metrics. In contrast, any of the linear
decoders discussed in this Section requires only 16
comparisons. In other words, linear decoders maintain the
complexity of the coded systems at the same level of

4 (28)
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maximum likelihood coherent detection of uncoded sys-
tems.

3.4 Performance and complexity

In Fig. 3, the performances of the Alamouti scheme with
each of the three linear combiners discussed in this section
are compared to that obtained with a strict maximum
likelihood decoder. The plot shows the bit-error rate at one
of the 1024 carriers of an OFDM system transmitting 8PSK
symbols with a nominal data rate of 10 Mbit/s in a channel
with 4 Doppler spread of 75Hz Given these parameters,
each carder transmits at about 10kbit/s and the symbol
period is around 0.3 ms so that the normalised autocorrela-
tion of the channel sampled at the symbol rate is
approximately 0.9948 (see (6)).
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Fig.3 Performunce of Alamouti scheme (3 bitls{Hz) in a 1024-
carrier OFDM system with 8PSK modulation
Doppler spread fp=75Hz

104

It is noticeable that the maximum diversity combiner of
Sub-section 3.2 performs worse than the conventional
combiner of Sub-section 3.1. This result is in accordance
with the theoretical analysis given in this Section.

The plot also shows that both the maximum diversity
and the conventional (block-fading) decoders exhibit error
floors at high SNRs. In contrast, it is seen that the proposed
orthogonal linear combiner, which enables symbol-by-
symbol maximum likelihood decoding, yields a perfor-
mance nearly as good as the strict maximum likelihood
decoder [3), with no error floor.

On the one hand, the complexity of a strict maximum
likelihood decoder for the Alamouti scheme grows with the
square of the cardinality of the modulation constellation.
On the other hand, higher order modulations imply longer
symbols which, for a fixed Doppler spread, result in more
interference with the conventional and maximum diversity
Linear combiners.

This means that the gain of the orthogonal method, in
terms of performance enhancement over the other linear
combiners, and in terms of complexity reduction over the
strict maximum likelihood decoder, is more significant for
higher-order modulations. :

This fact is illustrated in Fig. 4 where the performances of
the Alamouti scheme in the same channel described above
but for 10 Mbit/s 1024-carrier OFDM systems, with several
different modulations are compared.

It is seen that both with the conventional and with the
maximum diversity linear combiners, the higher the order of
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Fig. 4 Performance of Alamouti scheme (14 bitlsiHz} in a 1024-
carrier OFDM system with different modulation schemes
Doppler spread fp=75Hz

the modulation scheme, the higher the error floor reached
and the lower the signal-to-noise ratio from where it is
established. In contrast, the performance achieved with the
orthogonal combiner and symbol-by-symbol maximum
likelihood decoding is clearly comparable to that obtained
with a strict maximum likelihood decoder.

Note that, for instance, in the case of a 16 QAM
constellation, the strict maximum likelihood decoder
requires as much as 256 metric-computations in order to
decode a single block of two symbols, against only 32
needed with the proposed method! It is also seen that the
maximum diversity linear combiner performs slightly worse
than the conventional linear combiner.

All the analysis presented here suggests that if low-
complexity (linear) maximum likelihood decoding of
STBCs in non-quasi-static fading channels is desired,
diversity order must be sacrificed in favour of orthogonality.
In the following Section we will show that this is the case
not only for Alamouti’s code but also for Tarokb’s
generalised STBCs from orthogonal designs [2].

4 Decoding of orthogonal space-time block codes
in non-quasi-static channels

The linear orthogona!l decoder given in Section 3.3 is
restricted to Alamouti’s STBC [1]. Although this particular
code is known to be the only full rate orthogonal STBC that
achieves and full diversity over any complex constellation,
the result would be incomplete and less important if not
applicable to the generalised STBCs from orthogonal
designs developed by Tarokh [2, 3}.

In fact, although these generalized orthogonal STBCs
have reduced rate, it has been shown [21, 22] that they can
be combined to form quasi-orthogonal constructions which,
together with constellation rotations techniques [23, 24],
yield codes with improved performances.

For the above reasons, we are stimulated to extend the
above orthogonal linear decoder for Alamouti’s scheme in
non-quasi-static fading channels to Tarokh’s codes under
the same conditions.

4.1 Linear decoding based on a squaring
method

In this Section, the squaring method proposed in [6] for
lincarly decoding generalised orthogonal STBCs in
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block-fading is extended to the non-quasi-static fading
channel. In order to maintain the notation as simple as
possible, and without loss of generality, we consider one-
receive antenna, N-transmit antenna schemes. The exten-
sion to the case of multiple receive antennas is straightfor-
ward.

Consider that an orthogonal STBC is applied to a carrier
using & transmit antennas. Let Gy and S denote the code’s
orthogonal design matrix and a symbol vector constructed
with the set of K transmit symbols (57, -+, Sx} followed by
their complex conjugates, as shown in (31).

e e e
Gy = Cl;,l cl;,n Ck.,N (30)
CmA o Com e G
S=1$ Sk S sp1T (31)

In STBCs from orthogonal designs [2], every entry ¢,z of
Gy 1s an element of S multiplied by + 1 or —1, such that the
rows of Gy are orthogonal.

Let H and ¥ denote the channel matrix and the received
signal vector, respectively,

] - Ht+4 Ht+2K-1]
H= H,.:[r] H,,[t5+k] H,,[z+32K—l]
T HN[;H] HN[r—i-EZK-l]

(32)

Y=[(Y]] - F¥l+2K-1]] 33)

The rth row of H consists of time samples of the continuous
fading process corresponding to the wth transmit interval,
while the kth row corresponds to the spatial samples of
these fading processes across the elements of the transmit
array of antennas. In other words, in the context of this
paper, it is assumed that H,[t+ k] varies slowly with k
(along the columns of H), and quickly with # (along its
TOWS).

The received signals are simply the diagonal entries of the
product Gy - H plus a noise vector W.

Y =diag[Gy - H|+ W (34)
A squared matrix, analogous to that derived in [6], suitable
for linear decoding of STBCs in non-quasi-static fading
channels 1s then obtained by finding a matrix R such that:
diag/Gy -H]=R- S (35)

Next, define a vector P constructed with combinations of
the received signals and the entries of R:

P=Y-R (36)
Then, an estimate S‘;‘ for the kth transmit symbol S is

obtained by summing the kth eclement of P with the
complex conjugate of its (k + K)th element:

Se=Pi+Pln (37)
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If the K different symbols in each block belong to a
constellation of cardinality ¢, the block is decoded by
computing K symbol estimates (37) and then searching the
alphabet for those that hold the shortest distance to each
estimate. This process involves computing the metric below,
0 times for each symbo! estimate:

18— 5| (38)

g=l,0

Accordingly, this decoder is linear on the received signals
and its complexity order is O{QK). This is in contrast with a
complexity order of (0¥} for the nonlinear strict
maximum likelihood decoder which is based on the
computation of the metric Dy given below, for all K-tuples
of possible vectors in the constellation.

DK=§:|Y[:+A:— 1] - diag|Gy - H],|* (39)
k=1

Note, that unlike the scepario considered here, in
block-fading channels the rows of H are constant. It was
shown in [12) that in this case the estimates S; obtained with
(37) are orthogonal. In other words, this linear decoder is
also a maximum likebhood decoder in block-fading
channels.

Unfortunately, just as with the Alamouti scheme, the
orthogonality of the symbol estimates Sj are quickly lost in
the presence of a non-quasi-static fading channel, such as
those seen by the symbols transmitted through each carder
of an OFDM system.

Let us illustrate this with an example. Consider Tarokh’s
STBC for four antennas (Gy). In a non-quasi-static fading
channel, R becomes

R, 0
R= [ 0 R2,2] {40)
where
H(f H[] H;t] Hyl
R = mit+1] ~Ht+1 Hfe+1 -H+1]
WU H[+2) —-Hft+2] -H[t+2] Ht+2]
Hs[t+3) Hi[r+3] —-Ht+3] —-Ht+3
(41)
Ht+4) Hmie+4d] Mmie+4]  Hlr+4]
Rooe Hit+5 —Hit+5] Hit+5 —-Hft+5]
22T\ e+ 6] —Hyt+6) —H\[t+6] Ht+6
Hyt+7) Hg[t+7] —Ht+7 —-Ht+7]
(42)

The linear combination of received signals yielding the
estimate for, say, the first symbol S is:

Sy =H[" Y[+ lt+1]"-Yt+1)
+Ha[t+ 2] Y+ 2|+ Hyle + 3] - Y[r 4+ 3]
+H[t+4)- Y +4 + Bt +5]- Y+ 5]
+H[t+6) Y+ 6" + Hyft + 7 - Ye+ 70"
' (43)
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Substituting (34) into (44) we have:

K X
8y =(E Hile+ k= 1P+ [Helt + b+ K ~ l]|2)Sl
k=1 k=]

+ (H [ Halt] — Hi[e + 5]' [t + 5]

+ Mt + ALt + 4" - Kl + 1E[e+ 1]

+ Hylt + T Hyt + 7] — Hat + 21" Hy[t + 2]

+ H3lt + 3| Hy [t + 31" — Hs{e + 6]Hy[t + 6]*)S:
+ (L[] Haf] — K[t + 6] Hat + 6]

+ Hy [t + 4| Ha[t + 4)" — Hy[t + 2)Hst + 2]

+ Holt + S|Hy[t + 51" — Hot + 3]H;[t + 3]

+ Hft+ 1) Hy[t + 1] — Hat + T Hy[t + 7)) S5
+ (F (A" Ha[] = Hn[t + T"Hy[t + 7)

+ H\[t +4|Hy[t + 4" — Hy[t + 3)Halt + 3]°

+ Myt + 6" Hit + 6] — Halt + 1) Hit + 1]

+ Hyt + 2Ha[t + 2]* — It + S|H; [t + 5]")8,

(44)

Comparing equations (22) and (44) it is readily seen that
this extension of the linear decoder originally proposed in
[6] is really an extension of the maximum diversity combiner
for the Alamouti scheme discussed in Section 3.2. As the
latter, this linear decoder reduces to a linear maximum
likelihood decoder in block-fading channels. However, in a
non-quasi-static fading channel, the symbol estimates
obtained with this method are no longer orthogonal and
consequently, symbol-by-symbol maximum likelihood de-
coding is no longer achievable.

4.2 Partially orthogonal linear combiner

In this Section, a partially orthogonal linear decoding
method for orthogonal STBGCs in fast-fading channels
is introduced. In order to gain insight, we start by applying
Li's method to the Alamouti STBC. The decoding
matrices R and R below relate to the pair of equations
{(22) and (23} and to the pair of equations (26) and (27),
respectively.

HH o 0
R=[6 o M+ i] —Hl{t-}—l]] (45)

Hmi+1] mLEk+1 0 0
0 0 Hz[t] —H[[I]

The matrix (45), in association with equations (36) and (37)
yield equations (22) and (23). Analogously, the matrix (46),
together with equations (36) and (37), yield equations (26)
and (27). Comparing these two matrices, it is readily seen
that the entries H, [f] and H, [t + 1] are permutated, with the
signs + and — preserved at their original positions in both
matrices. The same can be seen about the values H[f] and
Hg[! + l}

Given the results shown in Section 3.3, using the matrix
(46) with equations (36) and (37) yields orthogonal
estimates of S, and S This suggests that a similar strategy
of permutation on the entries of (40) can be applied to
derive several modified versions of R, each related to the
estimation of a symbol S, free of the interference from any
other arbitrary symbol S,, and vice versa.

Hereafter, we shall use the notation Ry ;) in reference to
4 matrix obtained from permutations over R, which yields
mutually or orthogonal estimates of the pair of symbols

R= [ (46)
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(St S;). The set of permutations over R so as to obtain
Ritq) is summarised as follows.

¢ Select the kth column of Ry, and the gth column of R, 5;
® Denote these C; and Cj, respectively;

¢ Permutate the values Hy(t +i] € Gy and H,[t + j] € G,
for all n;

# Select the gth column of R, ; and the kth column of Ry 2;
¢ Denote these C, and Cj, respectively;

¢ Permutate the values Hyt +i] € C; and H, [t + jl € Cp,
for all n.

An estimate of .Sy, orthogonal to S, (denoted 5 5 and read
S not S,) is then obtained by substituting Ry for R in
(36), and then using (37).

Note that in STBCs from orthogonal designs, an
even number K of different symbols are encoded in each
block, even if an odd number of diversity branches
(antennas) is used. Consequently, the matrices R;, and
R, 5 also have even orders. From this fact, and from the fact
that the above algorithm only operates on a pair of columns
in R, and R 3, it is clear that a single permuted matrix R
can be constructed to support the mutually orthogonal
decoding of other pairs of symbols {S,, S.) such that
(u# k,q,w) and (w# &, ¢,u). Generally, let X be a set of
mutually exclusive pairs (7,/) such that i # j and no other
element in K contains i or j. Then, a single matrix Ry can be
constructed to yield the mutnally orthogonal decoding of all
pairs in K.

As an example, let us reconsider Tarokh’s G, code. Let
K ={(1,2),(3,4)} The matrix Ry that yields the mutually
orthogonal decoding of the pair (S, S5) and of the pair (Ss,
S4) is given by

R= [R}Sl,l 'RELZ] (47)
where
Rera =
Ht+5 Hl+5 HWi+5 Hli+5)
Lt +4) —Ht+4] H{t+4 —Hst+4]
Hit+7 —Hlt+7) —Hl[t-l- 7 Hat+7]
Ht+6] Hft+6] —Ht+6 —Ht+6]
(48)
Ri2z =
mie+1] ImLir+1] Hit+ 1] Hylt +1]

0, [t] -H,; [l‘] Hy [I:[ —-H; [1‘]
H3lt+3] —Halt+3] —Hit+3] H[t+3]
Ht+2] Hit+2] —-Ht+2 —-H[t+2

(49)

If the matrix (47) is used to obtain an estimate of S,
orthogonal to S; (§, 5) we have the result given in (50). Note
that the term on S; vanishes regardless of the channel
values.

From equation (50), it is also noticeable that a reduction
in the diversity gain attained is expected with this decoder.
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This effect is similar to that found in Section 3.3 for the
Alamouti code.

8,3 =(E[t+ S Hi [ + Halt + 4] Hoale + 1]
+ Hy[t + 7" Hst + 2] + Hat + 6]"Hyft + 3)
+ H, [l' +1H [t + 4]' +H2[I]H21:t+ 5]‘
+ Halt + 3|H3[t + 6]" + Hylt + 2]Halt + 7))
+ (Hi [t + S]] - ol + 4 Hy[r+ 1)
+ Hs[t + 7" Halt + 2] + Hylt + 6] H3[t + 3]
+ H[t + 1| Hy[t + 4] — B[ [+ 5]
+ Mt + 3|Hy[e + 6] + Hyfr + 2]Ha[t + 71") 52
+ ([t + 51" Half] + Hyle + 4] Ha[e + 1]
+ Hy[t + 7)"Hy[t + 2] — Hylt + 6] Hp[t + 3]
+ H\[t+ Hs[t + 4] + H [l Hyt + 5)°
+ Hy[t + 3| [t + 6] ~ Hy[t + 2|H, [t +71) S
+ (H\[t + 5)"Hy[d) — Haolt + 4 Halt + 1]
+ Hs[t + 7]‘H2[t +2] — Hyft + 6]*H1 [t+ 3]
+Ht+ H[t + 4] = B[+ 5]
+ Hilt + 3|t + 6)" — Hyt + 2)H\ [t + 7)") 84
(50)
It is clear that the same matrix (47) can be used to obtain
§,7. 835 and S, 3.
Analogously, other partizlly orthogonal symbol estimates
can be obtained by constructing a different set of mutnally
exclusive pairs X and then deriving the appropriate

permuted matrix Ry, For instance, with K= {(1,3),
(2,4)} we have:

R =
Hit+6] Ht+6] Hit+6] Hyft+6]
mit+7 -H[t+7 Hlt+7 -Hit+7)
it +4] —-Hyle+d4] —-Ht+4] Hlt+4]
Hylt+5) Hle+ 5] —H[t+5] —Hlt4 5]
(51)
Ri2z2 =
H[{t+2] Hg[t-l- 2] H3[!+2] H4[l+2]
Hz[[+3] —Hﬂt-{- 3] H4[l'+"3] "H3[I+3]
ml]  -H[]  -H[] Hyle
H4[I + l] H;[I-I-' l] —Hg[t-i* l} —-H [t + ]]
(52)

Using (51) and (52) in (47), the estimates §, 3, S, 1, 5, ; and
S 43 are obtained.

Finally, we could make = {(1,4),(2,3)} and con-
struct the matrices below, which would yield the estimates
S1d 541> Sp3 and Sy5.

Re11 =
HMi+T7 Wmi+7] HiE+7 H)+7)
Hlt+6] —Ht+6] Hir+6] —Ht+6]
Hylt+5] —Hylt+5 —-H[t+5 Ht+5]
Hylt+4]) Hft+4) -H[t+4] —H+4]

(53)
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Riza=

H][I+ 3] Hz[t+3] H3[l+ 3] H4[1+3]

Hie+2) -H[+2] Hilt+2 —Hli+2]

Hlt+1] —He+1) ~H[t+1] Hi+1)
Hy[1] Hi] —H[1] —Hlf]

(54)

The fact that the intrasymbol interference between any pair
of arbitrary symbols can be avoided suggests that a fully
orthogonal linear decoder must be possible, since the
interference due to each symbol individually can be
identified. This would enable symbol-by-symbol maximum
likelihood decoding with a linear combiner.

In the following Sub-section it is shown that a systematic
design of such combiners indeed exists.

4.3 Fully orthogonal linear combiner

It was shown in the proceeding Section that in the case
of the Alumouti scheme, the conventional non-orthogonal
combiner quickly looses performance in the presence of
a non-quasi-static fading channel, but that a simple
modification on that linear combiner can by applied
yielding orthogonal estimates of the transmit symbols.
This enables symbol-by-symbol maximum likelihood de-
coding in non-quasi-static fading channels, significantly
reducing thé decoding complexity of maximum likelihood
decoding.

In the case of the generalised orthogonal STBCs, the
complexity issue is even more severe. For instance, if 16
QAM is used with the code G, maximum lkelihood
decoding requires the computation of the metric given in
(39), 65536 times in order to decode a single block of four
symbols!

While it is clear that (optimal) strict maximum likelihood
decoding can be prohibitively complex in some cases, it is
also clear that the partially orthogonal decoder derived
above for generalised orthogonal STBCs in non-quasi-static
channels cannot fully eliminate the error floors at high SNR
scenarios. Although low-complexity is highly desired, a sub-
optimal linear decoder is only acceptable if performance is
not significantly sacrificed. This can be achieved if symbol-
by-symbol maximum bikelihood detection can be performed
with a linear combiner.

In this Section, the partially orthogonal decoder of
Section 4.2 is extended into a fully orthogonal linear
combiner for symbol-by-symbol maximum likelihood
decoding of STBCs in non-quasi-static fading channels.
The proposed decoder is obtained by successively applying
the partial interference cancellation scheme described above
as follows:

Step 1. Choose an arbitrary symbol S, and construct all
matrices Ry 3.

Step 2. Use the partially orthogonal method of Section 4.2
to obtain the estimates 3‘;@, for all k # 4.

Step 3. Construct a vector ¥ consisting of the estimates
S’k#q,;., with 0 at the gth position, augmented by their
respective complex conjugates (This emulates the receive
signal vector of a ‘virtual’ encoded block in which the
symbol S, faces a null channel at every transmission).
Step 4. Construct a new channel matrix H; whose entries
are the coefficients multiplying each Sy in all elements of ¥
(These coefficients are simply combinations of the entries of
the original channel matrix and therefore are known).
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Step 5. Return to step | if more than two symbols are still
mixed in each Sp, 5. ‘

Step 6. Apply the orthogonal decoder of Section 3.3 to all
the pairs of mixed symbols.

Step 7. Repeat the procedure from the beginning,
sequentially choosing different symbols to be cancelled so
as to obtain orthogonal estimates of all other symbols.

At every iteration of the above algorithm, one symbol
is eliminated and at the end of the process, two
symbol estimates, fully orthogonal to all other symbeols
and to one another, are obtiained. Repeating the
process making different choices of which symbols
are eliminates successively will yield orthogonal estimates
for all S;.

Before we proceed with an example, let us emphasise that
although the systematic construction of orthogonal symbol
estimates is described here by this iterative algorithm, the
resulting combiner need not be iterative! Indeed, the
algorithm provided need only be run algebraically, using
the set of variables {F,[{],H,{t+ 1],...,Halt + 2K — 1]}
foralln =1,...,N, a single time for each of Tarokh’s full
diversity STBCs, ie. those where K= N e.g. Gy, Gg. Once
the symbolic calculations are done, we obtain, for the
corresponding STBC, a set of 2K scalar functions Fi(H) on
the channel matrix H (explicit forms are omitted here due to
space limitations), which are used to directly combine the
received signals onto orthogonal estimates for all S, as
shown below.

St =XK:F,-(II)Y[r+ i—1]

+ i Fi(H)Yjt+i-1]" (55)
i=K+1

Algebraic formulas obtained for the full diversity codes
(Gy, G; etc.) work for the other codes where K> N because
these lower-order codes are simply truncations of the latter.
For instance, (; is a truncation of Gy and Gs, G and G5 are
truncations of G; [2]. Consequently, R is always a 2K-by-2K
matrix, only with a number of zero entries when codes of
lower diversity order are used. For example, only one
calculation is required for the code G, (whose results are
also valid for Gi) and another for Gy, with the results
applicable to Gs, G; and Gy,

As with the method in [6], as well as the partially
orthogonal combiner of Section 4.2, the fully orthogonal
method proposed here is linear on the received signals.
Consequently, symbol-by-symbol maximum likelihood
decoding of STBCs from orthogonal designs in non-
block-fading channels [2] is achieved with (38).

Let us proceed with an example. We continue with G, so
that previous equations can be re-used. First, the inter-
ference due to an arbitrary symbol, e.g. Si (step 1), is
removed from the estimates of the remaining symbols, in
this case, 5}, S, and Ss. In order to simplify the notation, let
us denote the matrix R built with £ = {(1,2),(3,4)}, KX =
{{1,3),(2,4)} and KX = {(1,4), (2, 3}} respectively by R,
R, and Rs. Then, we have (step 2)

5a=R. Y+ RYRS ¥
S;=R®. y+R¥. ¥ (56)
S5 =R v+ R ¥

where < denotes the ith column.
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Next, a new ‘receive vector’ is constructed using these
estimates (step 3), giving:
Y;= [3',_5,5‘2,3,33,3,0,5‘1‘3,3'2.3,33,3,0] (57)
The elements of this vector can be written as
Yl,i =‘§1,74 = H [t];Sl + Hz{t];S:g + Hy [t];S3
Y,5 =5,3 = Halt + 1581 — Hi[t+ 11552 + Halt + 135
Y3‘3 =S3j = Hg[t + 2];51 -~ Hylt + 2}352 —Ht+ 2]553
¥,5=0 '
oF . + *
YS’; =Sl.:l = H [t + 4]331 +H2[f = 4],182 +H3[t+ 4];5'3
Yo =§;j = Hy[t + 5]3S] —~ Hy[t + 535; + Ha[t + 535
Y;3 =854 = Halt + 6]38} — Halt + 61353 — Hi[t + 61553
Y,;=0
(58)
Clearly, each of the quantities H,t + & — 1]; above is a
known function of the entries H,[t+ 4 — 1] of H. For
instance, H) [¢]; is given by:
H[; =H [t + 1 H ]+ Halt + 6] "Hy[e + 1]
+ Hj(t + 6 Hy [t + 2] + Hy[t + 4]" Hylt + 3]
+ Hilt+ 3 [t +4]" + Kyt + 2)H[t + 9)°
+ H3 [f+ l]H3[t -+ 6]I.l +H4[I]H4[f+ ‘J‘]'l
(59)
Using these quantities, a new channel matrix H; and the
corresponding squared matrix R; are built (step 4).
Another symbol, say S, is then chosen to be cancelled
next and the calculations are repeated (steps 5 and 1). New
sets K= {(1,3)} and K = {(2,3)} are constructed, for
which new permuted matrices Ro; and Raj, are derived.
The partially orthogonat decoder will then yield (step 2):
) = . (s -
Yia5 =Sian = Ray - Vit Ry - ¥
=H [t 535 + M55 (60)

. - .
Yy a5 =Soa3 = Rag - Y+ Ral¥ - 73
=+ HanSi— Ml llanS: (o)

Once more, the quantities H,[r + & — ]335, are functions
of H,[t+k—1]; and, by extension, of H,[t+k—1].
Similarly, ¥; are functions of Hlt+k—1] and Y.
Consequently, §,;3 and S;(53 can be written as
combinations of the channel values H,[t + & — 1] and the
received signals ¥ such as in equation (55).

The orthogonal combiner for Alamouti’s scheme pre-
sented in Section 3.3 can now be used to combine these
signals onto orthogonal estimates of 5, and S, giving
(step 6):

Sy asn =Mle+ UG Yias + gy Y65 62

Syi3n = Bl +1la5 gy - Hllgs Vs as (63)

Finally, it is evident that $) and §; can also be written as
combinations of the channel values and the received signals
as in (55). A similar procedure is followed to orthogonally
decode S; and S (step 7). The orthogonal estimates
obtained are finally used in (38} for maximum likelihood
decoding of all ;.
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We emphasise that this iterative follow-up of the method
here shown is merely illustrative. As pointed out before,
every ¥z 1 obtained along the process is a combination of
Hn[f+ k— l]{a;'} and Sk, and every H;, [t+ k— 'I']{E},} is a
combination of the original channel values H,[t + & — 1]. In
a usual implementation, once the channel is estimated (55)
is used to obtain orthogonal estimates of S, as linear
combinations of the received signals with the functions
F(H) as coefficients.

Note that if the channel is quasi-stationary, the columns
of H are identical, and so too are the matrices Ry, since
permutations over R do not change it at all. In this case, the
first K functions Fp_; x(H) are simply the entres of
the kth column of R, ; (multiplied by a constant) and the
remaining X functions Fi—g1,..2¢{H) are the entries of
the kth column of Ry, (multiplied by the same constant).

Given the arguments above, it is clear that the proposed
linear combiner is really a generalisation of the maximum-
ratio-like linear combiner, known for STBCs in block-
fading channels [1, 6], to the more general case of non-quasi-
static fading channels.

5 Simulation results

In this Section, simulation results comparing the proposed
linear maximum likelihood decoder with the conventional
linear decoder proposed in {6] and with the strict maximum
likelihood decoder, are presented.

First, Fig. 5 compares the performances of Tarokh
STBCs G; and G; implemented at the carriers of a 1024-
carrier OFDM system transmitting BPSK symbols.

It is important to stress that the low-order (BPSK)
modulation scheme (not so common in OFDM systems) is
used here only so that the complexity of the strict maximum
likelihood decoder is not too high, so as to enable the
comparison with the proposed linear (symbol-by-symbol)
maximum-likelihood method. In fact, with G and QPSK,
the strict maximum Iikelthood decoder would require the
computation of as much as 4096 metrics per block.

The conventionzl decoder assumes that the channel is
block-fading and uses only the channel estimates relative to
the first symbol vector (H;[f]). The maximum diversity
decoder is that of [6] extended to the non-quasi-static fading
channel as discussed in Section 4.1, and the proposed
decoder is that presented in Section 4.3.

1
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The data rate of the OFDM system is 10 Mbit/s. If the
loss due to the guard interval is ignored, this gives a data
rate of approximately 10kbit/s per carrier. Given that both
G, and G are rate 1/2 codes, this results in 4 transmission
rate of 0.5 bit/s/Hz and a symbol period of approximately
0.05ms.

Perfectly uncorrelated channels were assumed at different
transmit antennas and no OFDM co-channel intetference
due to carrier offset, symbol distortion, cross-talk or other
effects were considered.

At each carrier, the channel has a Doppler frequency of
Jp=S50Hz. This Doppler spread corresponds, for instance,
to that observed in the downlink of an OFDM system
operating on the 5GHz band towards a mobile with a
speed of about 11km/h [18]. From (6), these parameters
result in an autocorrelation of 0.9999 over samples taken at
the symbol rate, 0.99%07 over samples taken every eight
symbols (G5 block size) and 0.9631 over samples taken
every 16 symbols (G block size).

In such moderate fading channels, the error floors
resulting from using the conventional linear decoder occur
at levels too low to be observed in the plot. Nevertheless, it
is seen that the proposed decoder outperforms the other
linear decoders and that the conventional (block-fading)
combiner outperforms the maximum diversity combiner.
These results are similar to those observed in Fig. 4 for
Alamouti scheme.

Figure 5 also shows that the performance of the linear
decoder is very close to that of a strict maximum likelihood
decoder. In fact, for G;, the curves for these two decoders
fully overlap.

From all the discussions of Sections 3 and 4, it is expected
that the gain provided by the proposed method in
comparison to other linear methods is more noticeable the
more severe the channel variation within a block, Given a
fixed data-rate this can occur if, for instance, more carriers
are used in the OFDM system (fonger symbols), the mobile
moves faster (larger Doppler frequency), a2 higher order
modulation scheme is applied (longer symbols) or codes for
a larger number of antennas are implemented (longer
blocks).

This can be inferred from Fig. 4 but becomes more
evident in Fig. 6. The plot compares the performances of
Tarokh G5 code in a channel with a Doppler frequency of
Jp="T15Hz (mobile speed of 16km/h at 5GHz) in systems
employing BPSK, QPSK, and 8PSK modulation. The
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remaining parameters (data rate, number of carriers, etc.)
are afl the same as described above. Curves for the
maximum diversity combiner are omitted since it was
- already shown that this decoder actually performs worse
than the conventional linear combiner at higher SNR’s.

This Figure is analogous to Fig. 4 and the general results
are very similar. It is confirmed that with severe channel
variation within a block, in this case caused by the increase
in modulation order, a higher error floor is reached by the
linear decoder., As before, it is seen that the more severe the
fading rate of the channel, the lower the signal-to-noise ratio
where the error floor is reached. However, Fig. 4 clearly
shows that the gain of the proposed combiner with respect
to the conventional linear combiner is larger at more severe
scenarios, since the orthogonality gnaranteed by the method
enables symbol-by-symbol maximum likelihood decoding,
It is also evident that the price payed in terms of loss of
diversity order, compared to a strict maximum likelihood
decoder, is more significant in channels with faster
variations within a block. Still, it is important to emphasise
that the proposed decoder is expressively simpler that the
strict maximum likelihood decoder. For instance, for Gy
with 8PSK, a strict maximum likelihood decoder needs to
compute and compare 512 metrics per block, against only
24 required by the proposed linear method.

We emphasise that the fast fading scenario is not the
target of the technique presented and is rather unlikely to be
faced by high data rate OFDM systems in an urban
environment. In fact, higher fading rates are associated to
faster mobility, which in turn imply that the mobile must be
in an area with less obstacles and at a longer distance from
the base. Consequently, the typical delay spreads channels
with fast mobility are likely to be small, so that the fading
process in the frequency domain is less severe, which in turn
imply that the STBC could rather be implemented in the
alternative space-frequency arrange. This issue has been
investigated in (11] and [8].

However, an important result shown in Fig. 4 is that
error floors are not reached with the proposed linear
decoder even at higher fading rates. This is expected since
the proposed combiner ensures the orthogonality of symbol
estimates at the receiver, regardless of the channel values
across a block (provided that the channel is known). This
can be further appreciated from the results of an illustrative
simulation where the channel is considered to be constant
over a symbol and vary randomly from symbol o symbol,
The results are shown in Fig. 7.
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As explained in Section 3.1, this case is purely illustra-
tive not only because it cannot occur naturally (a truly
fast-fading channel would cause severe co-channel
interference in a OFDM system), but also because.
accurate channel estimation could not be achieved. Indeed,
if the fast-fading scenario is artificially caused by interleay-
ing, it is" clear that other types of space-time codes
specifically designed for such channels, e.g. [5], are be
preferred. In this case, however, not only complexity is
significantly increased, but realtime decoding can no longer
be performed.

The illustrative simulation in a ‘fast-fading’ scenario
has, nevertheless, the merit of demonstrating that
the proposed combiner defacto ensures the orthogonality
of symbol estimates at the receiver and translates the
variation of the channel across an encoding block onto
diversity loss.

The conventional decoder and the proposed maximum
likelihood linear decoder were applied to Alamouti’s and to
Tarokh Gy and Gy codes in a fully random fading channel.
Data-rate, number of carriers, symbol period and central
carrier frequency are irrelevant information in this case,
since fp, is made infinite (the channel matrix H is completely
random). Results with BPSK and QPSK modulations are
shown together so that all schemes run with the same
transmission rate of 1 bit/s/Hz.

It is seen that while the conventional lnear
decoder shows a completely flat performance, the proposed
linear decoder still exhibits a bit error rate performance that
follows the same inclination of an uncoded (interference-
free} system. While the fact that an error floor is
never reached demonstrates that the proposed linear
combiner yields symbol estimates which are fully orthogo-
nal, the fact that the inclination of all curves are the same as
that of an uncoded system shows that STBCs from
orthogonal design with symbol-by-symbol maximum like-
lihood decoding do not provide any diversity gain. In other
words, it can be said that the all diversity gain is traded for
orthogonality in the presence of an infinitely fast-fading
scenario.

In addition, the fact that the bit error rate curves translate
horizontally as the order of the code (number of antennas)
increuses, also indicates that the proposed linear maximum
likekhood decoder increases noise in the process of
decoupling the symbols estimates, This noisy characteristic,
which in the slower fading rates of practical interest is small
enough not to be observed, is indeed typical of zero-forcing
techniques such as the one presented.

6 Conclusions

A new, low-complexity linear maximum likelihood decoder
for STBCs from orthogonal designs in non-quasi-static
fading channels has been proposed. Non-quasi-static fading
is faced by OFDM systems (which are often required to
mitigate inter-symbol interference caused by frequency
selectivity) in mobile channels even if these systems transmit
at high-data-rates.

The proposed linear decoder is capable of obtaining
orthogonal estimates for all simultanecusly transmitted
symbols regardless of the rate of variation of the channel
within each block, provided that channel estimates are
available throughout the block. It was shown that this is
achieved mainly at the cost of diversity gain and some
increase in noise, both relatively small for the scenarios of
interest (moderate mobility).

The proposed decoder can be seen as an extension of the
linear decoder proposed in [6] to the more general
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