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FIGURE 3. A four-layer feed-forward NN with two hidden layers to emulate the characteristics of a patient. The number of units in
each hidden layer of the NN was set to seven {the same number as the Input units). The NN had the unit bias. A hyperbolic tangent

function [tanh(x)] was used as the output of each unit.

weights in the NN before the learning of the AMAPyes
response were assigned at random between —1 and 1. Then,
the infusion rate of NE at —4 < u(f) < 6 ug kg~'min™"
was assigned at random and learning calls were replicated
50,000 times.3® The AMAP .4 response during the learning
process contained random noise between 0 and —35. Then,
normalization was performed by dividing all cutputs by 50
and the fixed learning rate was K; = 0.1, which showed
the most suitable number determined by a trial and error
approach. This leaming rate was smaller than that used for
the actual MAP controls because it was necessary to avoid
a local minimum.?

The absolute error between the AMAP .4 and the
AMAPxy rtesponse from the trained NN are shown in
Fig. 1(c). Because of the random noise between 0 and —5,
which emulated the hypotensive disturbances, the learn-
ing result of the NN showed an error of approximately
2 mmHg compared with the AMAP, data. The trained
NN was used for the following simulation and animal stud-
ies, and the leamning rate of the NN was set to K, = 0.2
under the studies in order to quickly converge to the target
value,24-25.30

As shown in Fig. 4(a), the goal of the APCyy was to cal-
culate the optimal NE infusion rate, 1(f), which minimized
the following cost function [J{£)],

Mo
J@)y=>_[rtt+i)— AMAPw( +D1*  (7)

i=1

where N, represents a prediction horizon, r(z + ) is a pre-
scribed target value of MAP control on time point £ + i, and
AMAPyN(r + i) is the predicted MAP output by the NN,
The future value of AMAPwn(¢f + {) can be estimated by the

AMAPyN(!) acquired from the backpropagation algorithm
[Fig. 4(a) and (b)]. J(¢) contained the predicted output after
N, steps to suppress sudden changes in NE infusion rate.
The optimal value, N, = 3, was obtained from a simu-
lation using the AMAP,,4. A predicted response is also
shown in Fig. 4(a) for N, = 3. The cost function, J(¢), was
minimized by a downhill Simplex method for a quadratic
function (see Simplex Method for Quadratic Function under
Appendix'6-3%).

Combined Control OfAPCNN and PID (APCny-pip)

A NN can have many degrees of freedom to allow the
learning of nonlinear time-varying characteristics of a pa-
tient, which, in turn, precludes the simultaneous optimiza-
tion of stability and performance speed for the APCyy."
Because emphasis is given to stability rather than speed
in the algorithm’s performance, the speed of MAP control
was sacrificed to some extent. To supplement the speed
performance, we constructed an APCnn combined with a
PID control. The PID algorithm in the APCny-pip Oper-
ates when the absolute error between observed MAP and
a target value exceeds 10 mmHg {Fig. 2(c)]. Even when
the PID control is operating, the NN continues learning
the characteristics of a patient. The APCnn-prp used the
same PID algorithm, NN learning rule, and cost function as
those described in the Methods section under PID Control
and Adaptive Predictive Control Based on a NN{APCrn).

PID Control Based on Fuzzy Inference

Fuzzy inference? is the process of formulating and map-
ping from a given input to an output using fuzzy logic.!>*
To adjust the proportional gain (Kp) of the FID controller
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FIGURE 4. (a) Optimization of intusion rate using predicted
response by a NN. (b) An example of minimization of a cost
function by the downhill Simplex method for a quadratic
function.

during the MAP control, a fuzzy inference system was used
[Fig. 2(d}}. The basic structure for the adjustment of Kp is
shown in Fig. 5. The inputs to the fuzzy inference system are
the positive change from target value to AMAP(Y) (over-
shoot, mmHg) and the difference between AMAP(z—1)
and AMAP(?) (slope, mmHg 10 s~!), and the output is
the proportional gain, Kp, on the PID controller. The fuzzy
inference process (Fig. 5) can be described as follows.

Step 1. Fuzzify Inputs. The first step is to take the inputs
and determine the degree belonging to each of the appro-
priate fuzzy sets via membership functions (curves defining
how each point in the input space is mapped to a degree of
amembership function). In the present study, the triangular
membership function formed by straight lines was used.
The adjustment of Kp is built on three rules:

Rule 1. IF overshoot is small or slope is small THEN Kp
is large.

Rule 2. IF overshoot is middle or slope is middle THEN
Kp is middle.

Rule 3. IF overshoot is large or slope is large THEN Kp is
small.

Each of the rules depends upon resolving the inputs into
a number of different fuzzy linguistic sets: “overshoot is
small,” “slope is large,” etc. The inputs must be fuzzified
according to each of these linguistic sets. Step 1 in Fig. 5
shows how large the overshoot (rated on a scale of 5 to 15)
or the slope (rated on a scale of 5 to 15) is viaits membership
functions [0, 1]. For example, when an overshoot of § (given
our graphical definition of “overshoot is small™) is selected,
the degree of membership function corresponds to yu =
0.4 for the “small” membership function. In this manner,
each input is fuzzified over alt the qualifying membership
functions required by the rules.

Step 2. Apply Fuzzy Operator. The inputs to the fuzzy
operator are two membership values from fuzzified input
variables in Step 1, and the output is a single value. To
determine the single output as the membership value, the
OR operator was used in the present study!'?:

He = max, {1a(x,), pp(x2)) (8)

where ) is the degree of the membership function. A and
B are fuzzy sets in overshoot and slope and serve as inputs
to the antecedent of the fuzzy rules. C is a fuzzy set in
the values selected as the input to the consequent of the
rules. The xg is the input to the membership function. For
example, when the antecedent of rule 1 is evaluated, two
different pieces of the antecedent (“overshoot is small” and
“slope is small”) yield the fuzzy membership values 0.4
and 0, respectively. In this case, the OR operator selects the
maximum of the two values, 0.4.

Step 3. Apply Implication Method. A consequent (K, a
scale of 0.05-0.23) of the three rules is a fuzzy set repre-
sented by a membership function {0, 1] weighting appro-
priately the linguistic characteristics that are attributed to
it. The consequent is reshaped using a function associated
with the antecedent in order to determine a single number.
The input for the implication process is a single number
given by the antecedent, and the output is a fuzzy set. In
the present study, an implication method was used by the
AND operator'?:

mE(ra) = min. {puc(xy), up(xs)) i=0,1,...,20

€
where C contains the values determined by Step 1. D is a
fuzzy set in Kp for the antecedent of fuzzy rules. E is a
fuzzy set in the values selected for the aggregation proce-
dure (Step 4). The input range of x, was divided by 20 to
discretize the time domain. The AND operator selects the
minimum of the two values as a single number given by the
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FIGURE 5. An example ot a fuzzy inference system. The process for fuzzy inference is shown as Steps 1 to 5. The proportional
gain (Kp) in the improved PID control was updated through the process for the fuzzy inference.

antecedent and the membership function of the consequent
(Step 3 in Fig. 5).

Step 4. Aggregate All Ourputs. Aggregation is the pro-
cess by which the fuzzy sets that represent the outputs of
each rule are combined into a single fuzzy set. Aggrega-
tion only occurs once for each output variable, just prior
to the fifth and final step, defuzzification. The input of the
aggregation process is the list of truncated output functions
returned by the implication process for each rule. The output
of the aggregation process is one fuzzy set for each output
variable. The aggregation was performed by the selection of

the maximum of two values in the membership functions!?:

prixy) = max. {uei(xa), pe2(xsi), wea(xs)}

i=0,1,...,20 (10

where El, E2, and E3 are the fuzzy sets determined by
the Steps 1 to 4 under the rules 1, 2, and 3, respectively.

F is a fuzzy set acquired from the result of the aggrega-
tion process. In Fig. 5, all three rules have been placed
together to show how the output of each rule is com-
bined, or ageregated, into a single fuzzy set whose mem-
bership function assigns a weighting for every output (Kp)
value.

Step 5. Defuzzify. Because the aggregate of a fuzzy
set encompasses a range of output values, it must be
defuzzified in order to resolve a single output value
from the set. The centroid calculation (center of gravity
of the resulting curve) is used to determine the action
that the controller will actually take. In the present study,
the proportional gain for update, Ky, was calculated as

follows™:

20
E;:o pr(x3;) - X3

K} =
0 ur(xs)

(11}
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Model Predictive Control (MPC}

Figure 2{e) shows the diagram of the MPC. The drug
infusion rate is computed to minimize the cost function
(P&

N, -
P() =) re+i)— AMAPuea(t + i) (12)
i=l
where N, is a prediction horizon, r(z + i) is a prescribed
target value of MAP control on time point ¢ + {, and
AMAP;0q(t + £} is a model predicted output on time point
+i. N = 3 was used in the present study.

To calculate the future output, AMAP .t + ), in the
cost function, P(#), we used the discrete linear step response
model using the AMAP,,,4(?) described in Methods under
Modeling of MAP Response. The predicted output at the
ith future point is shown as follows:

AMAP poa (t +1) = Z:g(r) CAT -ut +i— 1)
=0

Non
+ Y g(e)y AT -ut — 7y +d(1)

T=i+1

(13)

where (') is the infusion rate of NE (ug kg™! min~1)
and g(-) is the unit impulse response (mmHg) which is
consistent with that in Fig, 1(b). AT is the sampling interval
{(s) and NV, is the finite number of terms in the model of the
unit impulse response. The parameters of AMAP,,,q where
AT = 10 and N, = 30 [Eq. (13)] includes 1) the present
and all future moves of the manipuiated variables that were
used to solve the cost function, P(z), 2) the past values of the
manipulated variables {completely known at time ¢), and
3) the predicted disturbance calculated as the difference
between the current measurements and output from the
predicted model [d(f) = MAP.q(f} — actual MAP(1)] at
the ¢th sampling time. The d(f) represents model mismatch
and unmodeled disturbances that enter the system at time ¢,
and is assumed to be constant over the prediction horizon
due to lack of an explicit means of predicting the mismatch
or disturbance. 2

Simulation Study
Protocol 1

We simulated MAP control using the AMAP,,4 against
acute hypotension. The exogenous pressure perturbation
was introduced at a constant speed of —18 mmHg min~!
for 2 min, and then maintained at —36 mmHg for 5 min.
Random noise within £ mmHg was added to AMAP 04
and acute hypotension to mimic physiological variation.
The target value of MAP control was set at the baseline
MAP, i.e., AMAP = 0. The sampling interval was 10 s and
each controller described below updated the NE infusion

rate every 10 s. The NE infusion rate [u(f)) was bounded
by 0 = u(r) < 6 g kg~! min~!]. The controllers used were
the conventional PID controller, APCyy, and APCyn-pID-
To see how the NN parameters changed as a function of
time, the weights in the NN were recorded during APCyy
in the simulation study.

Prozo&ol 2

To study the robustness to the MAP change to the drug,
we simulated MAP control using the AMAP;,,o4 [Fig. 1(b)],
which was twice as large as the AMAP,,,4 response against
acute hypotension. Because each controller was designed to
optimize the controller performance under the assumption
of the AMAP,,.4 response {Fig. 1(b)], the twice AMAP,04
response was unknown to all controllers. Random noise
within 1 mmHg was added to AMAP,.s. An exogenous
pressure perturbation was introduced at a constant speed
of ~18 mmHg min~! for 2 min, and then maintained at
—36 mmHg for 5 min. The target value of MAP control
was set at the baseline MAP. The sampling interval was
10 s and each controller updated the infusion rate of NE
every 10 s. The infusion rate of NE [u(f)] was bounded by
0<u®<6ugkg min~1.

The controllers used were the conventional PID con-
troller, APCnn, and APCyn-pp. In addition, to increase
robustness during the MAP control, we tested PID control
based on fuzzy inference for adjusting the proportionat gain,
Kp, during the closed-loop control. MPC was also tested in
order to examine the performance of the simple predictive
control compared with APCxy or APCyn-pin.

Animal Study

The animal study conformed to the Guide for the Care
and Use of Laboratory Animals published by the US Na-
tional Institutes of Health (NIH Publication No. 85-23, re-
vised 1996). The parameter values used in the simulation
were also used in the animal study.

Surgical Preparations

Twelve Japanese white rabbits weighing 2.4-2.7 kg were
anesthetized via intravenous injection (2 ml kg~") with
a mixture of urethane (250 mg ml~') and «-chloralose
(40 mg ml™"). The rabbits were ventilated artificially with
oxygen-enriched roon air. To maintain the appropriate level
of anesthesia, supplemental doses of the anesthetics were
administered continuously (0.2-0.5mlkg='h~! i.v.). MAP
was measured using a high-fidelity pressure transducer
(Millar Instruments, Houston, TX, USA) inserted into the
right femoral artery. A catheter was introduced into the
left femoral artery. A computer-controlled infusion pump
(CFV-3200; Nihon Kohden, Tokyo, Japan) was attached
to the arterial line for later arterial blood withdrawal and
re-infusion. A double-lumen catheter was introduced into
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the right fernoral vein for administration of anesthetic agent
and NE. Another computer-controlled infusion pump was
used for NE infusion. The NE infusion rate was controtled
through a 12-bit digital-to-analog converter connected to a
laberatory computer. Body temperature was maintained at
around 38°C with a heating pad throughout the experiment.

Protocols

To test the robustness of each control system, we used
two different concentrations of NE. In Protocol 1 (n = 6),
we used a NE solution of 25 pg ml~. In Protocol 2 (n =
6), which was performed in another group of rabbits, we
used a NE solution of 50 pg mi~!. In both Protocols 1
and 2, we first determined the volume of blood withdrawal
necessary to induce a MAP fall of approximately 40 mmHg.
The speed of blood withdrawal was calculated so that the
hemorrhage was completed in 2 min. The average speed of
biood withdrawal was 18.2 & 6.8 ml min~! in Protocol 1
and 20.2 + 7.5 ml min~" in Protocol 2.

In each hemorrhage trial, we recorded baseline MAP
for 1 min prior to the hemorrhage and used the average
baseline MAP as a target value. The arterial blood was
then withdrawn at & predefined constant speed for 2 min
to induce hemorrhage. Thereafter the hemorrhaged state
was maintained for 5 min, rendering a total hemorrhage
period of 7 min. We measured changes in MAP dunng
hemorrhage under the uncontrolled condition, PID control,
APCxy, and APCyn-pip. Afier 7 min of hemorrhage, the
blood was slowly re-infused. We performed four trials (ran-
domly ordered), in each rabbit, with a washout period of
20 min. Instantaneous MAP data was sampled continuously
through a 12-bit analog-to-digital converter at 10 Hz and
the MAP data (averaged every 10 s) was used as the system
controlled variable.

Dara Analysis

The performance of each controller was compared using
several indices: maximum MAP fall during the initial 2 min
of the hemorrhage (maximum fall), maximum absolute er-
ror between a target and observed MAP value calculated
from the last 2 min of hemorrhage period (maximum error),
and average absolute value of error between a target and
observed MAP value over the entire hemorrhage period (av-
erage error). The elapsed time for MAP that first reached
the target value within —5 mmHg (recovery time) was also
calculated.

Staristical Analysis

All data were presented as mean =+ SD. The differences
of the performance indices among controllers were exami-
ined by one-way analysis of variance with repeated mea-

sures and the Bonferroni post hoc test.” Statistical signifi-
cance was assigned to differences producing p < 0.05.

RESULTS

Simulation Study
Protocol 1

Figure 6 shows the simulation results from using (a)
PID (X p = 0.3, Ty = 20, and Tp = 5) control, (b) APCny
(Kn = 0.2, and Np = 3), and (C) APCNN-pID (Kn = (.2,
Ny =3,Kp=03,T1=20,andTp = 5). Changes in MAP
(teft panels) and the NE infusion rate (right panels) are pre-
sented. The fall of MAP was —36 mmHg in 2 min and the
hypotension continued for 5 min. In Fig. 6(a), (b), and (c),
thick lines are MAP responses and thin lines are the uncon-
trolled condition. Dotted lines in Fig. 6(b) and (c) represent
MAP responses predicted by the NN. When the controllers
were activated, MAP returned to the target value. PID con-
trol with fixed parameters provided a quick and stable MAP
regulation in the present simulation [Fig. 6(a), left]. APCnn
showed a maximum MAP fall greater than that of PID con-
trol [Fig. 6(b), left]. The recovery time was longer using
APCpy compared to PID control. The elevation in NE in-
fusion rate was slow in APCpy [Fig. 6(b), right). APCyun-rip
achieved MAP recovery faster than APCyy [Fig. 6(c), left].
The PID component of the APCyn-pip system operated
from 30 to 60 s when the MAP fall exceeded 10 mmHg.

Figure 7 shows the time series of the weights in the NN
during the simulation study of APCny in the Protocol 1.
Dotted lines in Fig. 7 represent the weights as bias. During
the initial hypotension for 120 s, the weights as bias in
the output layer [Fig. 7(c}] were dramatically decreased
compared to the other weights, which were only slightly
changed. Because the bias absorbed the offset of the acute
hypotension, they would have kept the trained response
characteristics to the infusion rate of NE in the NN. There-
fore, it appears fine adjustments of the difference between
the actual and NN-predicted MAP response were performed
by modifications to the other weights in the NN.

Protocol 2

Figure 8 shows the simulation results of (a) PID
(Kp =03, T = 20, and Tp = 5) control, (b) APCun
(Kn = 0.2 and Np = 3), and (C) APCNN_prD K, = 0.2,
Ny =3,Kp=03T1 = 20, and Tp = 5) during the un-
expected MAP change to NE, i.c. the magnitude of MAP
change to NE was doubled. Changes in MAP {left panels}
and the NE infusion rate (right panels) are presented. In
Fig. 8(a), (b), and (c), thick lines are MAP responses and
thin lines are the uncontrolted condition. Dotted lines in
Fig. 8(b) and (c) represent MAP responses predicted by
the NN. The fall of MAP was —36 mmHg in 2 min and
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FIGURE 6. Simulation results of (a) PID control, (b) APCny, and (c) APCyn-pio. The left panels show the MAP responses (thick solid
line) and the uncontrolled condition (thin sofid line). Dotted lines in (b) and (c) represent MAP responses predicted by the NN. The
right panels show the NE infusion rate. Acute hypotension of -36 mmHg was completed in 2 min and maintained thereafter.

the hypotension continued for 5 min. Under PID control,
although MAP retumned to the target value within approxi-
mately 40 s, sustained MAP oscillation within =10 mmHg
occurred thereafter [IFig. 8(a), left]. The NE infusion rate cy-
cled between 0 and the predefined maximum value. Under
APCyn, MAP decreased to —10 mmHg at 60 s, returned
to the target value within approximately 120 s, exceeded
the target value by approximately 10 mmHg at 150 s, and
again returned to the target value at approximately 200 s
[Fig. 8(b), left]. Under APCnn-pip. MAP returned to the
target value within approximately 70 s, exceeded the target
value by approximately 10 mmHg at 100 s, and again re-
turned to the target value at approximately 200 s [Fig. 8(c),
left]. .

Figure 8(d) and (e) shows the simulation results of (d)
improved PID control (initial parameters: Kp = 0.3, Ty =
20, and Tp = 5), and {¢) MPC (¥, = 3) during the unex-
pected MAP change. Using improved PID control, MAP
returned to the target value within approximately 60 s but
had a slight oscillation within £5mmHg (Fig. 8(d), left).
The Kp was changed from 0.3 as the initial value to 0.187
at 40 s (slope > 5) and 0.193 at 50 s (actual AMAP = 3),

Under MPC, although MAP returned to the target value
within approximately 40 s, sustained MAP oscillation
within £10 mmHg occurred thereafter [Fig. &(e), left].
The NE infusion rate cycled between 0 and 6 under the
unexpected MAP change.,

Animal Study
Protocol 1

Figure 9 shows typical examples of (a) PID (Kp = 0.3,
71 = 20, and Tp = 5) control, {b) APCyn (K, = 0.2
and N;J = 3), and (C) APCNN—pu) (K,; = 0.2, Np = 3,
Kp = 0.3, T =20, and Ty = 5) obtained from one animal
in Protocotl 1. In Fig. 9(a), (b), and (c), thick lines are MAP
responses and thin lines are the uncontrolled condition.
Dotted lines in Fig. 9(b}) and (c) represent MAP responses
predicted by the NN. Under PID control, although MAP
returned to the target value within approximately 60 s, four
of six animals showed MAP osciltation within +10 mmHg
[Fig. 9(a), left]. Under APCyn, MAP retumed to the target
value within approximately 120 s, exceeded the target value
by approximately 5 mmHg at 150 s, and again returned
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to the target value at approximately 200 s [Fig. 9(b),
left]. Under APCnn-pip, MAP returned to the target value
within approximately 60 s, exceeded the target value by
approximately 8 mmHg at 150 s, and again returned to the
target value at approximately 200 s [Fig. 9(c), left].

Figure 10 summarizes the performance indices obtained
from Protocol 1. All controllers significantly attenuated the
maximum MAP fall. The maximum MAP fall was greater
in APCpy than in PID control. Neither maximum error
nor average error differed among the three controllers. The
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recovery time was significantly shorter in PID control than
in APCnn and APCyn-pip. The recovery time was signif-
icantly shorter in APCnn-pip than in APCwn. The average
blood loss was 14.1 £ 4.7 ml kg™! body weight. The av-
erage MAP was decreased from 1077 & 9.1 10 73.9 =
10.2 mmHg at 2 min of hemorrhage under the uncontrolled
condition.

Protocol 2

Figure 11 shows typical examples of (a) PID (Kp =
0.3, 71 = 20, and Tp = 5) control, (b) APCyxy (K = 0.2
and N, = 3), and (¢} APCyn-pp (Kn = 02, Ny = 3,
Kp = 03, T = 20, and Tp = 5) in Protocol 2. In
Fig. 11{a), (b}, and (c), thick lines are MAP responses
and thin lines are the uncontrolled condition. Dotted lines
in Fig. 11(b) and (c) represent MAP responses predicted
by the NN. Under PID control, although MAP returned
to the target value within approximately 40 s, sustained
MAP oscillation occurred thereafter in all six animals. In
these animals MAP exceed the target value by 20 mmlg

[Fig. 11(a), left]. The NE infusion rate cycled between 0
and the predefined maximum value. Under APCnn, MAP
returned to the target value within approximately 120 s,
exceeded the target value by approximately 10 mmHg
at 150 s, decreased by approximately 5 mmHg at 240 s,
and again reached the target value at approximately 300 s
[Fig. 11(b), left]. Under APCynipin, MAP returned to the
target value within approximately 70 s, exceeded the tar-
get value by approximately 10 mmHg at 100 s, and again
reached the target value at approximately 120 s [Fig. 11(c),
left].

Figure 12 summarizes the performance indices obtained
from Protocol 2. All controllers significantly attenuated the
maximum MAP fall. There were no significant differences
in the maximum MAP fall among the three controllers.
Both maximum error and average error were significantly
smaller in APCynn and APCyn-pip than in PID control. The
recovery time was significantly shorter in PID control than
in APCuy and APCun-pin- The recovery time in APCrn-pip
was significantly shorter than in APCyy. The average biood
loss was 15.5 & 5.4 ml kg~! body weight. The average
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MAP decreased from 101.4 £+ 9.9 to 68.4 & 9.4 mmHg at
2 min of hemorrhage under the uncontrolled condition.

DISCUSSION

Prolonged hypotension below 45 mmHg could cause
circulatory insufficiency in vital organs resulting in death.®
The arterial baroreflex is an important negative feedback
mechanism that maintains MAP at normal operating pres-
sure against any pressure disturbance. In the present study,
however, the average MAP fall exceeded —30 mmHg under
the uncontrolled condition (Figs. 9 and 11). This is to say
that the buffering effect of the arterial baroreflex was not
sufficiently strong to prevent acute and severe hypotension
despite the fact that the sympathetic system appears to have
been maximally activated through the baroreflex negative
feedback. All systems tested were able to prevent severe
hypotension by controlling the infusion of NE, which acted
on the heart, capacitance vessels, and resistance vessels to
increase MAP. There might be a considerable reserve in
the circulatory responses to NE even when the sympathetic
system is fully activated through the baroreceptor unload-
ing. Rapid action and the short half-life (approximately
2 min) of NE were convenient for MAP control using the
automated drug infusion systems.

Although PID controi did not show MAF oscillation
in the simulation study [Fig, 6(a)], MAP oscillation within
=10 mmHg occurred in four of the six animals in Protocol 1
of the animal study [Fig. 9(a)]. Because PID parameters
were tuned beforehand using a model of MAP response
and fixed during the control periods, PID control could
not optimize the MAP control with respect to individual
animals. In Protocol 2 of the animal study, PID control
failed to stabilize MAP in all animals [Fig. 11(a)]. A large

MAP oscillation was sustained until the study was termi-
nated at 7 min. These results suggest that using the PID
control could endanger patients in clinical settings if the
PID parameters are not individualized, which is unrealistic
because the MAP response to NE infusion, in each subject,
is unknown beforehand.

In the modeling of MAP response to NE, we used an
average step response of 3 min during NE infusion in anes-
thetized rabbits without hemorrhage. If fine tuning of a PID
controlier is performed based on the pathological model of
acute hypotension, the result of PID control in the animal
study might have been better compared to the results from
the present study. However, the modeling of MAP response
to a therapeutic agent in acute hypotension is actually quite
difficult due to the complex pharmacological variability and
the various reactions to bleeding.

In contrast to PID control, the NN in APCnn and
APCyn-pip systems offer the ability to adapt to MAP
changes based upon an individual’s measurements, in real
time, and leam the MAP response to NE infusion in re-
spective animals. In Protocol 1 of the animal study, because
hemorrhage itself was not predictable by the NN, AMAP
predicted by the NN differed from measured AMAP in
the initial phase of blood withdrawal [Fig. 9(b) and (c)].
However, AMAP predicted by the NN approximated the
measured AMAP within 2 min, suggesting that the NN had
leamed the information required to control MAP. There-
after, the MAP was stabilized at the target value in both
APCnn and APCyn-prn. In Protocol 2 of the animal study,
despite the vse of a higher NE concentration, both APCyy
and APCnn-pip could prevent sustained MAP oscillation
[Fig. 11(b) and {¢)]. The maximum error and average er-
ror values in APCuyn and APCyw-pip were similar between
Protocols 1 and 2 of the animal study, suggesting that the
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control performance was not influenced by NE concen-
tration. In other words, APCyn and APCun-pm might be
able to adjust themselves for optimal MAP control even

when the MAP response to NE infusion varied significantly

among subjects.

Despite the potential benefit of automated drug infusion
systems for MAP control, they have not been widely applied
1o routine clinical practice. One possible reason might be
the difficulty in modeling the nonlinear MAP response to
drug infusion.® Although various models of MAP response
to drug infusion have been developed for MAP control 223
the complexity of these models makes developing a reliable
system controller difficult. In the present study, we used
a simple first-order delay system as the model of MAP
response to NE infusion. The initial connection weights for
the NN were determined from the learning results of alinear
model, yet APCny and APCyn-pip were able to maintain
stable MAP regulation in the animal study. The flexibility of
a NN coupled with an adaptive control mechanism enabled
controlling the nonlinear system even if the controllers were
initially designed using a linear model for the controlled
system. Because utilization of a NN makes it unnecessary
to construct a complex model for MAP response to drug
infusion, it seems an ideal tool for designing a system to
individualize MAP control in patients.

There are several limitations in the present study. First,
to simplify the controller design we used a single control
variable, i.e. the NE infusion rate. As the fluid infusion and
blood transfusion as well as administration of other drugs
are common in clinical practice, a multivariate control is
mandatory for any reliable automated drug infusion sys-
tem. Because a NN can have a multiple-input layer and
multiple-output layer,! we will be able to extend APCyy
and APCun-pip to multivariate control systems. Second,
because we used a threshold value (10 mmHg) to acti-
vate PID control .in APCyn-pm, NE infusion rate changed
discontinuously at AMAP = +10 mmHg. Although the
discontinuity did not immediately cause the abrupt MAP
change by virtue of the velocity form algorithm imple-
mented for PID control, further refinement is required to
suppress abrupt changes in the NE infusion rate.

The PID control based on fuzzy inference prevented the
MAP response from having oscillations regardiess of the
unexpected MAP change [Fig. 8(d}]. We think the ideal re-
sult was due to the adaptive change of the proportional gain
in the PID parameter. As a limitation, the PID controller
based on the fuzzy inference has to be programmed with
the known or experienced rules fit for the various cases
in clinical settings. Because ascertaining all events under
clinical circumstances is difficult, the design based on fuzzy
rules may require an enormous setup stage. Under MPC, the
MAP oscillation within 10 mmHg occurred under the un-
expected MAP change [Fig. 8(e}] whereas MPC performed
fine under the expected MAP change. In the case where the
error between the MAP response in MPC and the actual

MAP response is large, the cost function containing the
weight of inputs or the model bank would be an effective
way of adjusting the varying therapeutic sensitivities.?! If
the control conditions are within the expected ranges for
the following disturbances; physiological sensitivities to
therapeutic agents, interaction between agents, and vari-
ances of time dependent changes and nonlinearity; then
the improved PID centrol, the MPC, and the conventional
adaptive control will perform well. However, in the clinical
setting, the control conditions are dynamic and unexpected
patient response may occur. In this case, the model based
predictive control or the fuzzy based control alone may not
be able to adjust for the physiological changes, Therefore,
adding the NN and fuzzy logic to the PID control, APC
and MPC will be more effective for unexpected control
conditions.

In conclusion, PID control, APCnyy, and APCyn-pp Sig-
nificantly prevented acute and severe hypotension induced
by hemorrhage in anesthetized rabbits. Although PID con-
trol caused sustained MAP oscillation around the target
value, the improved PID control based on fuzzy inference
prevented the MAP from having this oscillation. Under
the MPC, the MAP oscillation occurred under the unex-
pected control condition whereas the MPC performed ide-
ally under expected control conditions. Designing a MPC
or PID control based on fuzzy inference that is robust,
may require an enormous amount of time to accurately
model because of intra- and inter-patient variability in re-
sponse to pharmaceclogical drugs containing nonlinearity,
pure time delay changes, and other unforeseen interactions
and disturbances.®?* Both APCyy and APCpy-prp showed
more stable MAP control compared to PID control regard-
less of the NE concentration administered. The recovery
time of APCyn-pip was shorter than that of APCny. De-
spite the simple design based on the first order delay model
with unknown hypotension and drug sensitivity, the con-
trols based on a NN approach were offered a robust control
even in the presence of unexpected hypotension and un-
known drug sensitivity. Therefore, utilization of a NN for
adaptive predictive control would facilitate the develop-
ment of an automated drug infusion system for quick and
stable MAP control. However, further investigations using
controls based on a NN will be required.

APPENDIX

Feed-Forward Output Using a NN
Input Layer to First Hidden Layer

The number of units in the first hidden layer of a NN
was set to seven (the same number as the input units) using
a trial and error approach. First, vector vy in the first hidden
layer was calculated as follows:

,
vo()) = Y WI(E B intk) i=1,2,....7
k=0
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where W1(i, k) is the weight matrix, and in(£) is the input
to the first hidden layer. The inputs contain the unit bias,
in(0)=1.

The output of each neuron, vgy(i), was transformed into
v(i) through a hyperbolic tangent function:

vo(i)) _ 1 —exp[-vp(i)]
2 1 4+ exp[—=vo{i}]
v(0) = 1 is the bias input to the second hidden layer.

v(i)=ta.nh( =12,...,7

First Hidden Layer to Second Hidden 'Layer

The mumber of units in the second hidden layer on a NN
was set to seven (the same number as the first hidden layer
units). zo(-) was calculated as follows:

7
zo(i) = ZW_Q(}',:’)-V(:’) i=12,...,7
i=0

where W2(j, i) is the weight matrix, and v(i} is the input to
the second hidden layer. The inputs contain the unit bias,
v(0) = 1.

The output of each neuron, zo(j), was transformed into
z(j) through a hyperbolic tangent function:

o(j)) _ 1T —expl=zo(/)]
2 I+ expl—zo(/)]
2(0) = 1 is the bias input to the next output layer.

z(j):tzmh(z =1,2,....7

Second Hidden Layer to Qutpur Layer

AMAPyy in the output layer was calculated as follows:

7

AMAPN() = D W3(j) - 2(j)
J=0

where W3(j) is the weight matrix, and z(j) is the input to the
output layer. The inputs contain the unit bias, z(0) = 1.
Backpropagation Algorithm for Learning

The modification of weights in each Jayer on the NN can
be described as follows.

Ouiput Layer-Second Hidden Layer
W3%(y) is the weight matrix after update:

, , IMAP )
ws*(1)=W3(;)—Kn-s-—aW§éf)ﬂ ji=0,1,...,7
where

IMAP ,
™= z()

aW3()

z{f) is the input to output layer, which represents the output -
of each neuron in a hyperbolic tangent function on the
second hidden layer.

Second Hidden Layer to First Hidden Layer

W2* (j, i) is the weight matrix after update:

e . IMAPun
W2*(j,i) = W2(j,z)—Kn-s-m
j=01...,7:i=0,1,....7:v{lh =1
where
IMAPww _ 3MAPxy  32(j)  dz0(j)
OW2j,0)  az(j)  zo(j) aW2(j.1)
= W3(j)- 1- 20y v (i)

v{j} is the input to the second hidden layer, which represents
the output of each neuron in a hyperbolic tangent function
on the first hidden layer.

First Hidden Layer to Input Layer.

W1* (i, k) is the weight matrix after update:
IMAPy
AW 1(i, k)
i=1,2..,7k=01,..,7:in0) =1

W1, by =WI1{, k) —Kn-¢-

where

IMAPw i(aMApNN_ d2(j)  8z0())
AWIG, k) 3z(j)  Bzo(j) Bv(D)

av)  dveli)
dvoli) AW 14, k)

J=1

7 1— 7
=¥ (wa(j)- % -w2(j, f))
Jj=1
1 - v(z')2
T2

in{k) is the input to the first hidden layer, which represents
the past input to the NN, :

<in(k)

Simplex Method for Quadratic Function

Figure 4(b) shows an example of the simplex method
used to solve the quadratic function. The search starting at
1= --1reached the minimum point quickly. The steps of the
downhill simplex method can be described as follows.!6:30

Step 1. Calculate Jx = J(Ux) of input Ux.
Calculate Jy = J(Uy) of input Uy = Ux 4+ Du
(initial change in quantity, ex. 0.1),
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Step 2. Ja = the small number of Jx or Jy, and Ua = the
input of the determined Ja.
The other output is Jb, and the input of Jb is Ub.
IF Du < V (value showing convergence, ex. 0.001)
THEN stop the Steps.

Step 3. Uc = Ua + Du (opposite direction of Ub).
Calculate Je = J(Uc) in input Ue.
{F J¢ < Jb THEN go to Step 4, ELSE go to Step 5.

Step 4. Ud = Uc + Du (opposite direction of Ub).
Calculate Jd = J(Ud) of input Ud.
IF Jd < Je THEN Du = 2-Du, Jx = Ja, Ux = Ua,
Jy = Jd, and Uy = Ud, ELSE Jx = J¢, Ux = Uk,
Jy =Ja, and Uy = Ua.
Goto Step 1.

Step 5. Calculate Du = Duf2, Ux = Ua, Jx = Ja, Uy =
(Ua + Ub)/2, and Jy = J(Uy) of input Uy.
Go to Step 1.
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Faster oscillometric manometry does not sacrifice the
accuracy of blood pressure determination
Masaru Sugimachi®, Hirotsugu Okamoto®, Sumio Hoka® and Kenji Sunagawa®

Faster oscillometry enables one to track rapid pressure
changes. We therefore examined whether it was possible
to shorten the measurement time without sacrificing
accuracy. We accelerated and linearized cuff deflation and
determined systolic and diastolic pressure values by the
appearance and disappearance of oscillometric waves
based on the interpolated cuff pressure-oscillometric wave
amplitude relationship. The accuracy of faster oscillometry
was examined by comparing correlations between invasive
radial and oscillometric brachial pressure with either the
conventional or the faster oscillometry in 23 patients
(32116 measurement pairs). Faster oscillometry
shortened the measurement time from 277 £3.5s to

171 £ 2.6 s. Neither pressure levels nor heart rate altered
the time required for measurement. Bland-Altman analysis
indicated that mean and standard deviation of difference
between oscillometric and invasive systolic pressure was
comparable {conventional, 2.1 £ 75 mmHg; faster,

1.4+ 7.3mmHg) without correlations between difference
and average of systolic pressure. Similar differences
{conventional, 5.0+ 6.8 mmHg; faster, 4.9+ 5.8 mmHg) and
lack of correlations were also found for diastolic pressure.
In conclusion, we succeeded in shortening the

Introduction

Blood pressure is one of the most important and
ubiquitous variables for demonstrating the vital status
of patients and its measurements are required almost
everywhere in medical service. Although the invasive
intra-arterial pressure measurements are taken as the gold
standard due to its accuracy, introduction of non-invasive
sphygmomanometric measurements dramatically  wi-
dened the clinical use of blood pressure. In additon,
the introduction of automatic oscillometric manometry
greatly reduced the costs for human resources such as
paramedical staff.

Despite its popularity, oscillometric manometry some-
times fails to meet the clinical requirements. One of the
limitations is that this type of oscillometry is not
intended to track rapid changes in pressure for example
in operations andfor emergency rooms. Development of
faster oscillometry ameliorates this limitation and im-
proves the quality of medical services, especially in
operating theatres, emergency rooms and intensive care
units. Introduction of faster oscillometry i1s advantageous
not only for such special medical services but also for
regular wards and outpatient clinics. Faster oscillometry
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oscillometric measurement time to approximately

60% of the original time without sacrificing accuracy.
This was achieved by acceleration and linearization

of cuff defiation and by interpolation of the
relationship between cuff pressure and oscillometric
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may enhance the merit of automatic manometry by saving
measurement time, especially in the setting where many
patients require measurement.

We therefore examined in this study whether faster
oscillomerry is feasible. We developed a faster oscillome-
try method by linearnizing the deflation rate and by
introducing a new pressure determination atgorithm
based on interpolated data from a small number of beats.
We then determined the accuracy of this faster oscillo-
metry and compared it with that of conventional
oscillometry,

Patients and methods

Conventional oscillometric manometry

In conventional oscillometric manometry, the pulsatile
components {oscillometric waves) can be detected in the
gradually decreasing pressure measurements within a cuff
that compresses the upper arm. Based on the relation
between cuff pressure values and oscillometric wave
amplitudes thus obtained, systolic, mean and diastolic
pressure values are determined (Figure 1). Systolic
pressure values are identified as the cuff pressure values
at the rising edge of oscillometric wave amplitude, mean

DOI: 10.1087/01.mbp.0000130430.76823.42
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Fig. 1

{ Tt 1

Systolic Mean Diastolic
pressure pressure pressure

Cuff pressure tracing during oscillometric manometry from a patient,
supenmposed on simultaneously obtained invasive pressure tracing
(top) and the oscillometric wave extracted from cuff pressure (bottom).
The systolic, mean, and diastolic pressure values can be cbtained from
the cuff pressure vaiues for oscillometric wave appearance, peak, and
disappearance, respectively, Reproduced and modified with permission
from Sugimachi M, Sunagawa K, Okamoto H, Hoka 8. New algorithm
tor osciliometric non-invasive autematic arterial pressure measurement
in patients with atrial fibrillation. Masui 2002; §1:784-790.

pressure values as the cuff pressure values at s
maximum amplicude, and diastolic pressure values as
the cuff pressure values at the falling edge. The
conventional osciliometric device is designed to deter-
mine these pressure values based on discrete cuff
pressure values at each beat. Therefore, after identifying
the beat at the rising edge, the beat for the maximal
amplitude, and the beat at the falling edge the device
determines the systolic, mean, and diastolic pressure
values as the cuff pressure values at the corresponding
beat. To warrant the number of beats for pressure
determination analysis during cach measurcment, the
conventional device is designed to adjust the deflating
rate in the late deflation phase.

New faster oscillometric manometry

Besides the acceleration of cuff deflation (from 4-7
mmHg/s [conventional oscillometry at initial deflation]
to 11-13mmHg/s [our faster oscillometry]), to create
faster oscillometry, we modified a conventional oscillo-
metric device (BX-10, Colin Corporation, Komaki, Japan)
by first, fixing the deflation rate but did not try to adjust
the deflating rate to warrant the number of bears, We
used a constant deflation rate because, in our preliminary
study, changes in cuff deflation rates seem to distort the
relationship between cuff pressure and osciliometric wave
amplitude. Second, to compensate for the decrease in the
number of beats, we interpolated the cuff pressure-
oscillometric wave amplitude relationship between the
discrete data obtained for each beat. Using the inter-
polated relationship, we determined the exact cuff

pressure values at the time of the appearance of the
oscillometric wave, its peak, and subsequent disappear-
ance, rather than choosing cuff pressure values from
several beats. We then adopted these cuff pressure values
for oscillometric systolic, mean, and diastolic pressure
values.

Data collection

To compare the accuracy of the faster oscillometric
method with the conventional one, we conducted a
clinical study using 36 patients who underwent scheduled
surgery at Kitasato University Hospital and required
invasive blood pressure monitoring for clintcal reasons.
There were 16 male and 20 female patients, and they
were 56.1 = 16.2 (16-82) years old. Of these 36 patients,
three were excluded from the swdy for frequent
arrhythmias, one for prominent pressure fluctuations
synchronous to ventilation, and four for technical reasons
that prohibited accurate invasive manometry.

In reference to Figure 2, a 20-gauge intra-arterial catheter
was inserted into the radial artery of patients to monitor
invasive arterial pressure. We used a commercially
available manometer system (MP5200 [TW], Nihon-
Kohden, Tokyo, Japan) for invasive pressure with the
frequency response (100Hz) sufficient for the determi-
nation of systolic and diastolic pressure wvalues. This
pressure served as the gold standard. In order to monitor
blood pressure non-invasively simultaneously using the
oscillomertric method, a cuff was artached around the

Fig. 2

Oscillometric
device

Cuff
pressurel

Invasive pressure| n
- [Multiparameter|
monitor

lllustration of an experimental set-up. Blood pressure was measured by
a modified oscillometric device every 5 min, with simultaneous invasive
pressure recording at the contralateral radial artery, The oscillometric
device was switched alternately between the conventional and the
faster deflation mode. Signals of invasive pressure, electrocardiogram, -
and cuff pressure with superimposed oscillometric wave were
transferred to a multiparameter monitor and converted to a digital form
for the offline analysis.




conrralateral upper arm. Oscillometric measurements
were performed at 5-min intervals. The cuff was
connected to the custom oscillometric device modified
for the above requirements based on the conventional
oscillometric device (BX-10, Colin Corporation, Komaki,
Japan). The device was swirched alternately between the
conventional and the faster deflation mode every 5 min so
that both conventional and faster oscillometry were
performed every 10 min.

Although we did not measure blood pressure with the
conventional and the faster oscillometry at the same
time, we measured invasive arterial pressure throughout
all the oscillometric measurements so that one could
compare the invasive and non-invasive pressure values.
All satisfactory measurements during the surgery were
used for analysis. Throughout the operation, signals of
electrocardiography, invasive blood pressure, and cuff
pressure  (with tmposed oscillometric wave) were
transmitted to a multiparameter monitor (Model 865,
Agilent Technologies, Pale Alto, California, USA),
converted to digital signals (1kHz, 1Zbits) (DAQ-
CARD-700, National Instruments Corp., Austin, Texas,
USA) and stored on a hard disk of a dedicated laboratory
computer {Latitude HX500T, Dell Inc., Round Rock,
Texas, USA) for the offline analysis. We did not use the
clectrocardiographic signal to determine blood pressure
values.

Data analysis

In each patient, we compared invasive systolic and
diastolic pressure values with those obtained by conven-
tional oscillometry, and with those obtained using the
faster oscillometry technique, using different pressure
readings (average of 28 + 17 readings) occurring through-
out the operation. At this time, a further five patients
with <10 pressure readings were excluded from the
analysis. This resulted in 23 patients (32 = 16 pressure
readings, range: 10-68 readings) for final analysis. Both
systolic (87 =18mmHg to 1452 17mmHg, range:
75 £ 20mmHg) and diastolic pressure (48 =9 mmHg to
79 = 9mmHg, range: 31 = 10mmHg) changed consider-
ably during the operation.

Using these comparisons, we quantified the accuracy of
the pressure values by the mean and standard deviation of
the difference between the invasive and oscillometric
pressure values, Invasive pressure values were obtained
from the raw pressure signals stored on the hard disk, and
all systolic and diastolic pressure values were averaged,
respectively, during the corresponding  oscillometric
manometry.

To identify the possible influence of pressure levels
{systolic, diastolic, and pulse pressure)} and heart rate on
the measurement time and the accuracy of the faster
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oscillometric technique, we investigated the correlations
between these variables.

Statistical analysis

Data were expressed as mean + standard  deviation.
Correlations between variables were obtained by linear
regression analysis. Coefficients of determination (r%)
were reported.

Results

Figure 3 shows the comparison between measurement
time with conventional oscillometry (open bars) and that
with the faster oscillometry (solid bars). As expected the
faster oscillomerry shortened the time needed for
pressure measurement to 62% that of the original
(conventional, 27.7x3.5s; faster, 17.1*2.6s). We
examined whether pressure level {one of systolic,
diastolic, pulse pressure values) or heart rate serves as
an obstacle to shorten pressure measurements. Figure 4
described the relation between one of these factors
and measurement time of the faster oscillometric
technique., Poor correlations berween these factors
and measurement time (systolic pressure, f = 0.08;
diastolic pressure, 7# = 0.04; pulse pressure, r~ = 0.07,
heart rate, 2 = 0.02) indicated that none of these
factors served as hindrance factors to shorten pressure
measurements.

In Figure 5 we compared systolic {left panel} and
diastolic (right panel) pressure distribution obtained
from pooled measurements by conventional (open bars)

Fig. 3
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Comparison between pressure measurement time of conventional
osciliometry (open bars) and that of the faster osciltometric method
(solid bars). Measurement time was tabulated into 1 s bins and shown
by a histogram.
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Fig. 4
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Effects of pressure values (systolic, diastolic and pulse pressure), and heart rate on pressure measurement time were examined by scattergrams,

Invasive pressure values were used for independent vanables.

and faster (solid bars} oscillometry. These histograms
show the similarity of pressure values obtained by the two
different oscillometric methods as a whole, though the
corresponding two measurements were 5 min apart.

Figure 6 illustrates the accuracy of the conventional
(bottom panels) and the faster (top panels) oscillomerry
by plotting measurement error (oscillometric minus
invasive pressure) against the average invasive and
oscillometric pressure (Bland-Altman method} {1-2].
The left panels show Bland-Altman plots for systolic
pressure measurements. The- limit of agreement
{mean = SD of the error, dashed and dotted lines) was
comparable between the conventional (2.1 = 7.5 mmHg)
and the faster oscillometry (1.4 = 7.3 mmHg). Correla-

tion between the error and systolic pressure level was
weak (r# = 0.08). The right panels show Bland-Altman
plots for diastolic pressure measurements. The limit of
agreement (dashed and dotted lines) was also comparable
between the conventional (5.0x 6.8 mmHg) and the
faster oscillometry (4.9 = 5.8mmktig), and correlation
between the error and diastolic pressure level was also
weak (7F = 0.04).

In Figure 7, we examined possible influences of other
pressure levels (average of invasive and oscillometric
pressure) or heart rate on measurement error of systolic
and diastolic pressure, respectively, determined by the
faster oscillometric method. Poor correlations were found
between measurement errors for systolic pressure and
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Comparison between measured pressure values (systolic and diastolic pressure) from conventional oscillometry (open bars) with those of the faster
oscillometry (solid bars). Pressure values were tabulated inte 10 mmHg bins and shown by a histogram.

diastolic (7% = 0.07), pulse {(r* = 0.05) pressure levels, or
heart rate (r* = 0.008). Measurement error for diastolic
pressure correlated poorly with systolic (2 = 0.06), pulsc
(#* = 0.04) pressure levels or heart rate (r* = 0.06). Poor
correlations between errors and pressure levels or heart
rate were also found for the conventional oscillometry.

Discussion

We have shown that, by accelerating and linearizing cuff
deflation, and by interpolating the relationship berween
cuff pressure and oscillometric wave amplitude, we were
able to shorten pressure measurement time by approxi-
mately 40%, without increasing measurement error.

In our results, limits of agreement {oscillomertric versus
invasive pressure) were comparable between conven-
tional and the faster oscillometric technique for systolic
as well as diastolic pressure values. Both the conventional
and the faster oscillometry have similar measurement bias
{mean error, systole: 2.1 versus 1.4mmHg, diastole: 5.0
versus 4.9 mmHg). We conjectured thart the difference in
pressure measurement site (radial artery versus brachial
artery) partly accounted for this bias. In addition, the
degree of discrepancy between radial and brachial
pressure values varies depending on cardiovascular
conditions {3], resulting in the increased variability (SD
of error}). A recent paper investigating the accuracy of
oscillometry in critically ill patients indicated that radial
invasive and brachial oscillometric pressures were differ-
ent despite device and cuff size adjustment [4]. Although
pressure differences berween the right and left arms

might contribute to reduce any correlation, this contribu-
tion seems small judging by the poor relation between the
invasive-oscillometric pressure differences and the nght-
left oscillometric pressure differences (data not shown).

Since we did not compare brachial pressure using both
oscillometric methods, this study does not comply with
the guidelines for faster oscillometry ser by the British
Hypertension Society (BHS) [5].

Standards issued by Association for the Advancement of
Medical Instrumentation (AAMI) [6], however, do
provide a way to examine the accuracy against invasive
pressure. Although AAMI requires ipsilateral invasive
manometry at the arteries proximal to the cuff, the
accuracy of systolic and diastolic pressure by the faster
osciliometry is compliant with the AAMI standard. The
mean error for the systolic pressure (1.4mmHg) was
< 5mmHg, and 5D of error (7.3 mmHg) was <8 mmHg,
Similarly, the mean error for the diastolic pressure
(49mmHg) was <5mmHg, and SD of error
(5.8 mmHg) was <8mmHg. Similar accuracy of the
faster oscillometry and the AAMI compiliant conventional
oscillometric device [7] further supported this.

Although attempts to improve the accuracy of oscillo-
metry by ficting curve to cuff pressure-oscillomerric
wave amplitude are not new [8,9], we are the first
to show that such attempts are effective in maintaining
the accuracy of oscillometry in accelerated cuff
deflation. It is natural that acceleration of cuff deflation



