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Figure 6. Detection of FITG-labeled ODN in tumors derived from HeLa cells in SCID mice. HVJ envelope vector containing unlabeled
ODN (4, B) or FITC-ODN (C, D) was injected into tumors. FITC was detected in A and C. Hoeclist 33 258 was used to counterstain
the nucleus (B and D). The experiments were repeated three times and representative photos are shown
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Figure 7. RadS1 transcript was detected by Western blot analysis
after the delivery of either Rad51 siRNA or scrambled (SC}
siRNA. The samples were isolated from two mice (#1 and
#2) injected with the same RadS1 siRNA. This experiment
was repeated twice and similar results were obtained, The
percentage of Rad51 expression (mean = standard deviation)
below in each lane was calculated as desctibed in Figure 2

the siRNA is gradually diluted after cell division. The
use of lentvirus vector or retrovirus vector to insert
siRNA expression DNA into the host chromosome has
been proposed [38,39]. However, we believe that a
combined treatment of synthetic siRNA and CDDP is
sufficient for cancer treatment, because the cells that
received Rad51 siRNA and CDDP in this study died
in a few days. An important factor in the success of
the combination treatment is the consecutive delivery
of synthetic siRNA. Indeed, three injections of Rad51
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siRNA into the tumor were more effective for tumor
regression than two injections. The immunogenicity of
the HVJ envelope vector is much less than that of native
HVJ because of the inactivation of the viral genome.
Consecutive injection is feasible with this vector system
[28].

Rad51 siRNA enhanced the sensitivity to another anti-
cancer drug, bleomycin, which can induce DNA double-
strand breaks. The enhancement of bleomycin sensitivity
by Rad51 siRNA was almost similar to that in a CDDP
experiment (M. Ito and Y. Kaneda, unpublished data),
It has been reported that Rad51 is also invelved in the
sensitivity of cancers to other anti-cancer drugs, such
as etoposide (VP16) and imatinib mesylate (Gleevec)
[40,41]. Since only Rad51 siRNA decreased cancer cell
viability (Figure 4A), Rad51 siRNA can also enhance the
sensitivity of cancer cells to other drugs which do not
induce DNA double-strand breaks. This experiment is
being performed in our laberatory. Furthermore, although
RadS1 expression levels varied from cell line to cell line,
all the cancer cells became very sensitive to CDDP in
combination with Rad51 siRNA. The sensitivity of the
cancer cell lines to CDDP did not appear to be related to
the endogenous Rad51 protein level, These results suggest
that the combination of CDDP with Rad5) siRNA will be
generally applicable to various human cancers,

The enhancement of CDDP sensitivity by Rad51 siRNA
was observed only in HeLa cells, not in NHDF. Similarly,
apoptosis by Rad51 siRNA and CDDP increased in
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Figure 8. Tumor volume in $CID mice. Intraperitoneal injection of CDDP on day 2 transiently suppressed tumor growth ir vivo, but
tumors began to grow again 8 days after the treatment. To enhance the anti-tumor effect of CDDP, Rad51 siRNA or scrambled (5C)
siRNA was injected on days 0, 2, and 4. In three groups, 200 ng of CDDP were injected into the abdominal cavity on day 2. In a
negative control group, PBS was injected into both the tumor mass and peritoneal cavity. Each group contained five mice, and the
representative result from three Independent experiments is shown

Hela cells, but not in NHDF. The discrepancy of CDDP
sensitivity by Rad51 siRNA between NHDF and Hel.a cells
may be due to the difference of the CDDP uptake by the
two cell lines. Indeed, the equitoxic dose of CDDP in NHDF
and HelLa cells was 1.2 and 0.5 pg/ml, respectively, in our
case (M. Ito and Y. Kaneda, unpublished data). Another
possibility is that cell cycle difference between both cells
may affect the sensitivity to CDDP in the presence of
Rad51 siRNA. The precise mechanism of this different
sensitivity to CDDP remains to be solved.

However, in human gene therapy, we should be very
careful regarding the toxicity of Rad51 siRNA. As shown
in Figure 5B, Rad51 siRNA alone induced apoptosis in
both HelLa cells and NHDF, although the apoptotic cell
ratic was much lower in the absence of CDDP. This may
be consistent with the fact that Rad51 knockout mice are
embryonic lethal [42]. To minimize the adverse effects to
normal tissues, tumor-selective targeting is indispensable
for cancer treatment. There are two ways to achieve
selective targeting. One is the insertion of tumor-specific
molecules to vectors, and another is the modification
of vector size and charge. We have already reported
that HVJ-cationic liposomes targeted tumor nodules in
mouse peritoneum by intraperitoneal injection [43]. We
are now constructing targeting vectors by modifying the
HVJ envelope vector with polymers or tumor-specific

- single-chain antibodies.

When delivered by tumor-targeting vectors, siRNAs
against genes resistant to cancer therapy hold great
promise to become very effective anti-neoplastic therapeu-
tics in combination with chemotherapy or radiotherapy.
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