human leukocyte antigen (HLA)-identical sibling donor. The conditioning regimen consisted of fludarabine 180 mg/m² or cladribine 0.66 mg/kg, plus busulfan 8 mg/kg and rabbit anti-thymocyte globulin (ATG). GVHD prophylaxis consisted of cyclosporin 3 mg/kg alone. All of the patients achieved engraftment, with no grade III-IV non-hematological RRT. and complete donor cell type chimerism was achieved without additional DLI by day 60. Acute and chronic GVHD was seen in four patients each. One patient achieved partial remission (response rate 11%) and, as of July 2003, six patients are alive with a median follow-up of 22.5 months. The actuarial overall survival rate was 74% at 2 years. We followed all the 26 patients who were referred to our institute for RIST and were subject to HLA typing. Transplanted patients (n = 9)showed significantly higher overall survival rate than those who had not received RIST (n = 17) (Fig. 1A, P = 0.016). We compared the overall survival rates between 12 patients with matched donors and the other 14 patients without them (Fig. 1B). The 1-year actuarial survival rates were 74 and 48%

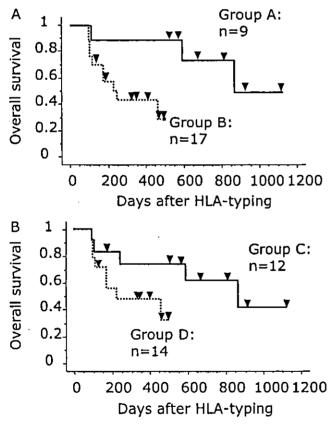


Figure 1. Kaplan-Meier estimates of the overall survival rates following HLA typing. (A) A comparison of overall survival rates between transplanted and non-transplanted patients. The overall survival rate was significantly higher in transplanted patients than in non-transplanted patients (P = 0.016). (B) A comparison between patients with an HLA-matched donor and those without. A trend toward a better survival was observed in patients with an HLA-matched donor (P = 0.088). Group A, transplanted patients (P = 0.088), group B, patients who had not received transplantation (P = 17); group C, patients with an HLA-matched donor (P = 18), including nine transplanted patients; group D, patients without an HLA-matched donor (P = 14).

in patients with donors and those without them, respectively (P = 0.088). This study confirmed the feasibility of allo-SCT for metastatic RCC, and suggests that it might improve prognosis of patients with metastatic RCC. Further phase II or III studies are warranted.

BREAST CANCER

After the first case report by Eibl et al. (26), Ueno et al. reported the results of a feasibility study on conventional myeloablative allo-SCT for metastatic breast cancer in 16 patients (47,48). This study included patients without progressive disease. The preparative regimen consisted of cyclophosphamide, carmustine and thiotepa. GVHD prophylaxis was mainly tacrolimus and methotrexate. The responses were complete response (n = 1), partial response (n = 5) and stable disease (n = 8) in the 15 evaluable patients. Two patients responded during acute GVHD following the withdrawal of immunosuppression.

Ueno et al. further investigated the feasibility of RIST for metastatic breast cancer (43). A total of eight patients received allo-SCT following fludarabine and melphalan. Three patients showed some clinical responses (complete response two, minor response one). Metastatic lesions resolved 3 months after development of chronic GVHD in one patient, and the other two patients demonstrated tumor response at 13 and 17 months after transplantation. The delayed response was comparable with that in RIST for RCC. Since fludarabine and melphalan produce little cytoreduction in metastatic breast cancer and the underlying disease progressed immediately after transplantation in more than half of the patients, it is reasonable to assume that the disease response was attributable to a GVT effect.

Since their reports, GVT effects against breast cancer have been confirmed by other researchers (40–42,49) (Table 2).

MELANOMA

Childs and Srinivasan treated 11 patients with metastatic melanoma (50). This study highlights some of the potential problems in applying RIST for some solid tumors. Death from rapid disease progression occurred before day 100 in five patients. Although three patients achieved partial regression, their responses occurred early in the courses of RIST with a short duration, suggesting that these responses were attributable to chemotherapy effects related to preparative regimens rather than GVT effects. One patient had delayed regression of several subcutaneous metastatic nodules. The investigators speculated that RIST should be limited to a minority of melanoma patients who have slow-growing diseases.

OTHER CANCERS

There is little information on the efficacy of allo-SCT for most solid tumors. Some anecdotal reports have been published on allo-SCT for a variety of cancers (28,31,44,51-54). A case report and a small case series of RIST for metastatic ovarian

Table 2. Experience on allo-SCT for metastatic breast cancer

Reference	Donor	No. of patients	Preparative regimen	GVHD prophylaxis	Response rates*
Ueno et al. (48)	An HLA-identical sibling	16	CBT	Tacrolimus and MTX ⁺	40%
Ueno et al. (43) An HLA-identical related matched unrelated donor		8	Melphalan/Flu	Tacrolimus and MTX	25%
Bregni et al. (40)	An HLA-identical sibling	6	CY/Flu	CSP and MTX	33%
Blaise et al. (42)	An HLA-identical sibling	17	ATG/BU/Flu	CSP	12%
Pedrazzoli et al. (41)	An HLA-identical sibling	2	CY/Flu	CSP and MTX	100%
Hentschke et al. (44)	An HLA-identical related or matched unrelated donor	1	2 Gy TBI/Flu	CSP and MMF	0%

CY, cyclophosphamide; Flu, fludarabine; CSP, cyclosporin; MMF, mycophenolate mofetil; MTX, methotrexate; ATG, anti-thymocyte globulin; BU, busulfan; TBI, total body irradiation; CBT, cyclophosphamide, carmustine, thiotepa.

*Two patients received cyclosporin and methylprednisolone.

cancer and colorectal cancer have been published recently (28,42,44,53,54). These tumors may be promising candidates for allo-SCT; however, it should be noted that both ovarian and colorectal cancer are susceptible to chemotherapy, making it difficult to conclude that disease regression was attributable to a GVT effect.

We evaluated a total of 14 patients with refractory non-renal solid tumors (four rhabdomyosarcoma, two melanoma, two neuroblastoma, two cholangiocarcinoma, two other sarcomas and two other carcinomas) who underwent RIST according to our institutional phase I protocol (52,55). The conditioning regimen and GVHD prophylaxis were the same as those for metastatic RCC. All patients but one with melanoma achieved complete donor chimerism without DLI. Only three patients showed grade II-IV acute GVHD and two showed chronic GVHD. Four patients died before day 100 after RIST and another four after day 100. Seven out of the eight patients died of disease progression. Although comprehensive evaluation of the GVT effect is impossible due to the diversity of the diseases, it is remarkable that there are two patients with disease-free survival longer than 11 months after RIST. One is a 7-year-old female with metastatic neuroblastoma which recurred after autologous bone marrow transplantation. The other is a 16-year-old female with metastatic alveolar type rhabdomyosarcoma. Both were transplanted when they had a small volume of residual disease compared with other patients with sarcoma. Among patients with carcinomas, a 56-year-old male with cholangiocarcinoma showed objective tumor regression which did not satisfy the criteria for partial regression (Fig. 2). There was no apparent correlation between GVHD and a GVT effect.

MECHANISM

The precise mechanism of the GVT effect remains unknown. The lack of information on tumor target antigens and immune mediators for GVT effects does not allow us to predict which diseases will respond to RIST.

Figure 2. Clinical course of a patient with metastatic cholangiocellular carcinoma. A 56-year-old male with cholangiocarcinoma showed objective tumor shrinkage but not sufficiently satisfactory to regard it as partial remission.

Disease regression associated with cyclosporin withdrawal, complete donor chimerism and GVHD provides evidence that cytotoxic donor T cells play an important role in this response. RCC cells express a broad range of mHas that could render them susceptible to a GVT effect (56). These findings suggest that both broadly expressed mHas and antigens restricted to RCC cells may be a target of a GVT effect. Recent studies have demonstrated that distinct T-cell populations recognizing tumor-specific antigens and/or mHas are involved in the GVT effect (57). T-cell clones attacking both RCC cells and hematopoietic cells of the recipients were isolated from responding patients (58). Retrospective clinical studies and in vitro studies using clinical samples demonstrated that cytotoxic T cells against leukemia-specific antigens or hematopoiesis-restricted mHas can induce remission in allo-SCT for acute leukemia (59-61). In animal models, adoptive transfer of HA-1- and HA-2-specific cytotoxic T lymphocytes generated in vitro can be used as immunotherapy to treat hematological malignancies relapsing after allo-SCT (62,63). Using these cytotoxic T cells, GVT effects can be separated from GVHD (64). In contrast to allo-SCT for hematological malignancies, little information is available concerning target

^{*}Response includes complete and partial responses.

antigens and cytotoxic T cells in allo-SCT for solid malignancies, and further studies are warranted.

Some investigators suggested that innate immunity plays an important role in the development of a GVT effect. Natural killer (NK) cells have been studied intensively, since they are capable of mediating a GVL effect in acute myeloid leukemia without causing GVHD (65). Igarashi et al. reported that allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility play an important role in cytotoxicity against melanoma and renal cell carcinoma cells (66). Furthermore, Teshima et al. reported that the local cytokine storm associated with the early phase of allogeneic transplantation plays an important role in GVHD (67). The tumor progression and regression in concordance with corticosteroid use and discontinuation observed in our study (46,68) are compatible with their suggestion, since the cytokine production is readily suppressed by corticosteroid.

Stelljes et al. recently reported an interesting animal study using allogeneic parent-into-F(1) murine transplantation models [BALB/c or C57BL/6→[C57BL/6 × BALB/c]F(1)] with different tumors derived from either parental strain (69). They provided experimental proof of a donor CD8⁺ T cell-mediated tumor-associated antigen-specific anti-tumor response *in vivo* that is driven by GVHD. GVHD was identified as a driving force for GVT effects in RIST for solid tumors. It may represent one of the mechanisms contributing to GVT effects observed in allogeneic transplant recipients.

FUTURE DIRECTIONS

CONTROL OF NEGATIVE ASPECTS OF RIST

Despite progressive improvement of transplant safety, the risk of significant transplant-related malignancy (TRM) limits the widespread application of allo-SCT for solid tumors. TRM remains 10–25% even in RIST. Without evidence of efficacy, most physicians considered this risk too high to justify studies of allo-SCT in patients with solid malignancies. The risk/benefit ratio is an important factor to decide the treatment plan in individual cases.

GVHD is the most significant concern in RIST as well as conventional allo-SCT (70). Approximately two-thirds of RIST recipients develop grade II-IV acute GVHD, and 10% of patients who receive RIST from an HLA-identical sibling died of GVHD in the National Cancer Center Hospital (70). Intensification of GVHD prophylaxis using potent immunosuppressive agents such as MMF, infliximab, ATG and CAMPATH-1H has contributed to improve GVHD-related outcomes (50,71,72); however, use of these agents might diminish GVT effects (50,68), and could increase the rate of serious infections (73). T-cell depletion can significantly reduce the risk of GVHD; however, it does not provide definite evidence of improving the outcomes of allo-SCT for solid or hematological malignancies. They might increase the risk of graft rejection and life-threatening infections (74). Several new

strategies of T-cell depletion are currently under investigation, such as delayed T-cell add-back (75), the use of a suicide gene system (76), and selective CD8⁺ depletion (77). Enhancement of the recovery of tissue damaged by GVHD is another promising approach. Some researchers showed that keratinocyte growth factor (KGF) administration is beneficial for the treatment and prevention of chemotherapy-induced gastrointestinal damage (78,79). It might ameliorate the organ damage caused by GVHD, leading to separation of GVHD from the beneficial GVL effects after allo-SCT (80). Since KGF has a possible risk of oncogenesis and cancer progression, further studies are required to investigate its safety in the setting of allo-SCT for solid tumors.

Another common immunological complication is the progression of the primary disease during immunosuppression. Preparative regimens of RIST have intense immunosuppressive effects to ensure the engraftment of donor cells. The halflife of antibodies such as ATG and CAMPATH-1H is so long as to maintain their immunosuppressive effects after RIST. Although these agents are effective in GVHD prophylaxis. they may deteriorate GVT effects and induce disease progression during immunosuppression (35). This phenomenon needs to be recognized as toxicity associated with conditioning regimens in RIST for solid tumors. However, when the primary disease is in progression at transplant, the possible association of conditioning regimens with early post-transplant progression cannot be distinguished from the natural course of the disease. This issue is troublesome in phase I or II clinical trials, particularly in solid tumors, as they are in progression at transplant. When the primary disease is in complete or partial remission, or stable disease at transplant, early post-transplant progression is more likely to be associated with conditioning regimens, requiring the clinician to be alert to this.

ENHANCEMENT OF A GVT REACTION

Future studies should focus on directing the immune responses specifically to the tumors. In hematological malignancies, leukemia-specific cytotoxic T lymphocytes (CTLs) are frequently generated after allo-SCT, and are important in maintaining remission (81). Falkenburg et al. reported that treatment with ex vivo-generated leukemia-reactive T cells achieved remission in a patient with CML who relapsed after allo-SCT and was resistant to DLI (82). These results support the possibility of using DLI ex vivo primed against solid tumor cells. Several antigens targeted by alloreactive lymphocytes have been identified in allo-SCT for solid tumors. However, the expression of tumor-specific antigens varies considerably within the same tumor and at different stages of diseases. It is therefore difficult to produce antigen-specific CTLs in the treatment of solid tumors.

There are some possibilities to enhance tumor-specific allogeneic immunity prior to transplantation. One is to utilize donor cells activated against tumor alloantigens. While GVHD is a significant concern associated with pre-transplant immunization of allogeneic marrow donors with recipient-derived

tumor cells (83), some animal studies have shown that immunization of allo-SCT recipients with tumor cells can enhance GVT activities without exacerbating GVHD (84,85). It has been shown that CTLs can be generated using the whole tumor cells, which allows epitopes to be selected that are immunogeneic in the context of individual CTL repertoires (86). This approach can be applicable in allo-SCT for solid tumors with unknown target antigens. Morecki et al. reported that pre-immunization with mHa-mismatched tumor or spleen cells was capable of activating effector cells to induce GVT effects (87).

Post-transplant vaccination against tumor-specific or mHas or ex vivo generation of tumor-specific T cells followed by their adoptive transfer is another promising approach. Luznik et al. reported an animal model, showing a cooperation between host and donor T cells in the response to a tumor cell vaccine given after an RIST protocol that achieves stable mixed chimerism (88). GVT effects may be enhanced by the use of cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), which may improve antigen presentation, and interferons, which may increase tumor antigen presentation by upregulating MHC class I and class II HLA molecules. Animal studies demonstrate that other cytokines such as IL-1 (89), IL-11 (90), and procedures capable of interfering with immunoregulatory mechanisms (91,92) are effective for inhibiting GVHD while preserving GVT effects.

Besides immunological approaches, it is critical to clarify the best timing and patient conditions for allo-SCT against solid tumors. Disease progression kinetic and immune status of the hosts are major factors influencing the sensitivity to allogeneic immunity (42). The efficacy of tumor cell eradication by alloreactive lymphocytes depends on the initial ratio between the number of tumor-specific immunocompetent cells in the graft and tumor cell burden of the recipient. Tumor debulking by the preparative regimen or surgical procedures before transplant might be important to enhance GVT effects. Preclinical evidence suggests that a lymphopenic host may represent a favorable clinical setting for immunotherapy (93). Dudley et al. provided evidence of cancer regression by the adoptive transfer of autologous tumor-reactive T cells directed against melanoma antigens in patients receiving a non-myeloablative, highly immunosuppressive preparative regimen (94). This approach may be helpful in allo-SCT for solid tumors.

EVALUATION OF TUMOR RESPONSES

Evaluation methods of tumor response to RIST have not been established. Even in the article of RIST for RCC by Childs et al. (35), their method of tumor response evaluation was not clearly described. It is critical to develop a global method to evaluate tumor response to RIST to share RIST results worldwide (95). Although the RECIST (Response Evaluation Criteria in Solid Tumors) system has been used as a gold standard to evaluate the response of solid tumors to treatment mainly in the field of cancer chemotherapy (96), it has not been fully validated in the

area of allo-SCT for solid tumors. Compared with hematological malignancies, solid tumors are generally more resistant to the cytotoxic agents used in conditioning regimens administered before transplantation. Consequently, there may be some important differences in evaluating the response of solid tumors between RIST and conventional chemotherapy.

First, the feasibility of applying RECIST should be critically validated before its extensive application in transplantation (97). Tumor regression occurs several months after transplantation, and most tumors continue their natural growth until the manifestation of effective alloimmunity to restrain tumor growth. If the original RECIST criteria (96) are applied to patients undergoing RIST for solid tumors, most of the GVT effect would be evaluated as progressive disease, which would preclude subsequent evaluation (Fig. 3). Therefore, RECIST may underestimate the efficacy of RIST. Secondly, the proper time to measure the tumor size as a baseline for evaluating a subsequent tumor response has not been defined. In contrast to the results with chemotherapy, the tumor often temporarily increases in size following RIST. Accordingly, when the size at transplantation is used as a baseline, as in chemotherapy, a therapeutic effect following the initial progression could be overlooked or underestimated (Fig. 3). On the other hand, evaluating regression from the largest size after transplant certainly overestimates the effect of treatment (Fig. 3), and gives an unacceptable bias. Thirdly, the tumor size after RIST often fluctuates in response to a de novo GVT effect, post-transplant immunotherapy including DLI, and adjustment of immunosuppressive agents (Fig. 4). In this situation, it is clear that any evaluation of the response duration, such as progression-free survival and the overall response duration, is essentially impossible using the current RECIST criteria. Improved overall survival will ultimately be evaluated in phase III trials. To reach this point, a global standard evaluation system, that enables the

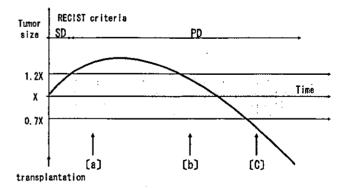


Figure 3. Course of tumor size after transplantation. Primary solid tumors are progressive despite chemoradiotherapy prior to transplantation. (a) Most tumors continue their natural growth until the development of a GVT effect, which usually occurs several months after transplantation. (b) If the tumor has increased in size compared with that at the time of transplant, regression from the largest size may overestimate the treatment effect. (c) If the tumor size at transplant is defined as a baseline, some treatment effects, observed in patients whose lesions show initial progression followed by regression with the development of GVHD, will be underestimated.

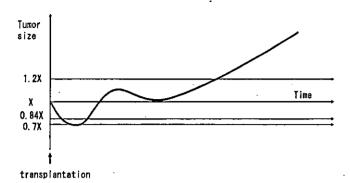


Figure 4. Fluctuation of tumor size after donor lymphocyte infusion or adjustment of immunosuppressive agents. It is difficult to handle patients in whom the tumor size fluctuates in response to post-transplant immunotherapy such as donor lymphocyte infusion and adjustment of immunosuppressive agents. Neither an appropriate timing of response evaluation nor an appropriate time to measure a baseline tumor size has been established in these cases.

effective screening of a therapeutic effect in an earlier phase II study, will need to be established. We hope that this review will inspire a productive discussion.

USE OF ALTERNATIVE STEM CELL SOURCES

Only 30-40% of patients in Japan have an HLA-identical sibling to serve as an allo-SCT donor. Unrelated bone marrow or umbilical cord blood may serve as an effective source of stem cells, thereby broadening the scope of patients who may benefit from allo-SCT. RIST using these stem cells is a promising alternative option. Some pilot studies have demonstrated the feasibility of allo-SCT from MUD (98,99) or using umbilical cord blood (100,101). Trials evaluating RIST using alternative stem cell sources have been started in many transplantation centers.

References

- Thomas ED, Storb R, Clift RA, Fefer A, Johnson L, Neiman PE, et al. Bone-marrow transplantation. N Engl J Med 1975;292:895-902.
- Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 1979;300:1068-73.
- Ratanatharathorn V, Überti J, Karanes C, Abella E, Lum LG, Momin F, et al. Prospective comparative trial of autologous versus allogeneic bone marrow transplantation in patients with non-Hodgkin's lymphoma. *Blood* 1994;84:1050-5.
- Sullivan KM, Weiden PL, Storb R, Witherspoon RP, Fefer A, Fisher L, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. *Blood* 1989;73:1720-8.
- Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. *Blood* 1990:75:555-62.
- Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E, et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988;108:806–14.
- Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. *Blood* 1995;86: 2041-50.

- Shiobara S, Nakao S, Ueda M, Yamazaki H, Takahashi S, Asano S, et al.
 Donor leukocyte infusion for Japanese patients with relapsed leukemia after allogeneic bone marrow transplantation: lower incidence of acute graft-versus-host disease and improved outcome. Bone Marrow Transplant 2000;26:769-74.
- Bearman S, Appelbaum FR, Buckner C, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988;6:1562-68.
- Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15:433-44.
- Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. *Blood* 1998;91:756-63.
- McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. *Blood* 2001;97:3390-400.
- Sykes M, Preffer F, McAfee S, Saidman SL, Weymouth D, Andrews DM, et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bonemarrow transplantation. *Lancet* 1999;353:1755-9.
- 14. Saito T, Kanda Y, Kami M, Kato K, Shoji N, Kanai S, et al. Therapeutic potential of a reduced-intensity preparative regimen for allogeneic transplantation with cladribine, busulfan, and antithymocyte globulin against advanced/refractory acute leukemia/lymphoma. Clin Cancer Res 2002;8:1014-20.
- Champlin R, Khouri I, Shimoni A, Gajewski J, Kornblau S, Molldrem J, et al. Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br J Haematol 2000;111:18-29.
 Bacigalupo A. Second EBMT Workshop on reduced intensity allogeneic
- Bacigalupo A. Second EBMT Workshop on reduced intensity allogeneic hemopoietic stem cell transplants (RI-HSCT). Bone Marrow Transplant 2002;29:191-5.
- Storb R, Champlin R, Riddell S, Murata M, Bryant S, Warren E. Non-myeloablative transplants for malignant disease. In: Schechter GP, Broudy VC, Williams ME, editors. Hematology 2001. American Society of Hematology Education Program Book. Washington, DC: American Society of Hematology 2001.
- Yu C, Storb R, Mathey B, Deeg HJ, Schuening FG, Graham TC, et al. DLAidentical bone marrow grafts after low-dose total body irradiation: effects of high-dose corticosteroids and cyclosporine on engraftment. *Blood* 1995;86:4376-81.
- Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem HP, et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. *Blood* 1997;89:3048-54.
- Storb R, Yu C, Barnett T, Wagner JL, Deeg HJ, Nash RA, et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. *Blood* 1999;94: 1131-6.
- Morecki S, Moshel Y, Gelfend Y, Pugatsch T, Slavin S. Induction of graft vs. tumor effect in a murine model of mammary adenocarcinoma. Int J Cancer 1997;71:59-63.
- Moscovitch M, Slavin S. Anti-tumor effects of allogeneic bone marrow transplantation in (NZB x NZW)F1 hybrids with spontaneous lymphosarcoma. *J Immunol* 1984;132:997-1000.
- Morecki S, Yacovlev E, Diab A, Slavin S. Allogeneic cell therapy for a murine mammary carcinoma. Cancer Res 1998;58:3891-5.
- Prigozhina TB, Gurevitch O, Morecki S, Yakovlev E, Elkin G, Slavin S. Nonmyeloablative allogeneic bone marrow transplantation as immunotherapy for hematologic malignancies and metastatic solid tumors in preclinical models. Exp Hematol 2002;30:89-96.
- Ben-Yosef R, Or R, Nagler A, Slavin S. Graft-versus-tumour and graftversus-leukaemia effect in patient with concurrent breast cancer and acute myelocytic leukaemia. *Lancet* 1996;348:1242-3.
- Eibl B, Schwaighofer H, Nachbaur D, Marth C, Gachter A, Knapp R, et al. Evidence for a graft-versus-tumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer. *Blood* 1996;88:1501-8.

- Moscardo F, Martinez JA, Sanz GF, Jimenez C, Cervera J, Sanchis J, et al. Graft-versus-tumour effect in non-small-cell lung cancer after allogeneic peripheral blood stem cell transplantation. Br J Haematol 2000;111: 708-10.
- Bay JO, Fleury J, Choufi B, Tournilhac O, Vincent C, Bailly C, et al. Allogeneic hematopoietic stem cell transplantation in ovarian carcinoma: results of five patients. Bone Marrow Transplant 2002;30:95-102.
- Zetterquist H, Hentschke P, Thorne A, Wernerson A, Mattsson J, Uzunel M, et al. A graft-versus-colonic cancer effect of allogeneic stem cell transplantation. Bone Marrow Transplant 2001;28:1161-6.
- Inoue M, Nakano T, Yoneda A, Nishikawa M, Nakayama M, Yumura-Yagi K, et al. Graft-versus-tumor effect in a patient with advanced neuroblastoma who received HLA haplo-identical bone marrow transplantation. Bone Marrow Transplant 2003;32:103-6.
- Omuro Y, Matsumoto G, Sasaki T, Tanaka Y, Maeda Y, Sakamaki H, et al. Regression of an unresectable pancreatic tumor following nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. Bone Marrow Transplant 2003;31:943-5.
- Takahashi T, Omuro Y, Matsumoto G, Sakamaki H, Maeda Y, Hiruma K, et al. Nonmyeloablative allogeneic stem cell transplantation for patients with unresectable pancreatic cancer. *Pancreas* 2004;28:e65-9.
- Tanaka M, Shibui S, Kobayashi Y, Nomura K, Nakanishi Y. A graftversus-tumor effect in a patient with ependymoma who received an allogenic bone marrow transplant for therapy-related leukemia. Case report. J Neurosurg 2002;97:474-6.
- Porter DL, Connors JM, Van Deerlin VM, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol 1999;17:1234.
- Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000;343:750-8.
- Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 1988;6:839-53.
- Negrier S, Escudier B, Lasset C, Douillard JY, Savary J, Chevreau C, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d'Immunotherapie. N Engl J Med 1998;338:1272-8.
- Childs R, Barrett J. Nonmyeloablative stem cell transplantation for solid tumors: expanding the application of allogeneic immunotherapy. Semin Hematol 2002;39:63-71.
- Rini BI, Zimmerman T, Stadler WM, Gajewski TF, Vogelzang NJ. Allogeneic stem-cell transplantation of renal cell cancer after nonmyeloablative chemotherapy: feasibility, engraftment, and clinical results. J Clin Oncol 2002;20:2017-24.
- 40. Bregni M, Dodero A, Peccatori J, Pescarollo A, Bernardi M, Sassi I, et al. Nonmyeloablative conditioning followed by hematopoietic cell allografting and donor lymphocyte infusions for patients with metastatic renal and breast cancer. Blood 2002;99:4234-6.
- Pedrazzoli P, Da Prada GA, Giorgiani G, Schiavo R, Zambelli A, Giraldi E, et al. Allogeneic blood stem cell transplantation after a reduced-intensity, preparative regimen: a pilot study in patients with refractory malignancies. Cancer 2002;94:2409-15.
- Blaise D, Bay JO, Faucher C, Michallet M, Boiron JM, Choufi B, et al. Reduced-intensity preparative regimen and allogeneic stem cell transplantation for advanced solid tumors. *Blood* 2004;103:435-41.
- 43. Ueno NT, Cheng YC, Rondon G, Tannir NM, Gajewski JL, Couriel DR, et al. Rapid induction of complete donor chimerism by the use of a reduced-intensity conditioning regimen composed of fludarabine and melphalan in allogeneic stem-cell transplantation for metastatic solid tumors. Blood 2003.
- Hentschke P, Barkholt L, Uzunel M, Mattsson J, Wersall P, Pisa P, et al. Low-intensity conditioning and hematopoietic stem cell transplantation in patients with renal and colon carcinoma. Bone Marrow Transplant 2003;31:253-61.
- Gratwohl A, Baldomero H, Demirer T, Rosti G, Dini G, Ladenstein R, et al. Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol 2004;15:653-60.
- 46. Nakagawa T, Kami M, Hori A, Kim SW, Murashige N, Hamaki T, et al. Allogeneic hematopoietic stem cell transplantation with a

- reduced-intensity conditioning regimen for treatment of metastatic renal cell carcinoma: single institution experience with a minimum 1-year follow-up. Exp Hematol 2004;32:599-606.
- Ueno NT, Rondon G, Mirza NQ, Geisler DK, Anderlini P, Giralt SA, et al. Allogeneic peripheral-blood progenitor-cell transplantation for poor-risk patients with metastatic breast cancer. J Clin Oncol 1998;16:986-93.
- Ueno NT, Hortobagyi GN, Champlin RE. Allogeneic peripheral blood progenitor cell transplantation in solid tumors. Cancer Treat Res 1999;101:133-56.
- Carella AM. Autografting and nonmyeloablative allogeneic stem cell transplantation in metastatic breast cancer. Haematologica 2002; 87:11-12
- Childs R, Srinivasan R. Advances in allogeneic stem cell transplantation: directing graft-versus-leukemia at solid tumors. Cancer J 2002;8:2-11.
- Kanda Y, Komatsu Y, Akahane M, Kawazu M, Tada M, Goyama S, et al. Allogeneic reduced intensity stem cell transplantation for advanced pancreatic cancer. Proc ASCO 2003.
- Makimoto A, Mineishi S, Tanosaki R, Kanda Y, Saito T, Nakai K, et al. Nonmyeloablative stem-cell transplantation (NST) for refractory solid tumors. *Proc ASCO* 2001;20:Abstract no. 44.
- 53. Bay JO, Choufi B, Pomel C, Dauplat J, Durando X, Tournilhac O, et al. Potential allogeneic graft-versus-tumor effect in a patient with ovarian cancer. *Bone Marrow Transplant* 2000;25:681-2.
- 54. Kojima R, Kami M, Hori A, Murashige N, Ohnishi M, Kim SW, et al. Reduced-intensity allogeneic hematopoietic stem-cell transplantation as an immunotherapy for metastatic colorectal cancer. Transplantation in press.
- Kami M, Takaue Y. Development of reduced-intensity hematopoietic stem cell transplantation in the National Cancer Center Hospital, Japan. Ther Apher Dial 2003;7:318-28.
- Warren EH, Tykodi SS, Murata M, Sandmaier BM, Storb R, Jaffee E, et al. T-cell therapy targeting minor histocompatibility Ags for the treatment of leukemia and renal-cell carcinoma. Cytotherapy 2002;4:441.
- Drachenberg D, Childs RW. Allogeneic stem cell transplantation as immunotherapy for renal cell carcinoma: from immune enhancement to immune replacement. *Urol Clin North Am* 2003;30:611-22.
- Mena O, Igarashi T, Srinivasan R. Immunologic mechanisms involved in the graft-vs-tumor (GVT) effect in renal cell carcinoma (RCC) following nonmyeloablative allogeneic peripheral blood stem cell transplantation (NST). Blood 2003;98:356 (abstract).
- Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Hanabuchi S, Masuda M, et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res 2004:64:391-9.
- 60. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J, et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996;334:281-5.
- Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003;100:2742-7.
- Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, et al. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. *Blood* 2004;104:224-6.
- Fontaine P, Roy-Proulx G, Knafo L, Baron C, Roy DC, Perreault C. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med 2001;7:789-94.
- 64. Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med 2002;8:410-4.
- Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097-100.
- 66. Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP Jr, Takahashi Y, et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004;104:170-7.
- Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med 2002;8:575-81.

- 68. Hori A, Kami M, Kim SW, Makimoto A, Tanosaki R, Takaue Y. Balance between acute graft-versus-host disease and graft-versus-tumor effect after reduced-intensity transplantation for metastatic renal cell carcinoma. Hematol J 2004;5:276-8.
- 69. Stelljes M, Strothotte R, Pauels HG, Poremba C, Milse M, Specht C, et al. Graft-versus-host disease after allogeneic hematopoietic stem cell transplantation induces a CD8⁺ T cell-mediated graft-versus-tumor effect that is independent of the recognition of alloantigenic tumor targets. Blood 2004;104:1210-6.
- Mielcarek M, Martin PJ, Leisenring W, Flowers ME, Maloney DG, Sandmaier BM, et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. *Blood* 2003;102:756-62.
- Nakai K, Mineishi S, Kami M, Saito T, Hori A, Kojima R, et al. Antithymocyte globulin affects the occurrence of acute and chronic graft-versus-host disease after a reduced-intensity conditioning regimen by modulating mixed chimerism induction and immune reconstitution. Transplantation 2003;75:2135-43.
- Kottaridis PD, Milligan DW, Chopra R, Chakraverty RK, Chakrabarti S, Robinson S, et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 2000:96:2419-25.
- Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, O'Gorman P, et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. *Blood* 2002;99: 4357-63.
- Ho VT, Soiffer RJ. The history and future of T-cell depletion as graftversus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. *Blood* 2001;98:3192-204.
- Dazzi F, Szydlo RM, Cross NC, Craddock C, Kaeda J, Kanfer E, et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. *Blood* 2000;96:2712-6.
- Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276:1719-24.
- Nimer SD, Giorgi J, Gajewski JL, Ku N, Schiller GJ, Lee K, et al. Selective depletion of CD8⁺ cells for prevention of graft-versus-host disease after bone marrow transplantation. A randomized controlled trial. Transplantation 1994;57:82-7.
- Farrell CL, Rex KL, Chen JN, Bready JV, DiPalma CR, Kaufman SA, et al. The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Prolifer 2002;35 Suppl 1:78-85.
- Wirth K, Mertelsmann R. Cytoprotective function of keratinocyte growth factor in tumour therapy-induced tissue damage. Br J Haematol 2002;116:505-10.
- Clouthier SG, Cooke KR, Teshima T, Lowler KP, Liu C, Connolly K, et al. Repifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect. *Biol Blood Marrow Transplant* 2003;9:592-603.
- Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, et al. Evidence that specific Tlymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000;6:1018-23.
- 82. Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. *Blood* 1999;94:1201-8.
- Anderson LD Jr, Petropoulos D, Everse LA, Mullen CA. Enhancement of graft-versus-tumor activity and graft-versus-host disease by pretransplant immunization of allogeneic bone marrow donors with a recipient-derived tumor cell vaccine. Cancer Res 1999;59:1525-30.
- 84. Teshima T, Mach N, Hill GR, Pan L, Gillessen S, Dranoff G, et al. Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res 2001;61: 162-71.

- Anderson LD Jr, Savary CA, Mullen CA. Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graftversus-tumor activity without exacerbating graft-versus-host disease. Blood 2000;95:2426-33.
- Montagna D, Maccario R, Locatelli F, Rosti V, Yang Y, Farness P, et al.
 Ex vivo priming for long-term maintenance of antileukemia human cytotoxic T cells suggests a general procedure for adoptive immunotherapy. Blood 2001;98:3359-66.
- 87. Morecki S, Yacovlev E, Gelfand Y, Uzi I, Slavin S. Cell therapy with preimmunized effector cells mismatched for minor histocompatible antigens in the treatment of a murine mammary carcinoma. *J Immunother* 2001;24:114-21.
- Luznik L, Slansky JE, Jalla S, Borrello I, Levitsky HI, Pardoll DM, et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. *Blood* 2003;101:1645-52.
- Sykes M, Sachs DH. Bone marrow transplantation as a means of inducing tolerance. Semin Immunol 1990;2:401-17.
- Teshima T, Hill GR, Pan L, Brinson YS, van den Brink MR, Cooke KR, et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 1999;104:317-25.
- Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol 2001;166:3174-83.
- 92. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194:823-32.
- 93. Maine GN, Mule JJ. Making room for T cells. J Clin Invest 2002;110:157-
- Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850-4.
- Hori A, Kami M, Kim SW, Murashige N, Sakiyama M, Kojima R, et al. Urgent need for a validated tumor response evaluation system for use in immunotherapy. *Bone Marrow Transplant* 2004;33:255-6; author reply 257-8.
- 96. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinsteizn L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-16.
- 97. Sakiyama M, Kami M, Hori A, Imataki O, Hamaki T, Murashige N, et al. Regimen-related toxicity following reduced-intensity stem-cell transplantation (RIST): comparison between Seattle criteria and National Cancer Center Common Toxicity Criteria (NCI-CTC) version 2.0. Bone Marrow Transplant 2004.
- Bornhauser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R, et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin Cancer Res 2001:7:2254-62.
- Kusumi E, Kami M, Yuji K, Hamaki T, Murashige N, Hori A, et al. Feasibility of reduced intensity hematopoietic stem cell transplantation from an HLA-matched unrelated donor. Bone Marrow Transplant 2004;33:697-702.
- Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE.
 Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 2003;102:1915-9.
- 101. Miyakoshi S, Yuji K, Kami M, Kusumi E, Kishi Y, Kobayashi K, et al. Successful engraftment after reduced-intensity umbilical cord blood transplantation for adult patients with advanced hematological diseases. Clin Cancer Res 2004;10:3586-92.

Featured Article

Successful Engraftment After Reduced-Intensity Umbilical Cord Blood Transplantation for Adult Patients with Advanced Hematological Diseases

Shigesaburo Miyakoshi, ¹ Koichiro Yuji, ¹ Masahiro Kami, ² Eiji Kusumi, ¹ Yukiko Kishi, ² Kazuhiko Kobayashi, ² Naoko Murashige, ² Tamae Hamaki, ² Sung-Won Kim, ² Jun-ichi Ueyama, ¹ Shin-ichiro Mori, ² Shin-ichi Morinaga, ¹ Yoshitomo Muto, ¹ Shigeru Masuo, ³ Mineo Kanemaru, ⁴ Tatsuyuki Hayashi, ⁵ Yoichi Takaue, ² and Shuichi Taniguchi ¹

¹Department of Hematology, Toranomon Hospital; ²Hematopoietic Stem-cell Transplantation Unit, National Cancer Center Hospital; ³Department of Hematology and Rheumatology, JR Tokyo General Hospital; ⁴Department of Internal Medicine, Higashijyujyo Hospital; and ⁵Department of Internal Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan

ABSTRACT

Purpose: The purpose of this research was to evaluate the feasibility of reduced-intensity unrelated cord-blood transplantation (RI-UCBT) in adult patients with advanced hematological diseases.

Experimental Design: Thirty patients (median age, 58.5 years; range, 20–70 years) with advanced hematological diseases underwent RI-UCBT at Toranomon Hospital between September 2002 and August 2003. Preparative regimen composed of fludarabine 25 mg/m 2 on days -7 to -3, melphalan 80 mg/m 2 on day -2, and 4 Gy total body irradiation on day -1. Graft-versus-host disease prophylaxis was composed of cyclosporin alone.

Results: Twenty-six patients achieved primary neutrophil engraftment after a median of 17.5 days. Median infused total cell dose was $3.1 \times 10^7/\text{kg}$ (range, $2.0-4.3 \times 10^7/\text{kg}$). Two transplant-related mortalities occurred within 28 days of transplant, and another 2 patients displayed primary graft failure. Cumulative incidence of complete donor chimerism at day 60 was 93%. Grade II-IV acute graft-versus-host disease occurred in 27% of patients, with median onset 36 days. Primary disease recurred in 3 patients, and transplant-related mortality within 100 days was

27%. Estimated 1-year overall survival was 32.7%. Excluding 7 patients with documented infection, 19 patients displayed noninfectious fever before engraftment (median onset, day 9). Manifestations included high-grade fever, eruption, and diarrhea. The symptoms responded well to corticosteroid treatments in 7 of 13 treated patients.

Conclusion: This study demonstrated the feasibility of RI-UCBT in adults.

INTRODUCTION

Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative treatment for refractory hematological malignancies. The therapeutic benefits are attributable to myeloablative radiochemotherapy and graft-versus-leukemia effects (1), whereas the severe regimen-related toxicity (RRT; Ref. 2) limited allo-HSCT to young patients without comorbidities.

Reduced-intensity stem-cell transplantation (RIST) using a nonmyeloablative preparative regimen has been developed to decrease RRT, whereas preserving adequate antitumor effects (3-5). Different pioneering conditioning regimens for RIST have been investigated, such as those including purine analogs (3-6) and total body irradiation (TBI). Although RIST has been attempted in various diseases (5, 6), suitable preparative regimens with adequate immunosuppression have yet to be established

Although allo-HSCT from an HLA-identical sibling is promising, only 30% of the patients have an HLA-identical sibling donor. The value of unrelated cord-blood transplantation (UCBT) was confirmed for pediatric patients (7, 8). It has seen recent application in adult patients (9). Whereas the potential graft-versus-leukemia effects by cord-blood (CB) without severe graft-versus-host disease (GVHD; Ref. 10) has been reported, current questions include whether CB provides a sufficient number of stem cells for adults and suitable graft-versus-leukemia effects.

Reduced-intensity (RI)-UCBT (11, 12) represents a promising treatment for advanced hematological malignancies. Wagner et al. (12) reported recently the feasibility of RI-UCBT for pediatric patients. However, the feasibility in adult patients remains unclear. We report 30 adult patients with advanced hematological diseases who underwent RI-UCBT after fludarabine, melphalan, and 4 Gy TBI since October 2003 at our institution.

PATIENTS AND METHODS

Study Patients and Donors. Thirty patients with hematological diseases underwent RI-UCBT at Toranomon Hospital between September 2002 and August 2003. All of the patients had hematological disorders that were incurable with conventional treatments and were considered inappropriate for conventional treatments.

Received 12/17/03; revised 2/10/04; accepted 2/23/04.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fort.

Requests for reprints: Masahiro Kami, Hematopoietic Stem Cell Transplant Unit, the National Cancer Center Hospital, 5-1-1 Tsukiji, Chun-ku, Tokyo 104-0045, Japan. Phone: 81-3-3542-2511; Fax: 81-3-3542-3815; E-mail: mkami@ncc.go.jp.

tional allo-HSCT due to the lack of an HLA-identical sibling or a suitable unrelated donor, age >50 years old and/or organ dysfunction (generally attributable to previous intense chemo-and/or radiotherapy).

All of the patients provided written informed consent in accordance with the requirements of the Institutional Review Board.

HLA Typing and Donor Matching. An unrelated donor was searched through the Japan Marrow Donation Program (13) for patients without an HLA-identical sibling donor. When no appropriate donor was identified, the Japan Cord Blood Bank Network (14) was searched. CB units, which were \geq 4 of 6 HLA-antigen matched and contained at least 2 \times 10⁷ nucleated cells/kg of recipient body weight before freezing were used. CB units were not depleted of T lymphocytes.

Preparative Regimen. The preparative regimen was composed of fludarabine 25 mg/m² on days -7 to -3, melphalan 80 mg/m² on day -2, and 4 Gy TBI in 2 fractions on day -1.

Supportive Cares. All of the patients were managed in reverse isolation in laminar airflow-equipped rooms and received trimethoprim/sulfamethoxazole for *Pneumocystis carinii* prophylaxis. Fluoroquinolone and fluconazole were administered for prophylaxis of bacterial and fungal infections, respectively. Prophylaxis of herpes virus infection with acyclovir was also given (15). Neutropenic fever was managed according to the guidelines (16, 17). Cytomegalovirus (CMV) pp65 antigenemia was monitored once a week. If positive results were identified, preemptive therapy with foscarnet was initiated. Hemoglobin and platelet counts were maintained at >7 g/dl and >10 × 10°/liter, respectively, with in-line filtered and irradiated blood transfusions.

Management of GVHD. GVHD was clinically diagnosed in combination with skin or gut biopsies after engraftment or attainment of 100% donor chimerism. Acute and chronic GVHD were graded according to the established criteria (18, 19).

GVHD prophylaxis was a continuous infusion of cyclosporin 3 mg/kg from day -1 until the patients tolerated oral administration. It was tapered off from day 100 until day 150. If grade II-IV acute GVHD developed, 1 mg/kg/day of prednisolone was added to cyclosporin and tapered from the beginning of clinical response.

Chimerism Analysis. Chimerism was assessed using fluorescent in situ hybridization in sex-mismatched donor-recipient pairs. In sex-matched pairs, PCR for variable numbers of tandem repeats was used with donor cells detected at a sensitivity of 10% (20).

Whole blood and CD3-positive cell chimerism was assessed at the time of granulocyte engraftment. When engraftment was delayed, chimerism was assessed on day 30. For those who died before engraftment, chimerism was assessed at least once during life.

Engraftment. Engraftment was defined as WBC counts $> 1.0 \times 10^9$ /liter or absolute neutrophil counts $> 0.5 \times 10^9$ /liter for 2 consecutive days. Granulocyte colony stimulating factor (Filgrastim) 300 μ g/m²/day was administered i.v. from day 1 until neutrophil engraftment.

Graft failure was defined as peripheral cytopenia and mar-

Table 1 Patient characteristics (n = 30)

Age (y), median (range)	58.5 (20-70)
Weight (kg), median (range)	52 (38-75)
Male/female	16/14
Diagnosis	
Malignancy	
Acute myeloid leukemia	14
Myelodisplastic syndrome	1
Acute lymphoblastic leukemia	3
Adult T-cell leukemia	5
Plasma cell leukemia	1
Chronic myeloid leukemia	1
Malignant lymphoma	i
Benign	•
Severe aplastic anemia	4
Disease status at transplantation (malignancy)	•
Remission	1
Refractory to previous chemotherapy	25

row hypoplasia occurring later than day 60, without detection of donor markers by cytogenetic and/or molecular techniques.

RRT and Transplantation-Related Mortality (TRM). RRT was defined as any nonhematological organ dysfunction from day 0 to day 28 and was graded according to the Bearman's criteria (2). TRM was defined as death without the primary disease progression.

Endpoints and Statistical Analysis. Primary end points were composed of the rates of durable engraftment and TRM within day 100. Secondary end points were the rates of RRT, acute and chronic GVHD, infections, event-free survival (EFS), and overall survival (OS).

Acute GVHD was analyzed for engrafted patients. Chronic GVHD was analyzed for patients who survived ≥100 days.

EFS was defined as the duration of survival after transplantation without disease progression, relapse, graft failure, or death. The probabilities of OS and EFS were shown by the Kaplan-Meier method as of January 31, 2004. Surviving patients were censored on the last day of follow-up. Cox regression analysis was used to determine the effect of various variables on OS.

RESULTS

Patient Characteristics. Median age was 58.5 years (range, 20-70 years), and median weight was 52 kg (range, 38-75 kg; Table 1). All of the patients were CMV-seropositive.

The malignancies of 25 patients were refractory to cytotoxic chemotherapies except acute myeloblastic leukemia (n = 1) in first CR. The remaining 4 patients had transfusion-dependent severe aplastic anemia.

CB Characteristics. Twenty-four and 6 patients received 4 of 6 and 5 of 6 HLA-antigen-matched CB, respectively. Twenty-one patient CB pairs were sex-mismatched. Median infused total nucleated cell dose and CD34-positive cell dose before freezing were 3.1 \times 10⁷/kg (range, 2.0-4.3 \times 10⁷/kg) and 0.74 \times 10⁵/kg (range, 0.17-2.5 \times 10⁵/kg), respectively.

Engraftment. Twenty-six patients [87%; 95% confidence interval (95% C1), 75–99%] achieved primary neutrophil engraftment, among whom median day of engraftment was 17.5 days (range, 10–54 days; Fig. 1). Their engraftment was durable

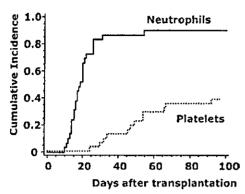


Fig. 1 Engraftment of neutrophils and platelets. Twenty-six (87%; 95% confidence interval, 75-99%) and 16 patients (40%; 95% confidence interval, 25-57%) achieved primary neutrophil and platelet engraftment, respectively.

Table 2 Neutrophil engraftment, chimerism, and overall survival

n	% (95% CI)"	P
16	94% (82-100%)	
14	79% (57-100%)	0.25
	,	
6	67% (29-100%)	
24	92% (81-100%)	0.24
	*	
16	100%	
14	86% (67-100%)	0.63
	, ,	
6	83% (54-100%)	
24	96% (88-100%)	0.31

16	54% (24-83%)	
14		0.70
	,	
6	63% (20-100%)	
24		0.60
	n 16 14 6 24 16 14 6 14 6	16 94% (82-100%) 14 79% (57-100%) 6 67% (29-100%) 24 92% (81-100%) 16 100% 14 86% (67-100%) 6 83% (54-100%) 24 96% (88-100%) 16 54% (24-83%) 14 52% (6.6-87%) 6 63% (20-100%)

[&]quot;Cl, confidence interval.

without requiring readministration of Filgrastim. Two patients died of TRM within 28 days of transplant. Primary graft failure occurred in the remaining 2 patients, who underwent second RI-UCBT with the same preparative regimen and GVHD prophylaxis and achieved neutrophil engraftment and complete donor chimerism. No patients experienced a decrease in neutrophil $<0.5 \times 10^9$ /liter during the follow-up.

Platelet counts $>20 \times 10^9$ /liter were achieved by 16 patients (40%; 95% Cl, 25-57%) on a median day of 39 days (range, 25-95 days). No other patient achieved platelet recovery until the last day of follow-up.

No significant association was found between neutrophil engraftment and either infused cell dose or HLA disparity (Table 2).

Chimerism Analysis. Chimerism data were obtained from all of the 30 patients. Cumulative incidence of complete

donor chimerism at day 60 was 93% (95% CI, 84-100%), and median time to complete donor chimerism was 22 days (range, 13-56 days; Fig. 2). The 2 patients who died of TRM within 28 days had complete donor chimerism before neutrophil engraftment. All of the surviving patients were monitored for chimerism every 3 months, followed the cyclosporine tapering schedule from day 100 to day 150, and maintained complete donor chimerism during the follow-up even after the discontinuation of immunosuppressants.

No significant association was identified between complete donor chimerism and either infused cell dose or HLA disparity (Table 2).

RRT and TRM. Four patients (13%) developed grade III RRT. No patient had grade IV RRT. The most commonly involved organs were the gut and kidney (Table 3).

TRM within 100 days of RI-UCBT was 27%. Primary causes of death were interstitial pneumonitis (n = 2), acute GVHD (n = 2), gastrointestinal bleeding (n = 1), acute heart failure (n = 1), limbic encephalopathy (n = 1), and sepsis (n = 1).

GVHD. Grade II-IV and III-IV acute GVHD occurred in 27% (95% CI, 11-43%) and 23% (95% CI, 7.4-39%) of the patients, respectively. Median onset of grade II-IV acute GVHD was day 36 (range, day 17-66; Fig. 3).

Of the 13 patients who survived >100 days, 3 (23%) developed chronic GVHD.

Infection. Twelve patients developed infections: bacteremia (n = 8), invasive aspergillosis (n = 3), and pulmonary tuberculosis (n = 1). Nine of them had been treated with

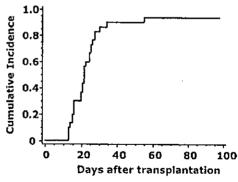


Fig. 2 Achievement of complete donor chimerism. Cumulative incidence of complete donor chimerism at day 60 after reduced-intensity unrelated cord-blood transplantation (RI-UCBT) was 93% (95% confidence interval, 84–100%), and median time to complete donor chimerism was day 22 (range, day 13–56).

Table 3 Regimen-related toxicity within 28 days (Bearman's score)

Score	Diarrhea	Kidney	CNS"	Liver	Lung
Grade 0	18	18	26	22	27
Grade 1	8	5	0	3	2
Grade 2	4	6	1	4	0
Grade 3	0	Ī	3	1	1
Grade 4	0	0	0	0	0

[&]quot; CNS, central nervous system.

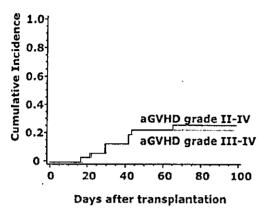


Fig. 3 Development of acute graft-versus-host disease (GVHD). Grade II-IV and III-IV acute GVHD developed in 27% (95% confidence interval, 11–43%) and 23% (95% confidence interval, 7.4–39%) of the patients, respectively. Median onsets of grade II-IV and III-IV acute GVHD were day 36 (range, day 17–66) and day 30 (range, day17–44), respectively.

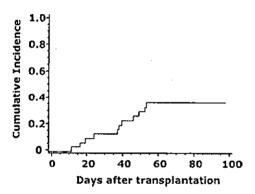


Fig. 4 Development of cytomegalovirus reactivation. Reactivation of cytomegalovirus was documented in 11 patients (37%) on a median of day 40 (range, day 13-55).

corticosteroids at the onset of infections. Reactivation of CMV was documented in 11 patients (37%) on a median of day 40 (range, day 13-55; Fig. 4). Eight of them had been treated with corticosteroids at the onset of CMV antigenemia. None of them developed CMV-related diseases. One patient developed hemorrhagic cystitis with adenovirus and BK virus infection.

Pre-Engraftment Noninfectious Fever. Seven patients with documented infection before engraftment were excluded from the analysis of pre-engraftment reaction (Table 4). Eighteen patients developed noninfectious fever before neutrophil engraftment (Fig. 5). Noninfectious high-grade fever often co-existed with eruption, diarrhea, and weight gain, starting on a median of day 9. Pathological examination of eruption from 8 patients revealed nonspecific inflammatory reactions and was not compatible with GVHD.

Survival. As of January 2004, a total of 11 patients remained alive. Median follow-up of the survivors and all of the enrolled patients were 238 days (range, 169–485) and 125 days (range, 26–485), respectively. Primary diseases recurred in 3 patients. Estimated 1-year OS and EFS were 32.7% (95% CI,

14.3-51.1%; Fig. 6) and 22.2% (95% CI, 5.9-38.5%; Fig. 7), respectively. Neither cell dose nor HLA disparity was associated with OS (Table 2).

DISCUSSION

Because CB contains a small amount of hematopoietic stem cells and stem cell boost or donor lymphocyte infusion is not available after UCBT, graft failure has been a major concern in adult UCBT. The present study demonstrated the feasibility of RI-UCBT for adult patients, in addition to pediatric patients (21). In this study, 26 of the 30 patients (87%) achieved durable engraftment, and 28 patients achieved complete donor chimerism by day 60, including 2 patients who died before engraftment. Interestingly, 4 patients with severe aplastic anemia, which has been associated with a high incidence of graft rejection (22), achieved complete chimerism after our reduced-intensity regimen. These findings suggest that the combination of fludarabine, melphalan, and low-dose TBI might be more immunosuppressive than conventional myeloablative regimens, creating niche for CB to engraft. Alternatively, CB may exert a strong graft-versus-host effect, making room for stable engraftment of stem cells.

Delayed hematopoietic recovery and infection during neutropenia are the significant concerns in adult UCBT. Laughlin et

Table 4 Characteristics of pre-engraftment reaction (n = 23)

Temperature	
38.0–38.9°C	2
39.0-39.9°C	10
≥40.0°C	7
Day of peak body temperature	9 (5-12)
Serum levels of CRP" (mg/dl)	13.8 (0.5-18.9)
Day of peak serum levels of CRP	10 (8-16)
Diamhea	11
Eruption	10
Jaundice	5
Use of corticosteroid	13
Good response to corticosteroid	7

[&]quot; CRP. C-reactive protein,

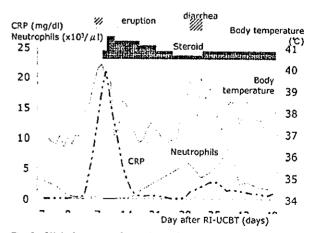


Fig. 5 Clinical course of a patient who developed pre-engraftment fever. Immune-reactions display two peaks, at around day 9 and day 18.

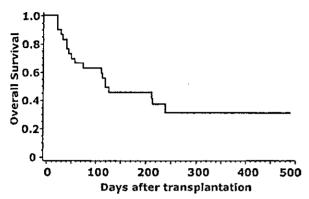


Fig. 6 Probability of overall survival after reduced-intensity unrelated cord-blood transplantation. Estimated 1-year overall survival was 32.7% (95% confidence interval, 14.3-51.1%).

al. (23) reported neutrophil recovery in 90% of patients by a median of 27 days after UCBT, which was significantly delayed compared with allo-HSCT. The delay has been attributed to the limited cell dose in the reports on myeloablative UCBT. The median nucleated cell dose in our study $(3.1 \times 10^7/\text{kg})$ was greater than those in some reports from Western countries $(2.1 \times 10^7/\text{kg}; \text{Ref. 9})$. The low median body weight (52 kg) in the Japanese population may favor neutrophil engraftment, whereas our results showed no association between the cell dose and engraftment in the small sample size. In the present study, median time to engraftment was 17.5 days (range, 10-54 days), which was much faster than that reported in previous studies on myeloablative UCBT (7-9). Our results were comparable with the report on adult RI-UCBT by Barker et al. (21). Their results showed neutrophil engraftment on a median of 26 days after busulfan/fludarabine/TBI 2 Gy and 9.5 days after cyclophosphamide/fludarabine/TB1 2 Gy. Whereas the reason for the difference remains unclear, these findings suggest that fludarabinebased reduced-intensity regimens enable rapid and stable engraftment.

TRM within 100 days was 27% in this study, which is lower than those reported on myeloablative UCBT (Refs. 7, 9, 24; 32–51% in pediatric patients and 56–63% in adults). Given the relatively old age (median, 58.5 years) and advanced stages of the primary diseases, our reduced-intensity preparative regimen probably decreased TRM. Our TRM within 100 days is comparable with that of 28% in adult R1-UCBT by Barker et al (21).

All of the patients tolerated our preparative regimen without grade IV RRT (Bearman's criteria; Ref. 2). Four patients developed grade III RRT with common involvements of the gut, kidney, and liver (Table 3). We used melphalan, which has dose-limiting toxicities of the gut and liver (25). These remained mild without hepatic veno-occlusive disease. Because renal toxicities of fludarabine, busulfan, and TBI 4 Gy are reportedly minimal, the high incidence of renal toxicity might be attributable to concomitant administration of nephrotoxic agents such as cyclosporin and antibiotics. Elderly patients might be susceptible to RRT. We plan to investigate optimal dosages of cyclosporin in RIST for elderly patients. Because TBI, even at a low

dose, sometimes causes significant late toxicities in the lung (22), long-term follow-up is required.

Little information on GVHD after RI-UCBT is available. In the present study, the incidences of grade II-IV and III-IV acute GVHD and chronic GVHD were 27%, 23%, and 23%, respectively, whereas some reported those to be 33-44%, 11-22%, and 0-25%, respectively, in myeloablative UCBT (7, 8, 26). There are no significant differences in the incidences of GVHD between myeloablative UCBT and RI-UCBT. This is similar to the GVHD incidences in myeloablative allo-HSCT and RIST (27). Median onset of acute GVHD was 36 days (range, 17-66 days) in the present study, which was comparable with that of myeloablative UCBT (7, 8, 26). In contrast, the achievement of complete donor chimerism and the onset of acute GVHD are delayed in RIST compared with myeloablative allo-HSCT (27, 28). CB might have a potential of intense graft-versus-host effect, allowing niche for early engraftment. The characteristics of GVHD after RI-UCBT remain to be investigated, including different organ involvements and response to immunosuppressive treatment.

Interestingly, 20 patients developed inflammatory reactions before engraftment (Table 4). These reactions included noninfectious high-grade fever, eruption, diarrhea, and jaundice, starting on a median of day 9. Because the reactions preceded engraftment (median, day 17.5), we speculated that some form of immune reaction that is not categorized as acute GVHD occurs after RI-UCBT without achieving engraftment. The preengraftment fever has been reported on rare occasions in previous reports of UCBT and might be similar to those observed after haploidentical transplantations. Antithymocyte globulin and corticosteroids, which have strong immunosuppressive properties, were commonly used in previous studies on UCBT (9), whereas neither was used in the present study. Immunosuppressive treatment with corticosteroids was effective for the pre-engraftment fever. These findings support that immunemediated reactions after UCBT might manifest easily with the present regimen. The doubling time of cultured CB CD34' cells is 7-10 days, which is several hundred-fold faster than that of cultured adult marrow cells (29). Mononuclear cells from CB display a unique cytokine profile such as comparable levels of

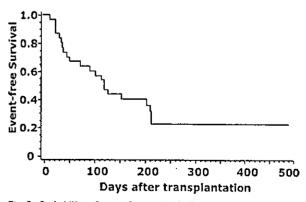


Fig. 7 Probability of event-free survival after reduced-intensity unrelated cord-blood transplantation. Estimated 1-year event-free survival was 22.2% (95% confidence interval, 5.9–38,5%).

interleukin (1L) 2, 1L-6, and tumor necrosis factor α , reduced levels of 1FN- γ and 1L-10, and complete absence of 1L-4 and 1L-5 (30, 31). Pre-engraftment fever is possibly attributable to a cytokine storm induced by massive proliferation of cells with a unique cytokine profile. Another possibility is homeostasis-driven proliferation of naive T cells in highly immunosuppressed individuals, as demonstrated in murine models (32, 33). This reaction is reportedly associated with cytotoxic cytokines (32, 33). Fever as a transient response to contamination with maternal blood or cells during CB collection cannot be excluded (34). Reactivation of human herpesvirus 6 might be associated with this complication (35). If pre-engraftment fever exerts some antitumor effects, it is reasonable that patients with advanced and chemorefractory hematological diseases achieved long-term remission after RI-UCBT in the present study.

Infection is a common and significant problem in myeloablative UCBT (8, 9, 24), but little is known in RI-UCBT. The present study demonstrated that infection is also problematic in RI-UCBT. Twelve patients developed infection in this study, 9 of whom had been on corticosteroid therapy. Eight of 11 patients with CMV antigenemia had received corticosteroids. Delayed immunological reconstitution with or without GVHD, pre-engraftment fever, and corticosteroids may be risk factors for infection. Appropriate management of GVHD and pre-engraftment fever warrants additional investigation.

One-year OS was 35% in the present study, showing that some patients with advanced hematological malignancies can achieve durable remission after RI-UCBT. Contrary to our prediction, primary diseases recurred only in 3 patients. The candidates for RI-UCBT have extremely poor prognosis with conventional salvage chemotherapy. These findings suggest that RI-UCBT exerts strong antitumor activity and is promising for patients with refractory hematological malignancies without an HLA-identical sibling or an unrelated donor. In contrast, it is premature to apply RI-UCBT to low-risk diseases.

In conclusion, our study demonstrated the feasibility of RI-UCBT for adult patients with advanced hematological diseases, although the limitations included the small sample size and short follow-up. If CB is feasible for adults as an alternative stem cell source, RI-UCBT may become the choice of treatment for patients with advanced hematological diseases that are incurable with conventional treatments. RI-UCBT is particularly appealing for patients who require urgent treatments. Although RI-UCBT is currently associated with a high TRM, this study provided a rationale for continuing our clinical trials. Additional investigations need to focus on minimizing adverse effects including RRT, GVHD, and pre-engraftment immune reactions, whereas preserving graft-versus-leukemia effects.

REFERENCES

- Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990;75:555-62.
- Bearman SI, Appelbaum FR, Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988;6:1562-8.
- 3. Giralt S, Estey E, Albitar M, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: hamessing graft-versus-leukemia without myeloablative therapy. Blood 1997;89:4531-6.

- 4. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998;91:756–63.
- 5. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000;343:750-8.
- 6. Blaise DP, Bay JO, Faucher C, et al. Reduced intensity preparative regimen and allogeneic stem cell transplantation for advanced solid tumors. Blood 2004;103:435-41.
- 7. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997;337:373–81.
- 8. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998;339:1565–77.
- 9. Laughlin MJ, Barker J, Bambach B, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001;344:1815-22.
- Gardiner CM, Meara AO, Reen DJ. Differential cytotoxicity of cord blood and bone marrow-derived natural killer cells. Blood 1998;91:207– 13.
- 11. Rizzieri DA, Long GD, Vredenburgh JJ, et al. Successful allogeneic engraftment of mismatched unrelated cord blood following a nonmy-eloablative preparative regimen. Blood 2001;98:3486-8.
- 12. Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002;100:1611-8.
- 13. Kodera Y, Morishima Y, Kato S, et al. Analysis of 500 bone marrow transplants from unrelated donors (UR-BMT) facilitated by the Japan Marrow Donor Program: confirmation of UR-BMT as a standard therapy for patients with leukemia and aplastic anemia. Bone Marrow Transplant 1999;24:995–1003.
- 14. Nishihira H, Kato K, Isoyama K, et al. The Japanese cord blood bank network experience with cord blood transplantation from unrelated donors for haematological malignancies: an evaluation of graft-versus-host disease prophylaxis. Br J Haematol 2003;120:516–22.
- 15. Kanda Y, Mineishi S, Saito T, et al. Long-term low-dose acyclovir against varicella-zoster virus reactivation after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2001;28:689–92.
- 16. Hughes WT, Armstrong D, Bodey GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 2002;34:730-51.
- 17. Hughes WT, Armstrong D, Bodey GP, et al. 1997 guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Infectious Diseases Society of America. Clin Infect Dis 1997;25: 551-73
- 18. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995;15: 825–8.
- 19. Sullivan KM, Agura E, Anasetti C, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991;28:250–9.
- 20. Thiede C, Florek M, Bornhauser M, et al. Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 1999;23: 1055-60.
- 21. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE. Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced intensity conditioning. Blood. 2003;102:1915–9.
- 22. Deeg HJ, Amylon ID, Harris RE, et al. Marrow transplants from unrelated donors for patients with aplastic anemia: minimum effective

- dose of total body irradiation. Biol Blood Marrow Transplant 2001;7: 208-15.
- 23. Laughlin MJ, Rizzieri DA, Smith CA, et al. Hematologic engraftment and reconstitution of immune function post unrelated placental cord blood transplant in an adult with acute lymphocytic leukemia. Leuk Res 1998;22:215–9.
- 24. Gluckman E. Hematopoietic stem-cell transplants using umbilical-cord blood, N Engl J Med 2001;344:1860-1.
- 25. Sarosy G, Leyland-Jones B, Soochan P, Cheson BD. The systemic administration of intravenous melphalan. J Clin Oncol 1988;6:1768-82.
- 26. Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001;97:2962-71.
- 27. Mielcarek M, Martin PJ, Leisenring W, et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood 2003;102:756-62.
- 28. Nakai K, Mineishi S, Kami M, et al. Antithymocyte globulin affects the occurrence of acute and chronic graft-versus-host disease after a reduced-intensity conditioning regimen by modulating mixed chimerism induction and immune reconstitution. Transplantation 2003;75:2135–43.

- 29. Lansdorp PM, Dragowska W, Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 1993;178:787–91.
- 30. Roncarolo MG. Immuno responses of cord blood cells, Bone Marrow Transplant. 1998;22 Suppl 1:S55.
- 31. Roncarolo MG, Bigler M, Martino S, Ciuti E, Tovo PA, Wagner J. Immune functions of cord blood cells before and after transplantation. J Hematother 1996;5:157-60.
- 32. Ge Q, Hu H, Eisen HN, Chen J. Naive to memory T-cell differentiation during homeostasis-driven proliferation. Microbes Infect 2002; 4:555-8.
- 33. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 2000;192:549-56.
- 34. Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen JA, Bean MA. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 1995;86:2829-32.
- 35. Sashihara J, Tanaka-Taya K, Tanaka S, et al. High incidence of human herpesvirus 6 infection with a high viral load in cord blood stem cell transplant recipients. Blood 2002;100:2005–11.

Reduced-Intensity Allogeneic Hematopoietic Stem-Cell Transplantation as an Immunotherapy for Metastatic Colorectal Cancer

Rie Kojima, Masahiro Kami, Akiko Hori, Naoko Murashige, Mutsuko Ohnishi, Sung-Won Kim, Tamae Hamaki, Yukiko Kishi, Yutaka Tsutsumi, Nobuo Masauzi, Yuji Heike, Shin-ichiro Mori, Kazuhiko Kobayashi, ³ Shigeru Masuo, ³ Ryuji Tanosaki, ¹ and Yoichi Takaue¹

> Background. Allogeneic stem-cell transplantation (allo-SCT) can induce curative graft-versus-leukemia reactions for hematologic malignancies through allogeneic immunity. Because the gastrointestinal tract is a target of graft-versushost disease (GvHD), colorectal cancer might be a candidate for allo-SCT.

> Methods. Four patients with metastatic colorectal cancer underwent reduced-intensity stem-cell transplantation (RIST) in the National Cancer Center Hospital between July 2002 and February 2003. Three patients received transplants from an human leukocyte antigen (HLA)-identical related donor, and the remaining patient received selected CD34-positive cells from a two-loci HLA-mismatched donor. The basis of preparative regimen was busulfan 4 mg/kg for 2 days and fludarabine 25 mg/kg for 6 days.

> Results. All the patients tolerated the preparative regimen and achieved engraftment without significant toxicities. All developed acute or chronic GvHD. Although serum levels of CA19-9 and carcinoembryonic antigen were transiently elevated after RIST in all the patients, the levels subsequently decreased below the levels from before RIST in all but one patient. Three had measurable lesions before RIST, one achieved partial response, and the others stable disease, which was durable for 120 and 60 days. Three patients died; the causes of death were progressive disease, GvHD, and accident. Postmortem examination was obtained for two patients; in one patient, the peritoneal metastatic lesions macroscopically disappeared, and in the other patient, the supraclavicular lymph node disappeared while the other measurable lesions remained stable.

> Conclusions. All the patients showed some evidence suggesting the presence of a graft-versus-tumor effect for colorectal cancer, which should be confirmed in a future prospective trial.

> Keywords: Graft-versus-tumor effect, Graft-versus-host disease, Allogeneic immunity, Fludarabine, Carcinoembry-

mains unknown.

(Transplantation 2004;78: 1740-1746)

new strategy of allogeneic hematopoietic stem-cell A new strategy of anogeness reduced-intensity preparative regimen (reduced-intensity stem-cell transplantation [RIST]) was developed to decrease regimen-related toxicity (RRT) while preserving an adequate antitumor effect (1, 2). Different pioneering conditioning regimens for RIST have been investigated: those including purine analogs (1-3) and total body irradiation (TBI) combined with potent immunosuppressants (4). Because clinical studies on RIST have focused in hematologic malignancies, limited information is available on solid tumors (5), including renal cell carcinoma (RCC) (6), breast (7, 8), lung (9), ovarian (10), and colon cancer (11).

ithelial tissues such as keratinocytes, fibroblasts, exocrine glands, hepatobiliary trees, and gastrointestinal tract are theoretically susceptible to a graft-versus-tumor (GvT) effect. Murine models have provided some evidence for an allogeneic immune-mediated antisolid-tumor effect (12). Porter et al. (13) conducted a phase I clinical trial to determine whether a GvT effect could be observed after primary donor lymphocyte infusion (DLI) without stem-cell support in patients with primary cancers. Three of the four patients with acute GvHD and late chimerism responded to DLI. Eibl et al. (14) demonstrated that allogeneic T cells collected during GvHD could mediate a cytotoxic effect against breast cancer cell lines. Childs et al. (15) reported the results of 19 patients who underwent RIST for metastatic RCC. Seven patients achieved complete response and seven partial response (PR). The tumor response was associated with the development of GvHD. These results suggest that a GvT effect does exist in RIST for a variety of solid tumors, although long-term prognosis re-

Because the epithelium is the target of graft-versus-host

disease (GvHD), any types of carcinoma arising from the ep-

Colorectal cancer is the second cause of cancer death (16), and prognosis for patients with unresectable and refractory to chemotherapy metastasis is poor. Development of novel therapeutic strategy is required. Because the gastrointestinal tract is the common target of GvHD, colorectal cancer might be sensitive to allogeneic immunity. We report four

Copyright © 2004 by Lippincott Williams & Wilkins ISSN 0041-1337/04/7812-1740

DOI: 10.1097/01.TP.0000146194.36297.4E

This study was supported by a grant-in-aid for Scientific Research from the Ministry of Health, Labor, and Welfare, Japan.

¹ Hematopoietic Stem Cell Transplant Unit, the National Cancer Center Hospital, Tokyo, Japan. ² Department of Internal Medicine, Hakodate Municipal Hospital, Hako-

date, Japan. 3 Department of Rheumatology and Hematology, JR Tokyo General Hospi-

tal, Tokyo, Japan.

⁴ Address correspondence to: Dr. Masahiro Kami, Hematopoietic Stem Cell Transplant Unit, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. E-mail: mkami@ncc.go.jp

Received 9 July 2004. Revision requested 30 July 2004. Accepted 20 August

patients who underwent RIST for metastatic colorectal cancer.

PATIENTS AND METHODS

Patients

Between July 2002 and February 2003, four patients with colorectal cancer underwent RIST. All the patients had progressive metastatic disease, which was refractory to any conventional anticancer therapies including fluorouracil and irinotecan. Peripheral blood stem-cells were mobilized by subcutaneous injection of granulocyte colony-stimulating factor, $10 \, \mu g/kg$, and harvested with the target cell dose of greater than $2.0 \times 10^6/kg$ CD34+ cells.

The RIST program was approved by the Institutional Review Board of the National Cancer Center Hospital. A written informed consent was obtained from all the patients and donors.

Conditioning and Donors

The basis of preparative regimen was busulfan 4 mg/kg for 2 days and fludarabine 30 mg/kg for 6 days. Patient 1 received additional TBI 4.0 Gy in two fractions. Because a human leukocyte antigen (HLA)-identical donor was not available for patient 1, he underwent RIST from his two-loci mismatched brother-in-law with CD34+ cell selection. The number of simultaneously infused CD3+ cells was 2.5×10⁴/kg. The remaining three patients had HLA-identical related donors: a sibling (patient 2 and 4) and an offspring (patient 3). Patient 2 received additional rabbit antithymocyte globulin (ATG) 2.5 mg/kg for 2 days to ensure durable engraftment. Since October 2002, ATG was omitted from the preparative regimen in the protocol of RIST for solid tumors, and ATG was not given to patient 3 and 4.

Engraftment and Management of GvHD

Recipient-donor chimerism in peripheral blood mononuclear cells (PBMC), T cells, and granulocytes were analyzed monthly after transplantation using polymerase chain reaction of informative short tandem repeat (17). GvHD prophylaxis was intravenous cyclosporine 3 mg/kg or oral cyclosporine 6 mg/kg from day -1. Because the incidence of acute GvHD is approximately 10% in RIST from an HLA-matched sibling after an ATG-containing regimen in our institution (18), we tapered cyclosporine early and rapidly over a 2-week period to enhance a GvT effect. The diagnosis of GvHD was made in concert with biopsy of the skin or the gastrointestinal tract. Acute and chronic GvHD were graded according to the consensus criteria (19, 20). Grade II to IV acute GvHD was treated with 2 mg/kg per day of methylprednisolone in addition to cyclosporine.

Supportive Measures

All the patients stayed in reverse isolation in a laminar airflow-equipped room and received prophylaxis with trimethoprim/sulfamethoxazole or pentamidine inhaler and ciprofloxacin against *Pneumocystis carinii* and bacterial infection, respectively. Fluconazole was administered for antifungal prophylaxis with a dose ranging from 200 to 400 mg/day. Herpes virus prophylaxis with acyclovir was also given as previously described (21). Cytomegalovirus pp65 antigenemia

was routinely monitored once a week. When antigenemia was detected, preemptive therapy with ganciclovir was initiated as previously reported (22).

Evaluation of Tumor Response

All patients underwent computed tomography (CT) scanning before RIST and monthly after RIST to evaluate the tumor response. Serum levels of CA19 –9 and carcinoembryonic antigen (CEA) were monitored weekly using chemiluminescent enzyme immunoassays (Lumipulse CA19 –9-N, and Lumipulse CEA-N, Fujirevio, Tokyo, Japan, respectively).

Three patients (patient 2, 3, and 4) had measurable lesions before RIST, and tumor response was defined according to the response evaluation criteria in solid tumor (RECIST) (23) in these patients. Postmortem examination was available in the other two patients (patient 1 and 4).

RESULTS

Engraftment, Regimen-Related Toxicities, and GvHD

All the patients tolerated the preparative regimens with minimum RRTs. The neutrophil count reached $0.5\times10^9/L$ on day 10 in patients 1, 3, and 4 and on day 12 in PATIENT 2. On day 30, chimerism analysis in PBMC showed full donortype chimerism in all the patients. Grade II to IV acute GvHD developed in 3 patients, on median of 23 (20–47) days after RIST. Patient 1 developed grade IV acute GvHD after DLI to induce a GvT effect. The patient died of multiorgan failure caused by acute GvHD on day 62. The signs of GvHD in the remaining two patients spontaneously disappeared without additional immunosuppressant. Among two patients who survived over 100 days, both had chronic extensive GvHD.

Tumor Responses and Outcomes

Tumor responses were shown in Table 1. Although serum levels of CA19-9 and CEA transiently elevated after RIST in all the patients, the levels subsequently decreased below the levels before RIST in all but one patient (patient 4). Three patients had measurable lesions before RIST; one (patient 3) achieved PR, one (patient 2) stable disease (SD), which was durable for 120 days, and one (patient 4) progressive disease (PD).

Three patients died; the causes of death were GvHD (patient 1), PD (patient 2), and accident (patient 4). Postmortem examination was obtained for two patients; in patient 1, the peritoneal metastatic lesions macroscopically disappeared while microscopically detectable lesions remained. In patient 4, the supraclavicular lymph node metastasis disappeared while the other measurable lesions remained stable.

CASE PRESENTATION

Patient 1

A 44-year-old man underwent RIST from his two-loci mismatched brother-in-law in July 2002 for the treatment of metastatic rectal cancer. He had peritoneal metastasis, and no measurable lesions were documented before RIST. After preparative regimen consisting of fludarabine, busulfan, and 4 Gy TBI, he received CD34-positive stem cells.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

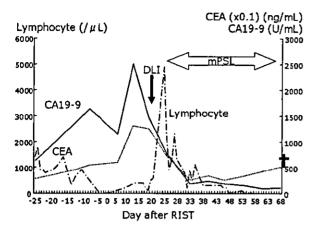


FIGURE 1. Clinical courses of patient 1. After engraftment and donor lymphocyte infusion (DLI), serum levels of tumor markers declined, and necropsy revealed that residual tumors in the peritonea shrunk. CEA, carcinoembryonic antigen; methylprednisolone, mPSL; RIST, reduced-intensity stem-cell transplantation.

His clinical courses was uneventful until day 21, when we added 4.0×10^6 /kg CD3+ cells to improve immune recovery. The patient developed maculopapular rash, watery diarrhea, and jaundice on day 23. Based on the histopathologic examination of the skin, a diagnosis of grade IV acute GvHD was made. We initiated steroid-pulse therapy, but his condition deteriorated rapidly. He finally died of multiorgan failure caused by acute GvHD on day 62. Postmortem examination showed that the metastatic lesions in the peritoneum disappeared, whereas residual adenocarcinoma cells were observed by histopathologic examination.

Serum levels of CEA and CA19-9 increased from 45.7 ng/mL and 1388 U/mL before transplant to 131.0 ng/mL and 2507 U/mL on day 15, respectively. After DLI, serum levels of both values decreased rapidly (Fig. 1).

Patient 2

A 52-year-old woman underwent RIST from an HLAidentical sibling in August 2002 for metastatic rectal cancer. The metastatic lesions involved the liver and the both lungs. The liver lesions were measurable targets (Fig. 2). Because she had allergic reaction to the contrast agents on day 30, she received CT after day 60 without contrast agents. The patient had not developed acute GvHD, and we tapered off cyclosporine from day 35 until day 49 to enhance a GvT effect. Her clinical courses were uneventful until day 90, when she developed mucositis caused by chronic GvHD. To further augment the GvT effect, we withheld any immunosuppressive agents. The oral lesions had subsided spontaneously until day 120. Sequential abdominal CT scans failed to show progression until day 120 (Fig. 2). However, repeated CT scan on day 150 revealed an extensive progression of the metastatic lesions in the liver and the pleura (Fig. 2). She died of disease progression on day 172. An autopsy was denied by her family. The best and final responses were SD and PD, respectively. The duration of SD was 120 days.

Serum levels of CEA and CA19-9 were increased with transient decrease after engraftment until chronic GvHD developed and continued to decrease while the oral lesions persisted. Their serum levels were inversely associated with the severity of chronic GvHD (Fig. 3).

Patient 3

A 59-year-old woman underwent RIST from her HLAidentical offspring in October 2002. She presented metastatic

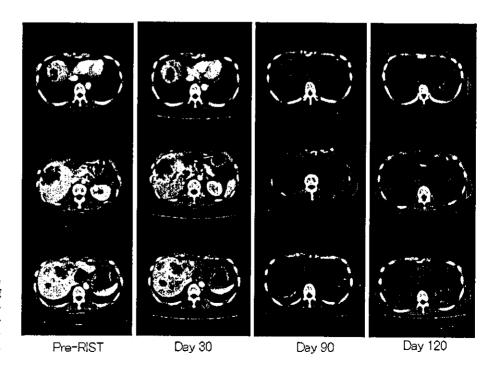


FIGURE 2. Changes of the metastatic lesions of the liver of patient 2. The metastatic lesions in the lung remained stable till day 120. However, metastatic lesions expanded with carcinogenic pleuritis.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

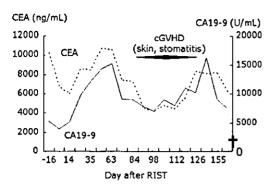
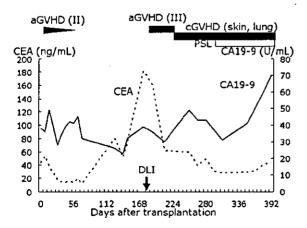



FIGURE 3. Clinical courses of patient 2. Serum levels of CEA and CA19-9 were inversely associated with the severity of chronic graft-versus-host disease (cGvHD).

lesions in the liver and the lungs. The pulmonary lesions were defined as measurable targets. After engraftment on day 10, she developed maculopapular rash on the trunk on day 20, which was histopathologically diagnosed as grade II acute GvHD. Mild but significant disease progression was detected on the follow-up CT scan on day 30 (Fig. 4). Because the cutaneous GvHD had resolved spontaneously by day 45, we started tapering of cyclosporine from day 50. The follow-up CT scans of the chest on day 60 showed a significant decrease in the size of target lesions. Thereafter, lung metastatic lesions progressed gradually again after the disappearance of acute GvHD, and donor lymphocyte containing 6.4×10⁷/kg CD3+ cells were infused on day 181. She developed extensive chronic GvHD involving the skin and the lung, and size of the metastatic lesions decreased again. As of March 2004 (17 months after RIST), the best and final responses are both PR. Serum levels of CEA and CA19-9 were inversely associated with the development of GvHD (Fig. 5).

Patient 4

A 52-year-old woman with advanced colon cancer received RIST from an HLA-identical sibling in January 2003. Her multiple metastatic lesions included the liver, the lung,

FIGURE 4. Evaluation of metastatic lesions in the lung of patient 3. Repeated computed tomography scans of the chest showed that metastatic lesions shrunk after the development of GvHD.

the peritoneal, multiple lymph nodes, and the residual colon. Liver metastases and lymph nodes were defined as measurable lesions. New metastatic lesions appeared in the lung on day 60, and the best response was PD. We tapered cyclosporine rapidly to enhance a GvT effect. With the development of grade II skin GvHD on day 38, the metastatic lesion of the supraclavicular lymph node decreased in size, and serum levels of CEA and CA19–9 decreased (Table 1). She was stable until day 88, when she accidentally fell on the floor. She suffered from fatal head injury. An autopsy revealed complete disappearance of the metastatic lesion in the supraclavicular lymph node. The other lesions were stable in size. The final response was PD.

DISCUSSION

Allo-SCT has a considerable risk of transplant-related mortality. Development of optimal preparative regimens for colorectal cancer is an important issue for future clinical trials. With RIST procedure, all of the four patients achieved durable engraftment within 30 days of transplant. These findings suggest that our reduced-intensity regimen is sufficient to assure engraftment in RIST for metastatic colorectal cancer. Because most patients with advanced colorectal cancer are heavily treated with chemotherapeutic agents such as fluorouracil and irinotecan (24), the risk of graft rejection will be low compared with other solid tumors, which are rarely treated by cytotoxic agents.

RRT should be critically evaluated in developing allo-SCT. All of our patients had been treated heavily by surgery or cytotoxic chemotherapy before RIST. However, we demonstrated that RRT was mild in all the organs and that all the patients tolerated the procedure well. Grade 3 to 4 toxicity according to the Bearman's criteria (25) were not observed in any patients. We omitted the use of methotrexate to enhance a GvT effect. Because methotrexate causes mucosal damages, this might have contributed to the amelioration of gastrointestinal damages in this study. Our experience indicates that fludarabine/busulfan-based preparative regimens are safe and tolerable for patients with advanced colorectal cancer.

Concerning the efficacy of RIST for colorectal cancer, all the patients showed some evidence of antitumor effects. Serum levels of CEA and CA19-9 decreased significantly, either after engraftment (patient 1) or development of GvHD (patient 2 and 3). There might be a debate as to whether serum levels of CEA and CA19-9 can be reliable surrogate markers of treatment response (26). However, one patient (patient 3) achieved durable PR (23). In another patient (patient 1), postmortem examination showed marked reduction of the tumor size. Although patient 4 had supraclavicular lymph node, this lesion disappeared after development of acute GvHD. Although different conditioning regimens and GvHD prophylaxis methods were used in this study, these findings indicate that allo-SCT is promising for metastatic colorectal cancer.

We have demonstrated the feasibility of allo-SCT for colorectal cancer; however, there are some problems to be discussed. First, the precise mechanism of the GvT effect on solid tumors including colorectal cancer remains unknown. Disease regression associated with cyclosporine withdrawal, complete donor chimerism, and GvHD provides evidence

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

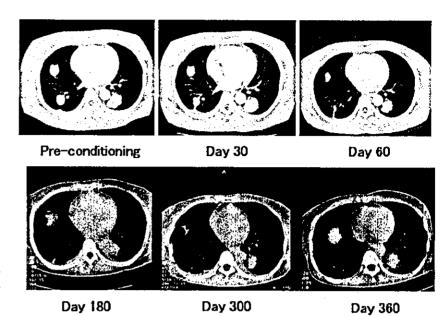


FIGURE 5. Clinical courses of patient 3. Serum levels of CEA and CA19-9 decreased after the development of GvHD.

that cytotoxic donor T cells play an important role in GvT effects. Recent studies on RIST for RCC have suggested that distinct T-cell populations recognizing tumor-specific antigens or minor histocompatibility antigens are involved in the GvT effect (27-29). Despite our attempt to detect anti-CEAspecific cytotoxic T lymphocyte by enzyme-linked immunosorbent spot assay, the laboratory system using HLA-A24restricted peptides has not been established. Our effort to establish the system continues. Cloning of cytotoxic T cells and identification of target minor antigens are essential in the development of RIST for colorectal cancer. On the other hand, some investigators suggested that the local cytokine storm associated with the early phase of allogeneic transplantation plays an important role in GvHD (30). Furthermore, it is interesting that tumor markers declined promptly after engraftment in patient 1, suggesting the existence of an anticolorectal cancer mechanism other than the GvT effects associated with GvHD. Allo-SCT using CD34-positive cell selection lowered the possibilities of subclinical GvHD immediately after engraftment. The GvT effect is thus unlikely to be associated with GvHD. The simultaneous decline in CEA might be attributable to a cytokine storm or immune dysregulation associated with engraftment.

Second, we should identify what types of cancer respond to alloimmunity. RCC, which is believed to be immunogenic, is promising in allogeneic immunotherapy (15). Cancers derived from the target organs of GvHD such as colorectal cancer (31) and cholangiocellular carcinoma are also promising. Because allogeneic immune responses lead to epithelial damage of the gastrointestinal tract, colorectal cancer should reasonably respond to alloimmunity. Another supporting observation is that T-cell sensitization for GvHD occurs close to the Peyer's patch to induce strong allogeneic immune responses in the colon (32). Although few reports have been published on RIST for colorectal cancer, the report by Hentschke et al. (31) and the present study showed the association between GvHD and GvT effects in this cancer.

Third, we should establish the evaluation methods of treatment response after allo-SCT, which might be different from those after chemotherapy (33). The evaluation of immunotherapy frequently involves tumor markers. Because reliability of serum tumor markers is questionable (34), we recommend introducing the RECIST criteria to immunotherapy, thus enabling a comparison with chemotherapy. There are some controversies concerning the reliability of RECIST criteria in the response evaluation after cytotoxic chemotherapy against gastrointestinal tumors (23, 35, 36), and its application to immunotherapy requires careful consideration (33). In the RECIST criteria, pretreatment measurable lesions are identified, and their sum of longest diameters is compared before and after treatment. Even without enlargement of any of the measurable lesions, the emergence of a new lesion indicates PD, as shown in patient 4. This evaluation method is reasonable in chemotherapy, which has a prompt posttreatment response and transient effect. However, RIST requires several months until manifestation of efficacy, which may continue long after RIST (15). The longer duration until efficacy develops is problematic in progressive solid tumors. The tumor progression early after RIST occurs by nature, as shown in patient 3 and 4, until explicit treatment effect several months later. If the RECIST is applied in such cases, the evaluation results are PD. How can we evaluate cases with early progression and subsequent regression simultaneously with GvHD down to the preRIST size? Physicians involved in RIST have the impression that RIST has altered the natural disease progression and therefore has been effective. In contrast, most oncologists would believe PD. The integration of the evaluation concepts between RIST physicians and oncologists is an important and challenging issue. The ultimate goal of survival should be evaluated as a primary endpoint in a phase III trial.

Last, the development of tumor-specific treatments is warranted. At present, with the high probability of GvT effects in concert with GvHD, we permit GvHD symptoms to

		Outcomes	Died of GVHD on day 62	Died of PD on day 178	Alive on day 390	Died of accident on day 88
	Doctmonton	examination	Reduction of D. peritoneal metastasis	NA D	NA AJ	Disappearance of Di lymph node metastasis. The other lesions remained stable ^a
	Tumor response	RECIST*	NAb	SD	PR	PD*
	CA19-9 (U/ml)	Minimum	06	3950	ຊ	219
		Maximum	2507	15150	70	529
	Ö	Minimum Pretransplant Maximum Minimum	1388	5340	38	158
		Minimum	25.9	4175	12.4	6.8
es	CEA (ng/ml)		131	10640	181	14.2
TABLE 1. Tumor responses and outcomes	0	Pretransplant Maximum	45.7	10360	48.6	9.3
umor respons	Metastatic	No Age/Sex lesions	44/M Peritoneum	Lung, liver	Lung, liver	Lung, liver, peritoneum, colon
LE 1. Th		Age/Sex	44/M	52/F	59/F	52/F
TAB		No	-	7	ъ	4

 The patient had no measurable lesions.
 New lesions appeared in the chest CT on day 60, leading to the diagnosis of PD.
 The lesion of left supradavicular lymph node shrunk with the development of acute GVHD. No lesion was found at postmortem examination. "Tumor responses were defined according to the RECIST criteria. The lesions were evaluated monthly using CT scans.

GVHD, graft versus host disease; NA, not applicable; PR, partial response; PD, progressive disease.

some extent to maintain clinical efficacy of RIST. We may even modify the criteria for initiation of GvHD treatment (37). However, GvHD increases morbidity and mortality, leaving this method difficult in elderly patients (38). The problem might be overcome with an adjuvant tumor-specific immunotherapy (39), ex vivo priming of donor lymphocytes against tumor cells (40), use of highly immunosuppressive conditioning regimens (41), and the protection of GvHD target organs using cytokines (42).

In conclusion, the present study suggests the promising results of RIST in colorectal cancer. Because GvT effects are likely to be associated with GvHD, the optimization of conditioning regimens and GvHD management are necessary through phase II trials in colon cancer. Along with studies on GvT effects, the development of specific treatments, separate from GvHD, are needed.

REFERENCES

- Giralt S, Estey E, Albitar M, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 1997; 89(12): 4531.
- Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91(3): 756.
- Saito T, Mineishi S, Kanda Y, et al. Suggested therapeutic potential of a reduced-intensity preparative regimen for allogeneic transplantation with cladribine, busulfan and anti-thymocyte globulin against advanced/refractory acute leukemia/lymphoma. Clin Cancer Res 2002; 8:
- McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97(11): 3390.
- Renga M, Pedrazzoli P, Siena S. Present results and perspectives of allogeneic non-myeloablative hematopoietic stem cell transplantation for treatment of human solid tumors. Ann Oncol 2003; 14(8): 1177.
- Rini BI, Zimmerman TM, Gajewski TF, et al. Allogeneic peripheral blood stem cell transplantation for metastatic renal cell carcinoma. J Urol 2001; 165(4): 1208.
- 7. Ueno NT, Rondon G, Mirza NQ, et al. Allogeneic peripheral-blood progenitor-cell transplantation for poor-risk patients with metastatic breast cancer. J Clin Oncol 1998; 16(3): 986.
- Bregni M, Dodero A, Peccatori J, et al. Nonmyeloablative conditioning followed by hematopoietic cell allografting and donor lymphocyte infusions for patients with metastatic renal and breast cancer, Blood 2002; 99(11): 4234
- Moscardo F, Martinez JA, Sanz GF, et al. Graft-versus-tumour effect in non-small-cell lung cancer after allogeneic peripheral blood stem cell transplantation. Br J Haematol 2000; 111(2): 708.
- 10. Bay JO, Fleury J, Choufi B, et al. Allogeneic hematopoietic stem cell transplantation in ovarian carcinoma: results of five patients. Bone Marrow Transplant 2002; 30(2): 95.
- 11. Zetterquist H, Hentschke P, Thorne A, et al. A graft-versus-colonic cancer effect of allogeneic stem cell transplantation. Bone Marrow Transplant 2001; 28(12): 1161.
- 12. Morecki S, Moshel Y, Gelfend Y, et al. Induction of graft vs. tumor effect in a murine model of mammary adenocarcinoma. Int J Cancer 1997; 71(1): 59.
- Porter DL, Connors JM, Van Deerlin VM, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol 1999; 17(4): 1234.
- Eibl B, Schwaighofer H, Nachbaur D, et al. Evidence for a graft-versustumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer. Blood 1996; 88(4); 1501
- 15. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic re-