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from two 8-wk-old adult mice. The purity of each isolated
population was <84.5% (Fig. 1A and Table 1). Using
phase-contrast microscopy, we determined that these cells
were 14-16 um in diameter. Following elimination of the
remaining spermatogonia using magnetic microbeads, the
remaining cells were separated into two principal visible
bands by centrifugation through a discontinuous Percoll
gradient. Phase-contrast microscopy revealed that these two
bands consisted primarily of pachytene spermatocytes and
round spermatids (Fig. 1, B and C). We isolated an average
of 3 X 10° spermatocytes and 200 X 10° spermatids from
two 8-wk-old adult mice. We also isolated an average
20 X 10° Sertoli cells from ten 2-wk-old juvenile mice (Fig.
1D). Peritubular myoid cells were identified by alkaline
phosphatase staining. Although >95% of these cells were
unstained, ~5% of the Sertoli cells showed considerable
alkaline phosphatase activity (Fig. 1E).

RT-PCR Analysis of Isolated Cells Expressing Specific
Marker Genes

RT-PCR using extracts of isolated cells confirmed the
expression of mRNAs from ¢-kir, Histone H1t, $P-10, and
SCF. Each gene was expressed in only one cell type, as
follows: ¢-kir in spermatogonia, the Histone Hit gene in
spermatocytes, SP-10 in spermatids, and SCF in Sertoli
cells (Fig. 2).

Characterization of Isolated Cells by FACS

To determine the purity of isolated germ cells, we used
FACS analysis to follow the differentiation-dependent ac-
quisition of stage-specific patterns during spermatogenesis
and monitored the percentage of cells with differing DNA
content. The histogram in Figure 3 presents the number of

TABLE 1. The percentage of 1n, 2n, and 4n cells in isclated germ cells
from a testicular cell suspension from 8-wk-old mice, as determined by
FACS.*

Isolated germ cells (%)

Total cells
Ploidy® {%)° Spermatogonia Spermatocytes  Spermatids
n 562 = 4.2 94 x1.2 5318 8§53 = 3.3
2n 252 3.6 84527 9313 6.2+ 09
4n 18.6 = 31 127 209 796 %25 7722

2 Calculated after eliminating cell debris (FL2-A < 50 in Fig. 2).

¥ 1n, haploid cells tone copy of genome); 2n, diploid cells (two copies of
genome); 4n, tetraploid cefls {four copies of genome).

< Each percentage represents the mean * SD of 4-6 measurements.

FIG. 1. Phase-contrast micrographs
showing isolated germ cells and Sertoli
cells from a testicular cell suspension. A}
Type A spermatogonia. B) Spermatocytes.
C) Spermatids. D} Sertoli cells. E) Alkaline
phosphatase activity of Sertoli cell cul-
tures. Germ cells in A-C were from testes
of 8-wk-old mice. Sertoli cells in D and E
were from testes of 2-wk-old mice. Scale
bar = 30 pm.

cells at each fluorescence level (FL2-A). Diploid (2n DNA)
cells were observed in 84.5% of the isolated spermatogo-
nia, tetraploid (4n DNA) cells were observed in 79.6% of
the isolated spermatocytes, and haploid (In DNA) cells
were observed in 85.3% of the isolated spermatids (Table
1). These results demonstrate that the majority of cells in
each population exhibited the expected ploidy.

Expression of UCH Isozymes During Spermatogenesis

We characterized the expression pattern of each UCH
gene in isolated testicular cell populations during sper-
matogenesis using SYBR Green-based real-time quantita-
tive RT-PCR (Fig. 4). The 2-9 values indicate the relative
mRNA expression levels compared with spermatogonia
from 2-wk-old mice (Sg2). The genes encoding UCH-L1
and UCH-L4 were expressed mainly in spermatogonia (Fig.
4, A and C). UCH-L1 was also expressed significantly in
the Sertoli population, and UCH-L4 was expressed to a
lesser degree in spermatocytes and spermatids, UCH-L3
and UCH-L5 genes were expressed primarily in the sper-
matid population and to a much lesser extent in spermato-
cytes (Fig. 4, B and D). We further examined the expression
of UCH mRNAs during testicular maturation (Fig. 5A) in
whole testes from 5-, 7-, 15-, 19-, 21-, 23-, 26-, and 33-
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FIC. 2. Expression of c-kit, Histone H1t, SP-10, and SCF mRNAs deter-
mined by RT-PCR of extracts of isolated germ cells and Sertoli cells from
a testicular cell suspension. Sg2, Spermatogonia of 2-wk-old mice; 5g8,
spermatogonia from 8.wk-old mice; Sc, spermatocytes from 8-wk-old
mice; St, spermatids from 8-wk-cld mice; Se, Sertoli cells from 2-wk-old
mice.
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FIG. 3. FACS analysis of isolated germ cells from a testicular cell sus-
pension obtained from 8-wk-old mice. Each window is a histogram rep-

resenting the number of cells at each fluorescence level (FL2-A). A) Un-
isolated cells. B) Type A spermatogonia. €) Spermatocytes. D} Spermatics,

day-old mice. The UCH-L1 and UCH-L4 mRNAs were
expressed similarly during development and likewise for
the UCH-L3 and UCH-L5 genes. The expression of UCH-
L1 mRNA appears relatively high on Postnatal Day 15.
However, the percentage of spermatogonia and Sertoli cells
would have become diluted by meiotic and postmeiotic
germ cells after Day 15, thereby accounting for the rela-
tively lower levels of UCH-L1 at subsequent time points.
RT-PCR data suggest that UCH-L1 mRNA expression in
spermatogonia and Sertoli cells increased continuously
even after Postnatal Day 15 (Fig. 5B). We also analyzed
the protein expression patterns of UCH-L1 and UCH-13 in

FIG. 4. Comparison of the relative UCH

the mouse testis using peptide-specific antibodies that rec-
ognize regions in mouse UCH-L1 or UCH-L3. Western blot
analysis detected UCH-L1 in spermatogonia and Sertoli
cells, and UCH-L3 was detected primarily in spermatocytes
and spermatids, as expected, although it was also found to
a lesser extent in spermatogonia (Fig. 6A). Also, UCH-L3
expression increased in a differentiation-dependent manner
during juvenile spermatogenesis (Fig. 5C). Immunohisto-
chemistry detected homogeneous UCH-L.1 expression in
both spermatogonia and Sertoli cells from wild-type (Balb/
¢) and Uchl3 knockout mice, whereas UCH-L3 was de-
tected mainly in spermatocytes and round spermatids of
wild-type (Balb/c) and gad mice (Fig. 6, B and C).

DISCUSSION

The ubiquitin pathway plays critical roles in the pro-
gression of spermatogenesis through the mitotic, meiotic,
and postmeiotic phases [2, 3, 18, 36]. Because numerous
proteins are regulated by ubiquitination, mutations that af-
fect the ubiquitin pathway result in the dysregulation of
multiple cellular processes and induce apoptosis during
spermatogenesis [3, 37-39]. For example, mutation of
HR6B, a ubiquitin-conjugating enzyme, affects both mei-
osis and postmeiotic germ cell development [40-43].

Ubiquitin C-terminal hydrolases catalyze the hydrolysis
of C-terminal esters and amides of ubiquitin. These en-
zymes are believed to play a key role in processing polyu-
biquitin and ubiquitylated proteolytic peptides [8]. The
genes for at least four UCHs, UCH-L1 and UCH-L3-5,
have been identified in the mouse. Although the specificity
and function of these isozymes in spermatogenesis remains
elusive, each of these enzymes contains conserved residues
that are critical for enzymatic activity [8-10, 44, 45]. The
predominant mouse isozymes, UCH-L.1 and UCH-L3, share
52% amino acid sequence identity [10, 13, 45]. However,
UCH-L1 mRNA is selectively expressed in the mouse testis
and nervous systems [11], whereas UCH-L3 mRNA is ex-
pressed in nearly every tissue tested, with high levels in
the testis [13]. Intracellular localization of UCH-L1 was
reported to be closely associated with the proliferative ac-
tivity of spermatogonia and Sertoli cells [15-18]. In con-
trast, the expression of UCH-L3 has not been examined in
the testis. To address this question, we first generated poly-

isozyme gene expression levels (2-9¢) jn
isolated germ cells and Sertoli cells using
RT-PCR. The formula 2-% indicates the
relative expression level in isolated testicu-
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FIG. 5. Expression of UCH isozymes dur-
ing testicular maturation. A) Timetable for
juvenile spermatogenesis. PL, Preleptotene
spermatocyte; L, leptotene spermatocyte;
Z, zygotene spermatocyte. B} Comparison
of the relative UCH isozyme gene expres-
sion levels (2-%7) by SYBR Green-based
real-time quantitative RT-PCR. The value
for gene expression from the testes of 5-
day-old mice was set to 1.0. C) Compari-
san of UCH-L1 and UCH-L3 expression
by Western blotting, Each lane represents
the testes of 5-, 7-, 15+, 19-, 21, 23-, 26-,
or 33-day-old Balb/c mice, gad mice, and
Uchl3 knockout mice (L3~} (B, C}.

FIG. 6. Analysis of UCH-L1and UCH-L3
expression by western blotting and immu-
nostaining. A} UCH-L1 angd UCH-L3 ex-
pression in isolated germ cells and Sertoli
cells. 5g2, Spermatogonia from 2-wk-old
mice; 5g8, spermatogoria from 8-wk-old
mice; Sc, spermatocytes from 8-wk-old
mice; St, spermatids from 8-wk-ald mice;
Se, Sertoli cells from 2-wk-old mice. Balb/
¢, testis from a Balb/c mouse; gad/gad,
testis from a gad mouse (Uchi7 knockout
mouse); L3--, testis from a Uchk!3 knock-
out mouse. Immunohistochemistry of
UCH-L1 {B} and UCH-13 (C) in the testis
of wild type, gad, and Uchl3 knockout
mouse. Stages V-VIII of seminiferous epi-
thelium predominate in each panel as vi-
sualized by PAS staining of serial sections.
Creen fluorescence represents UCH-L1 {B)
and UCH-L3 (C); red fluorescence repre-
sents staining of cell nuclei by propidium
iodide (PI). Magnification, X200. Scale bar
= 30 pm.
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clonal antibodies that specifically react with mouse UCH-
L3. Using RT-PCR and western blotting, we detected high
levels of UCH-L3 mRNA and protein in meiotic pachytene
spermatocytes and postmeiotic spermatids during spermato-
genesis (Figs. 4B and 6A). These results suggest that UCH-
L1 and UCH-L3 may play distinct roles in spermatogenesis,
in that UCH-L1 may function in mitotic proliferation,
whereas UCH-L3 may function in the meiotic differentia-
tion of spermatocytes into spermatids,

Around Postnata] Day 15, the higher expression of
UCH-L1 mRNA suggests that UCH-L1 might have certain
functions during testicular maturation. Furthermore, the in-
creased expression of UCH-L1 after Postnatal Day 15 sug-
gests that it might play an active role in mitotic prolifera-
tion. In addition to the Uchll genes, we also analyzed tran-
scription from two other UCH isozyme genes, Uchl3 and
Uchls, in isolated testicular cells. UCH-L3 and UCH-LS
mRNAs were found in meiotic pachytene spermatocytes
and postmeiotic spermatids (Fig. 4, B and D) and showed
similar expression patterns during the course of testicular
maturation (Fig. 5B). These results suggest that the Uchl3
and Uchl5 genes may have overlapping functions during
spermatogenesis. The ubiquitin pathway is very active dur-
ing the postmitotic phase of spermatogenesis [3, 36]. Thus,
UCH-L3 may function to regulate the cell cycle and chro-
matin structure during the meiotic phase but may facilitate
the en masse degradation of cytoplasmic proteins as well
as organelle/nuclear remolding during the postmeiotic
phase. The present study demonstrates for the first time that
UCH-L3 is expressed mainly in meiotic spermatocytes and
postmeiotic spermatids during spermatogenesis. Although
UCH-L3 shares considerable sequence homology with
UCH-L1, the hydrolytic activity of UCH-L3 in vitro differs
substantially from that of UCH-L1. The rate of UCH-L3-
mediated catalysis (K.,) is more than 200 times greater
than UCH-L1 using ubiquitin amide as a substrate [46].
This relatively high activity of UCH-L3 is consistent with
its expression during the postmitotic phase of spermatogen-
esis, in that maturation from spermatocytes to spermatids
may be critically dependent on the ubiquitin pathway de-
spite the fact that Uchl3 knockout mice exhibit normal fer-
tility [13].

In conclusion, our results demonstrate that the expres-
sion of UCH isozymes is differentially and developmentally
regulated during spermatogenesis and that UCH-L1 and
UCH-L3 likely have distinct functions during different de-
velopmental phases, These results enhance our understand-
ing of how the ubiquitin pathway is regulated by UCH
isozymes during spermatogenesis. Moreover, isolation of
mouse germ cells and Sertoli cells from testes may afford
the opportunity to assess UCH isozyme function during
spermatogenesis in vitro. UCH-L1 has been suggested to
associate with monoubiquitin and thereby increase the half-
life of ubiquitin in neurons [47]. In addition, a UCH-L1
ubiquityl ligase-like activity has also been proposed [46].
Further biochemical and genetic analyses of UCH family
members will help elucidate the role of UCHs in the com-
plex molecular mechanisms involved in spermatogenesis,
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