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signal, recapitulates Nrf2 protein degradation and the
responsiveness to electrophiles in vivo [44]. Subsequently,
we demonstrated that the Neh2 domain mediates the
proteasomal degradation of Nrf2, McMahon et al, directly
demonstrated that Neh2—Gal4 fusion protein accumulates
in response to electrophiles, revealing that Neh2 is a
redox-sensitive degradation domain [45]. Using peritone-
al macrophages from Keapl knockout mice (Keapl ™'~
mice), we demonstrated that Nrf2 protein is constitutively
accumulated in Keap/ knockout macrophages and lacks
the response to electrophiles. Moreover, Keapl enhances
Neh2-dependent Nrf2 degradation in transient cotransfec-
tion assay in COS1 cells [45]. In the same study, Nrf2 can
be constitutively ubiquitinated, in a Keapl- and redox-
independent manner, in COS1 cells. The enhancement of
Nrf2 degradation by Keapl under homeostatic conditions,
hence, does not necessarily associate with Nrf2 ubiquiti-
nation. Conversely, Zhang and Hannink recently demon-
strated that Keapl enhances Nrf2 ubiquitination [46).
They also demonstrated that two cysteines C27 and C¢
of Keap1 are indispensable for Keapl-mediated ubiquiti-
nation of Nrf2. Whether unbiquitination is required ot not
for Keapl-enhanced Nrf2 degradation remains to be
clarified in future analysis.

Even under oxidative stress conditions where Nrf2 is
liberated from Keap1 repression, Nrf2 is still subjected to
. proteasomal degradation, indicating the existence of
Keapl-independent degradation of Nrf2. From these
observations, we proposed two modes of Nrf2 degrada-
tion, either homeostatic Keapl-dependent degradation or
Keapl-independent degradation under oxidative stress
conditions (Fig. 2) [44,45). Three observations further
support the existence of Keapl-independent degradation,
First, even under oxidative conditions, where Keapl
repression is largely abolished, Nrf2 is stabilized by the

Electrophiles

ROS ] ~
Oxidative 273§ —
Modification 258§

ot N Y PERK B

Fig. 3. Mechanisms of Nrfl liberation from Keapl. Electrophiles
provoke Nrf2 phosphorylation via MAPK, PKC, or PI3K or directly
interact with Keapl-reactive cysteines. These modified Keap! and Nrf2
cannot bind with each other as efficiently as under homeostatic
conditions. The accumulation of unfolded proteins in endoplasmic
reticulum (ER) activates Nrf2 via the direct phosphorylation of Nrf2 by
ER-localized PERK independently from redox mechanism.

treatment of proteasome inhibitor, indicating that protea-
somal degradation is still occurring in the absence of
Keapl [44]. Second, an Nrf2 mutant that lacks an
important binding motif for Nrf2/Keapl interaction
(Ntf22ETCE) can still be degraded with a protein half-life
of 30 min [45]. Third, Nrf2 is degraded in a proteasome-
dependent manner in Keapl '~ mice (see below). We
envisaged that Keapl-independent degradation occurs in
the nucleus and the Keapl-enhanced mode of degrada-
tion accurs in the cytoplasm (Fig. 2) [44]. The clarifica-
tion of these two modes of degradation mechanism and
their relationships are issues worthy of future endeavor.

Cytoplasm: Keapl- and proteasome-dependent degradation

=) ; -Ub

Nucleus: Keapl-independent, proteasome-dependent degradation

=) Relatively slow degradation

Fig. 2. Two modes of proteasome-dependent Nrf2 degradation. Under homeostatic conditions, Nrf2 is subjected to Keapl-dependent
proteasomal degradation in cytoplasm. In cells treated with electrophiles, Nrf2 translocates into the nucleus and is degraded by Keapl-
independent proteasomal degradation. The involvement of ubiquitination in these steps remains to be clarified,
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The rapid degradation and the requirement of new protein
synthesis for Nif2 activation argue that the cytosolic pool
of Nif2 is quite small and that an entrapment model
similar to the NF-kB/IkB system is quite unlikely,
although we do not deny the possibility that these occur
in a tissue-specific manner or under particular cell culture
conditions [46]. We assume that on exposure to electro-
philes, newly synthesized Nrf2 protein evade the Keapl
entrapment by still controversial mechanisms to enter the
nucleus (Fig. 3) (see the discussion below).

DISRUPTION OF Keapl REPRESSION IS SUFFICTENT FOR
Nrf2 ACTIVATION

To test the hypothesis that Keapl acts as a negative
regulator of Nrf2 in vivo and that nullifying Keapl
repression suffices Nrf2 activation, we generated mice
bearing mutation in the Keapl gene. Keap! =/~ mice died
postnatally from hyperkeratosis in the esophagus and
stornach, which led to nutrient obstruction and eventually
to severe ulceration of the stomach [47]. In embryonic
fibroblasts of Keapl ™™ mice, Nrf2 was activated in the
nucleus and EpRE-regulated genes such as subunits of
v-GCS were constitutively expressed and were not
upregulated by electrophiles. In liver of Keap! ~'~ mice,
the various subunits of GST were constitutively ex-
pressed. These results unequivocally demonstrated that
Keapl acts zs a negative regulator of Nrf2 in vivo and
that the disruption of Keapl repression is sufficient for
provoking Nrf2-mediated gene expression. Bloom and
Jaiswal recently reported that overexpression of the Neh2
domain causes Nrf2 nuclear accumulation in Hepa-1
cells [48]. They demonstrated that Nrf2 that accumulated
in the nucleus in response to fert-butylhydroquinone
(tBHQ) was phosphorylated at a serine residue(s), but
that Nrf2 accumulated by Neh2 overexpression was not.
The latter Nrf2 has as potent transactivation potential
as the former, indicating that Nrf2 phosphorylation is
neither required for stabilization nor transcriptional acti-
vation of Nrf2. Collectively, these results directly dem-
onstrated that modification of Nrf2 is, if any, specifically
required for liberation of Nrf2 from Keapl and that the
escape from Keap! is sufficient for Nrf2 activation.

MECHANISM OF Nrf2 LIBERATION FROM Keapl

Several distinct mechanisms have been proposed for
the liberation of Nrf2 from Keap! repression: direct attack
by electrophiles or ROS or indirect actions such as
phosphorylation. Several recent investigations argued
for the involvement of mitogen-activated protein kinases
(MAPKs), protein kinase C (PKC), and phosphoinositol-

3-kinase (PI3K) in the activation of Nrf2 [49,50]. For

example, Huang et al, proposed that phosphorylation of

Nrf2 Ser 40 by PKC disrupts the interaction of Nrf2 with
Keapl in HepG2 cells [51]. They demonstrated that PKC
precipitated from tBHQ- or p-naphthoflavone-treated
cells showed enhanced activity against Nrf2. Subsequent-
ly, Numazawa et al. reported that atypical PKCs are
responsible for the phosphorylation of Nrf2 in response
to phorone and 4-hydroxy-2,3-nonenal (4-HNE) in bu-
man fibroblast WI-38 cells [52]. They reported that °
activation of atypical PKC leads to Nrf2 activation in a
Ser 40-dependent manner. On the other hand, Kang et al.
reported that PI3K regulates Nrf2 through actin rearrange-
ment in response to oxidative stress [53]. They demon-
strated that the F-actin disruptor cytochalasin B induces
nuclear accurnulation of Nrf2. With respect to the MAPK

- pathway, positive and negative regulators of EpRE appear

to depend on the signaling context for a particular EpRE
or on given circumstances, which have been fully dis-
cussed elsewhere [49,50). Zipper and Mulcahy demon-
strated that the disruption of BTB domain-mediated
homodimerization, but yet by an unidentified mechanism,
is responsible for the dissociation of Nrf2 from Keap] in
response to PDTC in HepG2 cells [38].

An impressive feature of the EpRE is that it responds to
nine structurally dissimilar classes of inducers [11]. There-
fore, Talalay’s laboratory has proposed a common sensor
endowed with reactive cysteines that recognize the
inducers [12]. These cysteines are predicted to sense the
electrophiles even in the presence of the millimolar order
of glutathione in cells that neutralizes the inducers. Murine
Keap1 contains 25 cysteines that are conserved in human
and rat homologs. Some of these are considered reactive
cysteines as they are flanked by basic amino acid residues
[54]. Dinkova-Kostova et al. demonstrated, using bacte-
rially expressed Keapl and radiolabeled thiol reactive
reagents, that four cysteines in the IVR of Keapl (Czs",
C?73,C288 ?°") are the preferred sites for labeling in vitro
[55]. They also demonstrated that inducers disrupt the
interaction of Keapl with Neh2 in gel retardation assay
using native polyacrylamide gel. As Neh2 does not
possess any cysteine residues, the above-mentioned
results indicate that the modification of Keapl leads to
the dissociation of Keapl from Neh2. Several groups
subsequently showed that mutation of either c*™ or
C*®8 disrupts the repressive activity of Keapl against
Nrf2, suggesting that modification of these two cysteines
is critical for the repression of Nrf2 [46,56,57]. Further-
more, these two cysteines are specifically conserved in the
“oxidant sensing” subfamily of Keapl, but not in other
Kelch/BTB proteins [58]. The inability of C** or C?*
mutant to repress Nrf2 activity might be due to the
defective ability of these mutants to enhance Nrf2 ubig-
uitination and degradation [46]. Whether the direct and
indirect pathways discussed in this section are used

" differentially as sensors for distinct chemical classes or
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cooperatively used in response to a subset of inducers
requires further investigation.

OTHER SIGNALING CUES THAT MODIFY Nri2—Keapl
INTERACTION

Quite recently, it was shown that the accumulation
of unfolded proteins in endoplasmic reticulum (ER)
activates Nrf2 via the direct phosphorylation of Nrf2
by ER-localized pancreatic endoplasmic reticulum ki-
nase (PERK) [59]. As discussed above, it is suggested
that the disruption or rearrangement of actin cytoskel-
eton triggers Nrf2 activation [36,53]. These results
have raised the interesting possibility that cell signal-
ing other than redox regulation can also upregulate
EpRE response. Thus, multiple mechanisms might lead
to the Nrf2-mediated cell survival response.
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The transcription factor Nrf2 regulates the basal and
inducible expression of numerous detoxifying and
antioxidant genes. The cytoplasmic protein Keap1
interacts with Nrf2 and represses its function. Analysis
of keapi-knockout mice provides solid evidence that
Keap1 acts as a negative regulator of Nrf2 and as a
sensor of xenobiotic and oxidative stresses. The simul-
taneous ablation of the keap? and nrfZ genes reversed
all apparent phenotypes of the Keapi-deficient mice,
suggesting that Nrf2 is a primary target of Keapl. The
Nrf2-Keap1 system is now recognized as one of the
major cellular defence mechanisms against oxidative
and xenobiotic stresses. Furthermore, extensive studies
have suggested that the Nif2-Keap1 system contributes
to protection against various pathologies, including
carcinogenesis, liver toxicity, respiratory distress and
inflammation.

Cellular detoxification is crucial for the maintenance of
health by providing protection against the daily exposure
to various xenobiotics (Box 1) [1,2]. The common regulat-
ory element found in the 5'-flanking regions of many
phase IT detoxifying enzyme genes has been designated as
the antioxidant responsive elements (ARE) [3]. Thiz motif
ig similar to the consensus sequence of an erythroid gene
regulatory element bound by NF-E2, a heterodimer of p45
and small Maf protein, both of which possess basic region-
leucine zipper (b-Zip) motifs. The similarity between the
ARE and NF-E2 binding motifs led to the identification of
Nrf2 as an indispensable regulator of the coordinated
induction of phase II enzyme genes (Box 1, Figure I) [4,5].
Nrf2 belongs to the CNC (cap ‘n’ collar) family of b-Zip
transcription factors, together with p45 NF¥-E2, Nrfl and
Nrf3, and acts through the formation of a heterodimer
with one of the small Maf proteins [6]. The inducible
expression of phase II enzyme genes by butylated
hydroxyanisole (BHA) was significantly diminished in
Nrf2-deficient mice, a fact clearly demonstrating the
crucial contribution of Nrf2 to the cellular defence
mechanism against zenobiotic stresses [5].

In addition to the classical phase II enzymes, two trans-
porter genes were found to be under Nrf2 regulation. One
is the gene encoding the cysteine—glutamate-exchange
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transporter, which mediates cysteine influx coupled with
the efflux of intracellular glutamate [7]. This transporter
activity is essential for maintaining the intracellular
cysteine concentration and consequently the level of
glutathione. The other is Mrpl, a member of the multi-
drug-resistance-associated protein (MRP/ABCC) family
[8]. Mrpl is an ATP-binding cassette transporter that has
an important role in the cellular exclusion of conjugated
phase II metabolites. Hence, Nrf2 coordinately regulates
the xenobiotic conjugation reaction, the supply of intra-
cellular glutathione and the excretion of xenobiotics,
enabling efficient detoxification and cytoprotection
against xenobiotic toxicity. Indeed, Nrf2-deficient mice
are susceptible to xenobiotic stress due to the impaired
expression of cytoprotective enzymes [9-13].

Keapl is an actin-binding cytoplasmic protein that
represses the transcriptional activation of Nrf2. Recent
studies on Keapl-deficient mice have provided solid
in vivo evidence for the contention that Keapl acts as
a negative regulator of Nrf2, and suggest that the
Nrf2-Keapl system defines one of the major defence
mechanisms [14]. Keapl is rich in eysteine residues, and
this fact has led to the hypothesis that Keapl is a sensor
protein of xenobiotic and oxidative stresses. Therefore,
deciphering the function of the Nrf2—Keapl syster will
greatly extend our understanding of the molecular basis
underlying various common diseases, as well as aging
processes.

Nrf2 as a key regulator of phase Il detoxifying enzyme
genes and antioxidant-responsive genes
The DNA binding domain of Nrf2 is similar to those of the
other CNC family members [6]. Therefore, these tran-
scription factors are likely to interact with the ARE, giving
rise to elaborate defence regulation against xenobiotic and
oxidative stresses. The contribution of the four CNC
proteing pd5, Nrfl, Nrf2 and Nrf3 to the regulation of
ARE-dependent genes was examined in vive by gene
targeting (Box 2) [5,15-19]. Germline mutagenesis of the
mouse nrf2 gene and examination of the responsiveness of
the resultant mice to electrophilic reagents showed that
Nrf2 has a major role in transeriptional activation through
the ARE ([5].

Although the expression of phase Il detoxifying enzyme
genes is clearly induced in the wild type and heterozygous
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Box 1. The biotransformation process of xenobiotics and the inducible expression of detoxifying enzymes

Xenobictics are chemical substances that are foreign to biclogical
. systems, including naturally oecurring compounds, drugs and
environmental agents. A simple model in which to understand their
metabolism is to divide the biotransformation process into two
consecutive reactions. The Phase | reaction is mediated by cyto-
chrome P450 mono-oxygenase systerns, which modify compounds
through oxidation end reduction, Phase |l enzymes promote the
conjugation of phase | products with various hydrophilic moieties,
including glutathiene and glucuronic acid. Xenobiotics often serve as
ligands of the key transcription activators for phase | enzyme genes,

Benzola]pyrene

o5 o

S \/GS OH

Phase | enzyme Phase [l enzyme
{CYP1A1etc)  (GST,UGT,NQO1 efc)

L

whereas the phase |l enzyme genes are induced by the metabolites of
phase | enzymes, which are often highly electrophilic.

The characterization of the regulatory regions of phase Il enzyme
genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), gluta-
thione S-transferases (GSTs) and UDP-glucuronosyl transferases
{UGTs), revealed that electrophiles transcriptionally activate the
expression of these genes through the antioxidant-responsive
element {ARE) or electrophile-responsive element (EpRE). The mini-
mum ARE or EpRE sequences that are necessary for transcriptional
induction by electrophiles is TGACnnnGC.

‘OQ ~» Excretion

TRENDS in Molscular Madicine

Figura . The biotransformation of xenabiotics, Xenobiotics are oxidized by the P450 mono-oxygenase system, which includes CYP1A1 and CYP1A2, and is referred to as
Phase I. The products of Phase | reactions are often elactrophilic and reactive, resulting in the harmful modification of DNA and proteins and, at the sama time, the
induction of detoxification enzymes required for Phase fl reactions. These enzymes, such as glutathione S-transferase (GST) and UDP-glucuronasyl-transferase (UGT),
pramote the conjugation of phase | products with hydrophilic moieties, such as glutathione and glucuronic acid. N2 is essential for tha induction af Phase H enzymes,
and Kcapl negatively rcgulatcs Nrf2 petivity until cclls are cxposcd to electrophilic stimuli.

nrf2-knockout mice, the inducible expression of these
genes is dramatically reduced in homozygous nrf2-knock-
out mice [20]. In the latter, insufficient induction of
cytoprotective enzyme genes results in an increased
susceptibility to various xenobiotics, including butylated
hydroxytoluene [9], acetaminophen [10,11] and com-
ponents found in diesel exhaust [12]. Cancer

Box 2. [dentification of CNC transcription factors

chemoprevention mechanisms are also defective in
these Nrf2-deficient mice [13,21]. In the absence of Nrf2,
oltipraz and sulforaphane, which are known chemo-
protective reagents that act to prevent xenobiotic-induced
carcinogenesis, failed to display their chemoprotective
effect, indicating that Nrf2 has a crucial role in cancer
chemoprevention [13,21].

Studies on the regulation of erythroid-specific gene expression
originally identified p45 NF-E2 as & molecule interacting with the -
NF-E2 (nuclear factor erythroid-2) binding motif. Subsequently, Nif1,
Nrf2 and Nrf3 were identified. All of these factors share a conserved
motif located in the N-terminel side of the b-Zip structure. Because this
motif s found in the Drosophile cap ‘n' collar (CNC) transeription
factor, the four factors pd5, Nrf1, Nrf2 and Nrf3 are categorized as the
CNC family of transcription factors.

Among these four members, N2 is a potent transcriptional
activator. Nrf2 is expressed in metabolic and detoxification organs,
such as the liver and kidney, and in organs that are continuously
exposed to the environment, such as the skin, lung and digestive tract.
It was therefore assumed that Nrf2 acts as a trenscriptional activator
interacting with the antioxidant-responsive element (ARE). Germline
mutagenesis of the mouse nrf2 gene was performed, and Nrf2 turned
out to be a key regulator of the majority of Phase Il detoxifying and
antioxidant enzymes.

The analysis of nrff-null mice and nrf1::nrf2 double-mutant mice
showed that Nrfi elso contributes to the regulation of antioxidant
genes. Because nrff-null mice are embryonic [ethal, cell survival and
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the regulation of gene expression in response to oxidants were
examined in embryonic fibroblasts. In the absence of Nrf1, cells are
more sensitive to the toxicity of oxidants. As the induction of

- antioxidant genes diminishes, intracellular reactive oxygen species

{ROS) accumulation is increased. Fibroblasts cultured from nrft::nrf2
double-mutant embryos showed increased cell death and were
rescued by reduced oxygen tension or the addition of antioxidants.
An increase in ROS seems to activate p53, resulting in apoptesis and
embryonic lethality.

p45 is abundantfy expressed in erythroid cells and has also been
implicated inthe resistance to oxidative stress. A defective elimination of
ROS was found in erythrocytes from p45-null mice. The deformation of
mutantcellsunder oxidative conditions was remarkably reduced, as was
the life span, Considering the fact that erythrocytes are always exposed
to oxygen and that p45is a major CNC protein expressed in erythrocytes,

~ It seems pfausible that pd5 has a crucial role in the oxidative stress.

response in erythroid cells. The contribution of Nef3 is unknown,
because the ablation of the nrf3 gene revealed no ohvious phenotypic

" differences. Furthermore, no additional lethality was ohserved in

qd3::nrf2 double mutant mice orin nrf3:: p45 double-mutant mice.
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Nrf2 is also an important regulator of oxidative-stress-
inducible genes, including heme oxygenase-1 and peroxi-
redoxin 1 [22]. Intriguingly, susceptibility to hyperozia is
linked to the nrf2 locus [23]. A single-nucleotide polymorph-
ism was detected in the promoter region of the nrf2 gene of
the mouse strain C57TBL/6J, which is sensitive to hyperoxic
stress. Supporting this, nrf2-null mutant mice were found to
be highly susceptible to hyperoxic lung injury [24].

The impaired defence mechanisms against oxidative
stress that are observed in the nrf2-null mutant mice
could have resulted from the accumulation of reactive
oxygen species (ROS) in the absence of Nrf2, A combi-
nation of electron paramagnetic resonance (EPR) and
spin-probe kinetic analysis confirmed that there is a
substantial decrease in the ability of nrf2-null mutant
liver and kidney to eliminate ROS [25]. This impaired
elimination of ROS was exacerbated in aging female
animals [25]. Consistent with this result, old female
nrf2-deficient mice with an ICR genetic background often
developed severe lupus-like autoimmune nephritis [26].
Because ROS have a prominent role in the pathogenesis of
nephritis, the accumulation of ROS due to Nrf2 deficiency
must have exacerbated the mild glomerular lesions that
are inherent to the ICR strain of mice.

Transcriptional activation by Nrf2 and its related CNC
proteins

Nrf2 contains two activation domains, Neh4 and Neh5,
both of which are conserved in various Nrf2 proteins in
several species (Figure 1a) (27]. Both Neh4 and Neh5 can
bind to the coactivator CBP [cAMP-response-element
binding protein (CREB) binding protein] independently,
and gimultaneous binding of CBP to these two domains
synergistically activates the transeription of Nrf2 target
genes, We surmise that Nrf2 achieves strong transactiva-
tion activity, at least in part, through this mechanism.

Because it is necessary for the CNC factors to form
heterodimers for DNA binding, the partner molecule of
Nrf2 must have an important rele in the funetion of Nrf2,
Considering the similarity between the ARE and Maf
recognition elements (MARE), small Maf proteins are
expected to serve as heterodimeric partner molecules of
Nri2. MARE consists of a core sequence (TGAGTCA)
gimilar to the 12-0-tetradeconylphorbol-13-acetate (TPA)-
responsive element (TRE) flanked by sequences contain-
ing GC residues (Figure lc}. The ARE consists of one-half
of the core sequence of MARE and the opposite half of
the flanking sequence of MARE [3]. The GC residues
contained in the MARE flanking regions are recognized by
a Maf protein-gpecific motif called the ‘extended homology
region’ or ‘ancillary region’, whereas the other bZip
proteins, including CNC, Jun and Fos families, do not
require these dinucleotides for DNA recognition [6].
Hence, it was expected that the GC contained in the
ARE is recognized by small Maf factors.

Because small Maf factors do not possess any canonical
transactivation domains, small Maf factors repress tran-
scription as inactive homodimers when in excess, but
activate transcription as heterodimers with CNC family
members when their availability is in balance with that of
the CNC partner molecules [28]. Therefore, whether or not
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the heterodimer containing a small Maf protein truly
serves a8 a transeriptional activator is controversial [29].
To address this issue, the contribution of small Maf
proteins to gene regulation through the ARE requires
examination and interpretation under physiolegical con-
ditions in vivo. Recent results from a genetic experiment
exploiting small-Maf-factor-knockout mice supported the
contention that small Maf proteins serve as functional
heterodimeric partner molecules of Nrf2 in vive [30].
Further analyses are necessary for a more comprehensive
understanding: of the partner factors involved in tran-
scription activation by Nrf2. :

Inhibition of Nrf2 activity by the actin-binding protein
Keap1

Structure-function analyses of Nrf2 revealed that dele-
tion of the N-terminal region (Neh2 domain) enhances the
transeriptional activity of Nrf2 (Figure 1a). Keapl, a novel
eytoplasmic protein, was subsequently identified as an
Neh2-interacting molecule [31]. Keapl possesses a BTB
{broad complex—tramtrack—bric-a-brac) domain and
double glycine repeat (DGR) domain in its N-terminus
and C-terminus, respectively (Figure 1b). The DGR
domain is important for the interaction with Nrf2 and
also for actin binding. When expressed in cultured cells,
Keapl tethered Nrf2 in the cytoplasm and repressed the
transactivation activity of Nrf2. An important finding was
that the addition of electrophilic reagents to the culture
liberated Nrf2 from Keapl, enabling the translocation of
the molecule into the nucleus and the activation of target-
gene expression (Figure 2a) [31]. ETGE, a stretch of four
amino acids within the Neh2 domain, was identified as a
crucial motif for the Nrf2-Keapl interaction. Mutations or
deletion of the ETGE motif abolished the interaction of Nrf2
with Keapl and consequently abolished the repressive effect
of Keapl on Nrf2-mediated gene aciivation [32,33].

To test the relationship between Nrf2 and Keapl
in vivo, germline kegpI-mutant mice were generated by
homologous recombination [14]. Keapl-deficient mice die
by the third week after birth as a result of the abnormal
hyperkeratosis of the esophagus and forestomach and
consequent feeding problems. The expression of phase II
detoxifying enzyme genes is increased significantly and
constitutively in the livers and embryonic fibroblasts of
homezygous keap I-knockout animals, These results prove
that Keapl functions as a negative regulator of NriZ. The
simultaneous knockout of the nrf2 gene completely
reversed the apparent phenotypes and lethality observed
in keapl-null mutant mice, indicating that Nrf2 is the
major target protein of Keapl in vive (14].

The Nrf2-Keapl system is not only operative in
mammals but iz also conserved in zebrafish {32], indicat-
ing the crucial contribution of this system to the defence
mechanisms in animals, Moreover, SEN-1, a CNC homol-
ogue protein of Cacnorhabditis elegans, was shown to
regulate phase II detoxifying enzyme genes, conferring
registance to oxidative and xenocbiotic stress [34). The wide
inter-species conservation of a CNC protein as a key
regulator of the antioxidant response suggests the
existence of a C. elegans counterpart for Keapl, although
it has not yet been identified.
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Figure 1, Functional domains Identified in Nrf2 and Keap1 molecules and antioxidant-responsive elements {AREs) bound by ‘cap-'n’-collar’ {CNC)-small Maf haterodimers.
[a} Domain structure of Nrf2. Six tunctional Neh [Nri2-ECH (erythroid coll-derived protein with CNC homalogy) homology] units wera identified in Nrf2, each well consarved
in the Nrf2 malecules of various species. Keap! intetacts with the NehZ domain and repressas tha aotivity of Nrf2. Nohd and Neh5 interact with CEP [CREB eyclic AME-
response glament binding protain (CREER) binding protein] and synergistically contributa to the strong transeriptional activation exerted by NrfZ Neh1 commesponds to the
bZip motif, mediating DNA binding and dimarization with small Maf protsins. (b} Domain structure of Keap1, Keap1 is divided into four domaing: BTB {Broad complex~
Tramtrack-Bric-a-brac), IVR (intervening region), DGR {double glycine repeat; also called Kelch domain owing to its homology with Drosophila Kelch protein) and CTR
|C-terminal region}. The DGR/Kelch domain is important for Nrfz binding and intaraction with the actin skeleton, The IVR is important for Keap1 reactivity 1o electraphilic and
oxidative stimuli, Two of the cystaing residues in tha VR are crucial for the repressive activity of Keap1 on Nrf2. The BTB domain is thought to be involved in dimer formation.
[t} Tha consensus sequenca of ARE resembles that of the NF-E2 binding sita, an important ¢is-regulatory efement for erythroid-specific gena regulation, Haterodimers
composad of CNC members, including pd5 NF-E2, Nri1, Nrf2 and Nrf3, and small Maf proteins, including MafG, MafK and MaiF, intaract with these elemants. Bacht and
Rach2 form a CNCfamily subgroup and can also heterodimerize with small Maf proteins, AREs found in tha ragulatory regions of Phase Il enzyme genes: for axample, mousa
glutathiona Stransferase Ya (mGSTYa), mouse glutathione S-transferase P {mGSTP) and human NAD(P]H:.quinone oxidoreductase 1 (ANQO7). The ARE and NF-E2 binding
sites are closaly related to the MARE [Maf recognition elemant), containing GC residwes [shown in red) that are important for DA recognition by Maf family proteins.

Molecular mechanisms of Nrf2 activation toxicity arising from electrophiles and oxidants, Under
Extensive analyses of nrf2-null mutant mice have  basal conditions, Nrf2-mediated transcription is turned off
revealed that the inducible expression of detoxifying  because of the inhibitory effect of Keapl. Keapl binds to
enzyme genes and antioxidant responsive genes is  Nrf2 and sequesters the molecule from nuclei, preventing
important for protection against carcinogenesis and the  Nrf2 from activating target genes [31]. Recent studies
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Figure 2. Schematic illustration of the malecular mechanisms of the Nrf2-Keaap1 regulatory system and its endogenous activating signals. {a) In unstimulated conditions, Nrf2
is tethered onto actin fibars in the cytoplasm thraugh Keap1 and degraded by prateasames, Thus, the transeription levets of Nrf2 target genes remain low. Upon exposure ta
electrophiles and/or oxidative stress [ROS, reactive axygen species), Nrf2 translocates inte nudlel, hetarodimerizes with 8 small Maf protein and binds to the ARE, leading to
the transeriptional activation of Phase I enzyme genes and antloxidant stress protein genes. Keap1 interacts with Cullin 3 {Cul3), one of tha companents of ubiquitin ligase,
Thesa reagents seam to attack the sutthydryl group of Keap1 and interferg with the interaction between Nri2 and Keap1 or with the integrity of Keap1 and the ubiquitination
machinery, resulting in the releass of Nrf2 from Keap1 or the shutdown of Nrf2 degradation. (b) 15-deoxy-a"%"“-prastaglandin J; (15d-PGJ,} covalently binds to Keap1,
causing the translocation of Nrf2 into nuclel and the activation of Nrf2 target genes, some of which are found to possess an anti-inflammatory function, such as

peroxiredoxini [Prx1) and heme oxygenase-1 (HO-1), Because cyclooxygenase-2 (COX-2)
anti-inflammatory responss that is mediated by Nrf2, 15d-PGJ; is also known to activate

is a rate-limiting enzymae for the synthesis of 15d-PG.Jy, COX-2 inhibitors repress the
tha pathway diracted by peroxisome proliferator-activated receptor (PPAR}y, Nitria

oxide IND) also activatas Nrf2, NO or its derivatives might affect the redox state of Keap1 or Its effect might be indirect, via the MAPK (microtubule-associated protein kinase)
signaling pathway, NQ typically activates guanylyl cyclase to induce several kinase activities.

further revealed that Nrf2 is rapidly degraded by protea-
somes through the interaction with Keapl [35-38]. In the
absence of Keapl, Nrf2 constitutively accumulates in the
nucleus, indicating that Keapl negatively regulates Nrf2
by enhancing its rate of degradation as well as altering its
subcellular localization [14].

Based on the analysis of -genetically engineered
nrf2-mutant mice, it can be concluded that the Neh2
domain mediates the response to electrophiles [38], In
these mice, the nrf2 gene was disrupted by replacing exon
V, which encodes the bZip domain, with the LacZ pene.
The mutant mice thus expressed an Nrf2-LacZ fusion
protein consisting of the N-terminal half of Nrf2 with
complete B-galactosidase. LacZ activity was detected in
the intestine only after electrophilic stimuli, indicating
that the N-terminal region, particularly Neh2, confers
electrophile sensitivity to Nrf2 and stabilizes Nrf2 [38].
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One additional motif involved in the degradation of Nrf2
was also identified in the Neh6 domain located in the
central part of the protein (Figure 1a) [33].

The activation of Nrf2 is an important cue for the
induction of cytoprotective genes, and disruption of the
cytoplasmic complex between Keapl and Nrf2 represents
a major part of the cellular mechanisms for sensing
xenobiotic and oxidative stresses. Several models involv-
ing the oxidation of redox-sensitive cysteines within
Keapl and the phosphorylation of Nrf2 have been
proposed as a molecular basis of Nrf2 activation.

Keapl is rich in cysteine residues, with 25 cysteines of
624 amino acids, and these cysteines are well conserved

" among humans, rats and mice. The electrophilic reagent

dexamethasone 21 mesylate was used as a probe to
alkylate the thiol groups, and five reactive cysteine
residues were identified [39], raising the possibility that



TRMOME 196

Keapl serves as a primary sensor molecule for oxidative

stress. Four of these highly reactive cysteine residues are |

located in the intervening region (IVR) between the BTB
and DGR domains (Figure 1b). Transient transfection
assays identified two cysteine residues out of the four as
crucial for Keapl-dependent Nrf2 repression [40,41}.
Because Nrf2 binds to the DGR domain of Keapl, cysteine
residoes in the IVR might provoke a conformational
change in the DGR or the Keapl molecule, leading to the
dissociation of Nrf2 from Keapl.

A recent study showed that Keapl interacts with Cullin
3 (Cul3} through the IVR and serves as an adaptor for
Cul3-based ubiquitin ligase [42]. This result implies that
the domain structure of IVR might be important for Keapl
to form a functional ubiquitin-ligase complex, Actin
binding through the DGR motif and dimerization through
the BTB domain are also required for the cytoplasmic
sequestration of Nrf2 [43,44], On the contrary, one of the
cysteine residues in the BTB domain was suggested to be
important for inhibiting Keapl-dependent Nif2 degra-
dation in response to oxidative stress [40].

Several groups have suggested that Nrf2 phosphoryl-
ation is also important. Reports exist demonstrating that
protein kinase C is involved in Nrf2 activation by
oxidative stress and electrophiles through the phosphoryl-
ation of a serine residue located in the N-terminal region
[45—48]. Other reports have attempted to address the
relationship between microtubule-associated protein
(MAP) kinases and ARE activation; however, the roles of
MAP kinases in transcriptional activation through the
ARE remain controversial [49-52], The involvement of
phosphatidylinositol 3-kinase has also been suggested
[53-55]. The significance of Nrf2 phosphorylation in these
pathways ir vivo should be investigated.

Recently, it was reported that Nrf2 phosphorylation is
involved in the endoplasmic reticulum (ER) stress
response [56]. The activation of one of the transmembrane
protein kinases, PERK [RNA-dependant protein kinase
{(PKR)-like endoplasmic reticulum kinase], is vital for cell
survival following the initiation of the ER stress response.
Nrf2 is a substrate of PERK and dissociates from Keaplin
a phosphorylation-dependent mauner [56]. As expected,
Nrf2-deficient cells are vulnerable to the toxicity of the ER
stress-inducing reagent tunicamycin, indicating that Nrf2
promotes cell survival against ER stress [56,57].

New perspectives for Nrf2-Keap1

The analyses of nrf2-null mutant mice have revealed that
the genes regulated by Nxf2 are indispensable components
of defence mechanisms against oxidative and xzenobiotic
stresses, It has been predicted that specific inducers of
Nrf2 would make good chemoprotective reagents against
ROS and chemical carcinogens. Although the chemo-
preventive effects of BHA and oltipraz are recognized [13],
recent screenings identified many dietary and synthetic
compoundz that efficiently activate Nrf2 [568,59]. The
measurement of redox potentials of various compounds
showed a good correlation between the tendency to release
electrons and the potency to induce the NAD{PYH:quinone
oxidoreductase (NQOI) gene, a typical target gene of Nrf2
[60]. Therefore, a compound with a strong electron-donor
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property is easily oxidized, becomes electrophilic’ and
activates Nrf2. Plant-derived inducers include sulfora-
phane in broceoli sprouts [21]), 6-methylsulfinylhexyl
isothiocyanate in Japanese horseradish [61) and curcumin
in turmeric powder [62]. Incorporation of these natural
constituents into our diet is expected to keep our health in
good condition.

In addition to these exogenous inducers, endogenous
substances serving as important signaling molecules were
found to activate Nrf2. Oneis 15-deoxy-A'2 . prostaglandin
J2(15d-PGJ;), which is synthesized, via prostaglandin Hj,
from arachidonic acid by the action of cycloozygenase
{COX), and was found to be a potent inducer of phase II
genes [63]. 15d-PGJ; directly interacts with Keapl and
forms a covalent adduct resulting in the activation of Nrf2
{Figure 2b) [63). Pleural macrophages that infiltrated
after carrageenan (a family of linear sulfated polysacchar-
ides obtained from red seaweeds that can be used to
induce inflammation) challenge accumulated 15d-PGdJz in
abundance at both the earliest stage and resolution stage
of inflammation, suggesting that activated Nrf2 regulates
the processes of inflammation. A high expression level of
COX-2, a major rate-limiting enzyme for 153-PGdJ,
synthesis, was also observed in the macrophages [63]. In
the absence of Nrf2, pleural inflammation induced by
carrageenan is prolonged and the resolution process is
delayed [63]. The administration of a COX-2 inhibitor to
wild-type mice recapitulated the persistence of inflamma-
tory cells that is observed during carrageenan pleurisy, an
effect that was canceled by the administration of addi-
tional 15d-PGJ, [63]. These results suggest that Nrf2
mediates the inflammatory process downstream from
15d-PGJ,, and provide the new concept of Nrf2 as a medi-
ator of inflammatory resolution. This anti-inflammatory -
aspect of Nrf2 function might explain the reason why gold-
containing compounds activating the Nrf2 pathway are
effective for the treatment of rheumatoid arthritis [64].

The involvement of endogenous inducers of Nrf2 has
also been suggested in skin wound healing [65]. Nrf2 is
strongly expressed in the keratinocytes of hyperprolifera-
tive wound epithelium, In nrf2-null mutant skin, the
expression of proinflammatory cytokines, such as inter-
leukin-15 and tumeor necrosis factor e (TNFa), is reduced
in the early stage of repair, but higher in the later stage
[65]. An explanation for this result seems to be the
persistent infiltration of macrophages in the nrf2-null skin
during wound healing, giving another example of pro-
longed inflammation in the absence of Nrf2,

Nitric oxide (NO}, which is another endogenous inducer
of Nrf2, has miscellaneous functions in vasodilation,
inflammation and apoptosis, and typically activates
soluble guanylyl eyclase resulting in the activation of
¢GMP-dependent protein kinase and other kinases
{Figure 2b) [66,67]. When endothelial [66] and neuro-
blastoma cells [67] were exposed to NO donors, Nrf2
accumulated in the nucleus and induced its target genes.
As a consequence, neuroblastoma cells became resistant to
NO-induced apoptosis [67]. These results implicate Nrf2
as having important roles in vascular homeostasis and
neuronal cytoprotection from trauma- or ischemia-
induced excitotoxicity.
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The relationship between Nrf2 and apoptosis has also
been described. When Fas-mediated apoptosis was
induced by the administration of TNFa or antibodies
against Fas, nrf2-null thymocytes died easily and nrf2-null
mice displayed more severe hepatitis compared with wild
type [68]. Nrf2 seems to decrease sensitivity to apoptotic
signals by maintaining cellular redox homeostasis.

A microarray-based survey unveiled ancther aspect of
Nrf2 function through the identification of proteasome
subunit genes as downstream targets of the Nrf2-Keapl
pathway [69]. The proteasome activities in liver homo-
genates are actually enhanced by 3H-1,2-dithiole-3-thione
(D3T), one of the cruciferous vegetable-derived anti-
oxidants. This enhancement was not observed in nrf2-null
mice. Because the aggregation of abnormal proteins
generated by oxidation is considered to be a major cause of
neurodegenerative diseases and other oxidative cellular
injuries, the enhancement of proteasome activity through
an increase in subunit gene expression might represent an
important cytoprotective response against oxidative stress.

Concluding remarks

Recent data support the contention that the Nrf2—Keapl
system serves as an indispensable part of the defence
mechanisms against various environmental, as well as
endogenous, stresses. The activation of Nrf2 is a key
initiation step in the cellular response against such insults,
Nrf2 deficiency leads to several common pathogenic con-
ditions, including susceptibility to chemical carcinogenesis
[13,21], acute hepatotoxicity after medication [10,11], acute
respiratory distress following the ingestion of food preser-
vatives {9] and increased DNA-adducts upon exposure to
diesel exhaust [12]. The relevance of Nrf2 in the prevention
of carcinogenesis and xenobiotic toxicity has been firmly
established [59]. Theinvolvement of the Nrf2-Keap1system
for neuroprotection against oxidative insults in the nervous
system has also been reported [70].

In addition, Nrf2 seems to make a crucial contribution
to the resolution of inflammation at an appropriate stage,
which strongly suggests that Nrf2 dysfunction servesas a
predisposition to chronic inflammatory diseases. The
involvement of ROS in various pathological conditions,
including diabetes and aging, has been suggested and
implies the importance of redox homeostasis, for which
Nrf2 is one of the key regulators. Nrf2 is an important
effector for maintaining vascular health and preventing
cardiovascular diseases by mediating NO signaling and
for reducing the deleterious effects of brain strokes by
counteracting NO-induced apoptosis.

Therefore, it is important to analyze the precise
mechanisms by which Keapl either inhibits Nrf2 activity
or releases Nrf2 in response to various stress stimuli, The
available data suggest that an alteration in the redox state
of Keapl thiol residues and the phosphorylation of Nrf2
might be two crucial events determining Nrf2 activation,
The essential steps triggering the Nrf2-Keapl signaling
pathway are Nrf2 stabilization and translocation into the
nucleus. Importantly, Keapl is a component of the
ubiquitin ligase that forms a functional linkage between
Nrf2 and the degradation machinery, raising two possible
target points for the attack by electrophiles. One target
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might be the disruption of the interaction between Nrf2
and Keapl, with a dissociation of the two molecules
resulting in nuclear translocation of Nrf2, A second
possible target is a change in, or disruption of| the inter-
action between Keapl and the ubiquitination machinery,
resulting in the shutdown of Nrf2 degradation. In this
case, Keapl becomes saturated and the newly translated
Nrf2 is imported into the nucleus, These possibilities are
not mutually exclusive. We still do not understand fully
whether these events occur with all Nrf2-activating
reagents and stimuli. i

It is important to identify the sensor molecules and
signaling pathways for each stimulus. Similarly, the
degradation mechanisms of Nrf2 need further intensive
analysis. Another important question is to elucidate how a
functionally impaired Nrf2-Keapl system relates to
various human disorders. Shedding light on the molecular
rechanisms governing the functions of the Nrf2—Keapl
pathway will be important to understand the basic
strategy for protection against the toxicities of oxygen
and xenobiotics in food and the environment, A clear
understanding in this area is expected to lead to
significant developments both in basic and applied
medicine, including cancer chemoprevention, inflamma-
tory lung disease and xenobiotic metabolism.
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ABSTRACT

Several years have passed since NF-E2-related factor 2 (Nrf2) was demonstrated to regalate the induction of
genes encoding antioxidant proteins and phase 2 detoxifying enzymes. Following a number of studies, it was
realized that Nrf2 is a key factor for cytoprotection in various aspects, such as anticarcinogenicity, neuropro-
tection, antiinflammatory response, and so forth. These widespread functions of Nrf2 spring from the coordi-
nated actions of various categories of target genes. The activation mechanism of Nrf2 has heen studied exten-
sively. Under normal conditions, Nrf2 localizes in the cytoplasm where it interacts with the actin binding
protein, Kelch-like ECH associating protein 1 (Keapl), and is rapidly degraded by the ubiquitin-proteasome
pathway, Signals from reactive oxygen species or electrophilic insults target the Nrf2-Keapl complex, dissoci-
ating Nrf2 from Keapl. Stabilized Nrf2 then translocates to the nuclei and transactivates its target genes. In-
terestingly, Keapl is now assumed to be a substrate-specific adaptor of Cul3-based E3 ubiquitin ligase. Direct
participation of Keapl in the ubiquitination and degradation of Nrf2 is plausible. The Nrf2-Keapl system is
present not only in mammals, but in fish, suggesting that its roles in cellalar defense are conserved throughout
evolution smong vertebrates. This review article recounts recent knowledge of the Nrf2-Keap1 system, focus-

ing especially on the molecular mechanism of Nrf2 regulation. Antioxid. Redox Signal. 7, 385-394.

INTRODUCTION

THE ACCUMULATION OF REACTIVE OXYGEN sPECIES (ROS)
or electrophilic insults contributes to a wide varisty of
diseases, including cancer, diabetes, and neuwrodegenerative
diseases. Cytoprotection is provided by the expression of an-
tioxidant proteins and phase 2 detoxifying enzymes that are
strongly induced upon exposure to low levels of electrophiles
or oxidative stress, For convenience, in tlus review weo have
referred to induction as phase 2 induction. Activation of the
defense system by phase 2 industion renders cells more resis-
tant to the potential challenges of a subsequent, even greater
stress. This coordinated response is regulated through a cis-
acting element called the antioxidant responsive element
{ARE) or electrophile responsive element (EpRE) within the
regulatory region of ¢ach gene. A number of studies were per-
formed to identify ARE/EpRE binding factors, and NF-E2-

related factor 2 (Nef2) finally got into the limelight as the
raajor contributor to phase 2 induction.

Nrf2 was first isolated as a closely related protein of p45
NF-E2 by an cxpression cloning procedure using an oligonu-
cleotide containing the NF-E2 site as a probe (37. 65). p45
NF-E2 is the larger subunit of a heterodimer with binding ac-
tivity at the NF-E2 site (S"-TGCTGAGTCAC-3"), a key cis-
acting regulator of globin gene expression (5). The smaller
subunit was shown to be one of the small Maf proteins,
MafK, MafG, or Mafl (34). Four members of the p45 NF-E2-
related proteins, p45 NF-E2, Nifl, Nif2, and Nif3, have been
isolated in mammals and referred to as Cap’n*collar (CNC)-
type basic leucine zipper (bZIP) proteins (68). This term was
derived from their sequence similarity to Drosophila CNC
protein. CNC-type LZIP proteins require a member of the
small Maf proteins as a heterodimeric partner molecule for
DNA binding. Although Nrf2 was assumed to be an important
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regulator of hematopoiesis like p45 NT-E2, Nri2-deficient
mice did not display any abnormality in blood formation (13,
38, 50, 62). Instead, they showed a drastic reduction in the
electrophilic-induced gene expression of phase 2 detoxifying
enzymes (38). Many subsequent studiez demonstrated that
most known ARF/EpRE-driven cytoprotective genes, includ-
ing those encoding antioxidant proteins, are ranscriptionally
regulated by Nrf2. This shifted the interest of researchers to
the regulatory mechanism of Nf2 activity. As a result, Kelch-
like ECH asscciating protein 1 (Keapl) was isolated and
demonstrated to regulate the intracellular focalization of Nrf2
by sequestering Nrf2 in the cytoplasm (39). Phase 2 inducers
cause the dissociation of Nrf2 from Keapl, allowing for nu-
clear accumulation of Nrf2 and enhanced expression of its
target cytoprotective genes. In this review, we have selected
four topics related to the Nrf2-Keapl system: farget genes,
roles in the defense mechanism, regulatory mechanism, and
evolutional congervation.

TARGET GENES OF Nrf2

When Nrf2 was clarificd to be a transcriptional regulator
of phase 2 detoxifying enzymes, it was thought to contro] a
relatively small set of genes. However, following various ex-
tensive studies, a substantial number of genes are considered
. 1o be under Nrf2 regulation. In this section, we have listed
Nrf2 target genes, mainly identified through Nef2-deficient
mouse analysis, and classified them into scveral categories
(Fig. 1).

Data from in vivo studies using Nrf2-deficient mics clearly
implicated Nrf2 as a protein critical in regulating the expres-
sion of glutathione S-transferases (GSTs) and NAD(P)H
quinone oxidoreductase (38). Nrf2 was shown to confrol
genes encoding other phase 2 detoxifying enzymes, such as
UDP-glucureny] transferase 1AG6, aflatoxin Bl aldehyde re-
ductase, and microsomal epoxide hydrotase (12, 53). In addi-
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FIG. 1. Indecers and target genes of the Nri2-Keapl sys-
fem. ’
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tion to phase 2 detoxifying enzymes, we demonstrated that
induction: of antioxidant proteins during oxidative stress de-
pends on Nrf2 activation (35). In this category of genes, heme
oxygenase-1, ubiquitin/PKC-{-interacting protein Al70,
peroriredoxin 1, the heavy and Tight chain of ferritin, cata-
lase, glutathione peroxidase, superoxide dismutase, and thio-
redoxin were shown to be regulated by Nrf2 (12, 17, 35, 46,
52,74). :

Glutathione (GSH) is an effective scavenger of electrophiles
and ROS that are generated during chemical metabolism
within cells. Thus, it s important that the gene expression of -
v-glutamyleysteine synthetase (y-GCS), the rate-limiting en-
zyme in GSH biosynthesis, is well regulated in order to main-
tain intracelivlar levels of GSH. Nrf2 controls both the basal
and inducible expression of genes encoding the heavy and
light chains of yv-GCS (11, 12, 92). In some cells, cystine/
glutamate exchange fransport by system X 1s crucial for the
maintenance of GSH levels. Nrf2 has also been demonstrated
1o control expression of the gene encoding xCT, one of two
protein components of system X7 (78). .

Chemicals conjugated to GST or similar are actively re-
moved from cells, and factors involved in this elimination
process are now designated as phase 3 detoxifying proteins.
Multidrug resistance-associated protein 1/ATP-binding cas-
sette transporter C plays an imporiant role in the cellular ex-
trusion of ctonjugated metabolites and is induced by elec-
trophiles in an Nri2-dependent manner (29). We recently
found that CD36, a gene encoding the scavenger receplor that
mediates the uptake of oxidized Jow-density lipoproteins, is
also a target of Nif2 in vascular smooth muscle cells (36).
This result implicates Ntf2 as an important signaling pathway
compotent in atherosclerosis, ‘

Some transcription factors, including regulatory proteins of
phase 2 genes, are also regulated by Nrf2. The level of Nrf2
transcription itself is basically unchanged before and after
treating cells with phase 2 inducers. However, in koratino-
cytes, Nrf2 appears to autorsgulate its own expression through
an ARE/EpRE-like sequence (54). Some oxidative siress was
shown to induce the expression levels of small Maf proteins
and Keapl (19, 61, G6, 83, 84). It is suggested {hat induction
of these genes results in a negative feedback regulation of
phase 2 induction. Ntf3, another member of CNC-type bZIP
proteins, was up-regulated in Nrf2-deficient skin (9).

Finally, several groups have recently tried to identify Nrf2-
target genes systematically by use of a microarray-based sur-
vey (56, 58, 59, 85). Their resulls suggested that the Nri2-
Keapl pathway might modwlate in excess of 200 genes, We
identified Nef2-dependent induction of most subunits of the
265 proteasome by antioxidants (56). The promeoter of the
PSMBS snbunit of the 265 proteasome was analyzed by re-
porier gene and chromatin immunoprecipitation assays, and
its tandem ARE/EpRE sequences were shown to be direct tar-
gots for Nrf2 (55). Induction of the 26S proteasome may pro-
vide an efficient means for eells to survive couditions of vari-
ous stresses that collectively enhance the likelihood of chronic
disease. Heat shock proteins are also inducible by the Nrf2-
dependent pathway (56). Accumulation of unfolded pokypep-
tides following oxidative stress can disturb normal cellular
functions and trigger apoptosis. These chaperone proteins, to-
geiher with the protcasome system, play an essential role in
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response to stress by repairing and removing damaged pro-
teins.

ROLES OF Nrf2
IN THE DEFENSE MECHANISM

As Nrf2 regulates various cytoprotective genes, it seems
lo serve as a key factor in the protection against toxic xenobi-
ofics. Without Nrf2, induction of cytoprotective enzymes is
insufficient and the susceptibility of cells to toxic xenobi-
otics, including acetaminophen, butyrated hydroxyioluene,
and dies¢l exhaust, is increased (6, 12, 25). Moreover, Nrf2
has been implicaied in the protection against oxidative dam-
age induced by acute pulmonary injury and hyperoxia (14,
17, 18). Elimination of Nrf2 also enhances the sensitivity of
neurens and astroeyles 1o oxidative stress by reducing both
constitutive and indneible gene expression of cytoprotective
genes (58, 59). These studies demonstrate that Nrf2 is funda-
mental to defense against ROS and imply that Nrf2 is in-
volved in the pathogenesis of lung, neural, and other chronic
diseases. The redox status of wild-type and Nrf2-deficient
mice was measured using a combination of real-time electron

paramagnetic resonance imaging and spin probe kinmetic

analysis (31) and clearly showed that Nrf2 functions in the re-
ductiont of ROS in vive (31). Nrf2-deficient mice also form
higher levels of DNA adducts following exposure fo carcino-
gens such as aflaloxin Bl, diese]l particulate matter, and
benzo[alpyrens (6, 52, 77). In addifion, the effects of cancer
chemopreventive reagents such as oliipraz and suwlforuphane
are abolished in ice deficient in Nrf2 (26, 52, 53, 76, 77).
Functions of Nrf2 in cell survival are also clear (20, 58, 59,
67) and thought to be mediated at least partially by inhibition
of the FAS pathway (49, 67).

Recently, Nrf2 target genes were suspected to play antiine
flammatory roles, and the influence of Nrf2 during acute in-
flammation was explored The persistence of inflammatory
cells in Nrf2-deficient mice was observed during carragecnan-
induced pleutisy (41). In endothelial cells, overexpression of
Nrf2 inhibited the humor necrosis factor-a-mediated induction
of vascular cell adhesion molecule-1 gene expression, which is
important for monocyte recruitment during the inflammatory
response (16), Laminar shear stress, which acts as an anfi-
inflammatory signal, activated phase 2 genes in an Nrf2-
dependent manner. The induced expression of proinflamma-
tory cylokines in wounded skin was delayed in Nrf2-deficient
mice (9). Aged Nrf2-deficient female mice developed lupus-
like autoimimme nephritis (94). All these results suggest that
Nrf2 plays important roles in antiinflammation,

REGULATION OF Nrf2

The activities of Nrf2 in the defense system allowed us to
imagine that constitutive expression of Nrf2 causes animals
1o become more resistant to stress, but this is not the case.
Keapl-deficient mice in which Ntf2 is constitutively active
die within 3 weeks after birth (90). Therefore, confrolled Nrf2
activity is quite important for our licalth.
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FIG.2. Model of Nrf2-Keapl system regulation,

Nrf2 activation is regulated in several steps. Some key fea-
tures emerged from an extensive study of the molecular mech-
anism of Nrf activation in phase 2 induction. In this section,
we discuss current models for Nrf2 regulation (Fig. 2).

DNA binding

The regions homologous between mouse Nrf2 and chicken
Nrf2 (ECH) are called Neh (Nrf2-ECH homology) domains.
Six Neh domains, Nehl to Neh6, have been identified (39)
(Fig. 3). The Nehl domain contains a bZIP structure that is
required for DNA binding and dimer formation, Nrf2 cannot
bind to the ARB/EpRE as a monomer or 2 homodimer and
niust heterodimerize with one of the small Maf proteins for
DNA binding and transactivation {37, 44, 84). The require-
ment for a “GC” metif in the ARE/EpRE conscnsus scquence
strongly supports the contention thal small Maf proteins
serve as the heterodimeric partner molecules for Nif2 (51)-
Indeed, we recently demonstrated genetically that small Maf
proteins are required for Nrf2 activilies iz vvo using com- -
pound mutant mice (69). ¢-Jun and activating transcription
factor 4 (ATF4) were also reported to form heterodimers with
N1f2 in vitre and to enhance the activity of ARE/EpRE-driven
reporter genes. It is possible that these proieins also act as
parttner molecules for Nef2 in some conditions (30, 88).

DNA binding was also controlled through competition
with other ARE/EpRE-binding proteins. Among these fac-
tors, the roles of the iranscriptional repressors Bachl and
Bach2 are the most infriguing, particularly because it has
been established that Bach) antagonizes the function of Nrf2,
especially in heme oxygenase-1 gene expression (82), and
that oxidative stress induces the mmclear accumulation of
Bach2 while reducing ARE/EpRE-dependent reporter gene
expression (70). Nrfl is also fascinaling. Chimeric mouse
analysis using Nrfl-deficient embryonic stem cells indicated
that loss of Nif1 results in impaired expression of antioxidant
genes and increased oxidative stress in the liver (15). Mouse
embryonic fibroblasts (MEF) from Nrfl-deficient embryos
displayed enhanced sensitivity to oxidative stress and an in-
¢reased accumulation of free radicals (57). MEF deficient in
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FIG.3. Neh domains in Nrfl,

both Nrfl and Nrf2 contained a higher level of intracellular
ROS and were more sensitive lo oxidative stress than Nrf2-
single deficient MEF (60). These results indicate that the
functions between Nrf2 and Nrfl are redundamt, ewpecm]ly in
liver cells.

Transactivation

Nelhd and NehS domains have both been shown to be im-
portant for the transactivation activity of Nrf2 (39, 48) (Fig.
3). Nehs is highly similar to the domain in p45 NF-E2 that is
responsible for associating with coactivator CREB binding
protein {CBP). The Neh4 domain contains a TRAM binding
motif to which CBP and its inhibitor adenovirus E1A protein
were shown to interact. Tndeed, CBP or p300 was shown to
mediate Nrf2 transactivation activity (45, 97). Among CNC-
type bZIP family proteins, Nrf2 was found to be the most po-
fent transcriptional activator and typically activates teporter
gene lranscription by nearly 100-fold (47, 86). The synergis-
tic activity of Nehd4-CBP and Neh5-CBP can explain the
strong activation potential of Nrf2 (45).

Intracellular localization

Deletion of the N-terminal Neh2 domain enhanced the
transcriptional activity of Nrf2 (39} (Fig. 3). This observation
suggesied that the Neh2 domain recruits a negative regulator
of Nrf2. This repressor, Keapl, was identified in a yeast two-
hybrid screen using the Neh2 domain as bait (39). Keapl is a
member of the Keleh family of proleins that possess two
characteristic domains, the broad complex/tramtrack/bric-a-
brac (BTB) domain and the double glycine repeat (DGR) do-
main (1) (Fig. 4). In common with other Kelch family pro-
teins, Keapl directly interacts with actin through the DGR
domain, thus colocalizing with the actin cytoskelston in the
cytoplasm (43). In the absence of phase 2 inducers, Nrf2 as-
sociates with Keapl in the cytoplasm, but upon the addition
of electrophiles, Nrf2 translocales into nuclei and concludas
in activation of target gene transcription (22, 39).

As the association and dissociation of the Nrf2-Keapl
complex was considerad to ba the most significant step for
regulating Nrf2 aclivity, residues essential for the inferaction

of each protein were analyzed. From this analysis, the ETGE
motifin the Neh2 domain was identified as a Keapl-interacting
site by a yeast reverse two-hybrid screen (48) (Fig. 3). In the
case of Keap], a point mutation at S¢r104 in the BTDB domain
of Keapl decreased the association of Keapl with Nif2 (99).
Keapl was demonstrated to self-associate, and the mutation
at Ser104 disrupts this Keapl dimerization. In contrast, dele-
tion of the BTB domain did not impair Keap1 activity in our
transfection analysis {(43). Therefore, the importance of Keapl
dimerization should be elucidated.

The interaction between Nrf2 and Keapl was also demon-
strated at the genetic level (90). Keapl-deficient mice died
within 3 weeks after bicth due to hyperkeratosis in the esoph-
agus and forestomach. In the liver of these mice, a high
steady-state nuclear accumulafion of Nrf2 and constitutive
expression of phase 2 genes were observed Importantly,
these phenotypes were all rescued in compotnd Keap!-Nrf2-
deficient mice. Qur results strongly suggest that Keapl acts
as an indispensable regulator of Nrf2,

Protein stability

Recently, we and other groups demonstrated the rapid
degradation of Nrf2 by the ubiquitin-proteasome pathway and
the stabilization of Nrf2 by phase 2 inducers (3, 40, 63, 72,
80, 81). By analyzing LacZ or green fluorescent protein fu-
sion proteins, the Neh2 domain was shown to be responsible

Nef2 binding
Sell-association Actin binding
mouse Keapti || T L
BTB IVR DGR

Fopression of NIf2 activity l .
Ublquitination and degradation of Nif2

Responsa to inducars l

FIG.4. Crifical cysteine residnes in monse Keapl.
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for mediating the rapid degradation of Nrf2, in turn suggest-
ing that Keapl participates in the regulation of Nrf2 degrada-
tion (40). Indeed, the addition of Keapi, but not an ETGE
motif-deleted mutant, destabilizes Nif2 (63), and Cys273 and

Cys288 in Keap! are required for Keapl-dependent ubiquiti- .

nation of Nrf2 (96) (Fig. 4). Interestingly, BTB proteins, in-
¢luding Kelch family proteins, were recently reported to be
substrate-specific adaptors of Cul3-based E3 ubiquitin ligase
complexes (27, 28, 75, 93). One plausible model is that
Keap! binds to Cul3 and facilitates Nrf2 degradation as an
Nrf2-specific adaptor of E3 ubiquitin ligase.*

Sensing inducers

Identifying molecules that sense phase 2 inducers and
transdnce their signals fo Nrf2 have become het topics. Induc-
ers of phase 2 genes vary as in nine structurally diverse chem-
ical groups (23). Although these inducers share only a few
properties, they can all modify sulfhydryl groups by alkyla-
tion, oxidation, or reduction. Recognition of these propertics
suggested that cells possess primary semsors equipped with
highly teactive cysteine residues. Infereslingly, Keapl con-
tains 27 cysteine residves, and several of them are reactive,
implying that Keapl might be a direct target of phase 2 indue-
ers. Recently, we showed in a cell-free system that selective
eysieine amino acids in Keapl could react directly with dex-
amethasone mesylate, a sulfhydryl reactive inducer, and trig-
ger the release of Ntf2 from Keapl (24). The direct interaction
of Keap? and the phase 2 inducer 15-deoxy-A>W.prostaglan-
din I, (15d-PGJ,) was also demonstrated (41). The most reac-
five tesidues in Keap! were Cys257, Cys273, Cys288, and
Cys297 present in the intervening region (IVR) (24) (Fig. 4).
Among them, mutation of Cys273 or Cys288 resulted in the
inability of Keap1 1o repress Nrf2 activity (91, 96). These cys-
teine residues were further demonstrated fo be required for
Keapl-dependent ubiquitination of Nif2 (96). It is possible
that phase 2 inducers directly target these residues, with the
resulting modification decreasing sbiguitination activity. The
BTB domain may be an alternative target for phase 2 inducers,
because Zhang and Hammink (96) further elucidated that a
Cys151 mutation in the BTB domain makes Keap! a constitu-
tive repressor of Nrf2 (Fig. 4).

Tn addition to Keapl, protein kinases might be candidates
as sensor molecules of electrophiles or oxidative stress, be-
catse activation of protein kinase C (PKC}) (8, 32, 73), exfra-
ceflular signal-regulated kinases (ERK) (10, 93, 100}, p38
mitogen-activated protein kinase (MAPK) (2, 7, 10, 98, 100},
MAPK/ERK kinasc-1 (79), MEK kinasc 1 (95), phosphati-
dylinositol 3-kipase (PI3K) (42, 71), aud PER-like endoplas-
tnic reticulum kinase (PERK) (20) was observed afier treat-
ment with phase 2 inducers. Furthermore, phase 2 gene and
ARE/EpRE-driven reporter gene induction was blocked by
specific kinase inhibitors. Among the kinases, PKC and
PERK are remarkable because both can phosphorylale Ntf2
directly i vitre and in vive (20,32, 33). A coimmunoprecipi-
tation assay revealed that phosphorylation of Nrf2 by PKC
promotes its dissociation from Keapl and that a Ser to Ala

*Specific association of Keupl with Cul3 has been confirmed dur-
ing editorial process of this review (101).
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mutation at amino acid 40 in Ntf2, which is the target site for
PKC, decreased this PKC-dependent dissociation (33) (Fig.
3). On the other hand, PERK-dependent phosphorylation of
Nri2 also triggers dissociation of the Nrf2-Keapl complex
(20). I is possible that PKC and/or PERK or their upstream
signaling melecules may be sensors for oxidative stress,

EVOLUTIONARY CONSERVATION
OF THE Nrf2-Keapl SYSTEM

The importance of the bZIP protein in cellular defense has
been shown in yeast cells (87). The bZIP protein Yapl in bud-
ding yeast and Pap1 in fission yeast regulate the gene expres-
sion of various cytoprotective proteins, such as y-GCS,
thioredoxin, the hsp70 family member, NAD(P)II oxidore-
ductase, glutathione transferase, catalase, and ATP binding
cassette-type transporters. Both Yapl and Papl are cytoplas-
mic in unstressed cells and translocate into nuclef in response
o treatment with oxidants, electrophiles, or beavy metals.
These characteristics are quite similar to those of N1f2. The
clear difference between the Yap1/Papl and Nrf2 systems is
the regulatory mechanism of cytoplasmic retention and nu-
clear translocation. In budding yeast, redox signals promote
the formation of disulfide bonds between the intermolecular
cysteines of Yapl that mask the C-terminal nuclear export
signal domain, resulting in inhibition of Yapl nuclear export
{21)}. Cyloplasmic relention molecules such as Keapl are not
required for Yapl. and Nrf2 probably does not contain & nu-
¢lear export signal domain as in Yapl. ‘

In nematode, SKN-1 was demonstrated to regulate phase 2
detoxifying genes through constitutive and stress-inducible
mechanisms (4). Jis binding sites exist in the upstream te-
gions of y-GCS heavy chain, glutathione synthetase, NADH
quinone oxidoreductase, GST, catalase, and superoxide dis-
wutase. SKN-1 mutants are sensitive to oxidative stress and
have shortened life spans. Analysis of green fluorescent pro-
tein fusion proteins revealed that beat or paraquat treatment
induced the nuclear acoumulation of SXN-1. Again, the func-
tions of SKN-1 seem to be similar to those of Nrf2. Although
SKN-1 shares homology with Nrf2 in both the N-terminal
halves of the Neh2 aitd Nell domains, it lacks an ETGE
motif or leucine zipper domain. Indzed, homologues for
Keap! or small Maf proteins have not been found in C. ele-
gans, implying that the regulatory mechanisms of SKN-1 ac-
tivationt may be different from those for Nrf2.

Tn fruit fly, CNC protein has homology with Nrf2. CNC
was originally identified as a regulatory protein for 1abral and
mandibular development (64). So far, no study has been re-
ported about CNC functions in the defense system. Interest-
ingly, CNCC protein, one of three isoforms of CNC, pos-
sesses a Neh2-related region contaiting an ETGE motif (48).
In addition, a Keapl-related gene and a small Maf protein
were identified in Drosophila (48, 89). T common with Nrf2
in vertebrates, it is possible that CNCC plays impottant roles
in the defense mechanism in fruit flies.

Nrf2 was identified it mouse, human, chicken, and ze-
brafish and supposedly exists in all other vertebrates (48),
Gene knock-down analysis of zebrafish Nrf2 using morpho-
linophosphorodiamidate-modified antisense oligonucleotide
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revealed that Nrf2 is required for phase 2 induction in fish, as

it is in mammal, Keap] also exists in zebrafish and was-

shown 1o interact with and repress the activity of zebrafish
Nrf2, The molecular mechanism regulating the Nrf2-Keapl
systemn may be conserved amoug vertebrates.

CONCLUSION

Recently, Nrf2 has been found to be activated by endoge-
nous products of oxidative stress or other stress generated in-
sidz the body, such as 4-hydroxynonenal (36, 73), oxidized
low-density lipoproteins (36), heme (2, 46, 71}, and nitric
oxide (10, 42). In addition, prostaglandin 15d-PGJ, (41) and
keratinocyte growth factor (9) can induce Nef2-dependent
gene expression. As these agents function as signaling mole-
cules in many systems, the Ny[2-Keapl sysiem may be con-
sidered as a central component of cellular defense networks.
Identification of molecules sensing phase 2 inducers and
transducing their signals to Nrf2 will greatly conttibute to a
better understanding of these networks. A number of signifi-
cant findings were reported in the [ast couple of years, and
the molecular mechanism activating the Nrf2-Keapl pathway
is gradually being unveiled. The complete picture of the Nrf2-
Keap1 system should come info view in the near future.
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bric-a-brac; bZIP, basic leucine zipper; CBP, CREB binding
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phile responsive element; ERK, extracellular signal-regulated
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thione; GST, glutathione S-transferase; 1VR, intervening re-
gion: Keapl, Kelch-like ECH associating protein 1; MAPK,
mitogen-activated protein kinase; MEE. mouse embryenic fi-
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PI3K, phosphatidylinosito]l 3-kinase; PKC, protein kinase C;
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