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CD40. llgand (CD40L) is ectoplcelly expressed on’ B cells in
pahents with systemié lupus’ erythematosus (SLE) “and, lupus-"'

prone BXSB.mice. To assess the’ role’ of the. ectopic: -CD40)
: expressmn in development of. SLE _We have estabhshed trans-
~ genic mice expresslng CD40L
14-mio-old - CD40L-tramsgenl

antjhnstone Abs. Moreover, approximately half oi“ the trans
: genic -mice developed glomerulnnephritxs with immurie:com.

plex déposition, whereas thé k:dneys of the normal httermates :;;
“showed either no pathological findinggor only mlld histologlcal o

. changes. These results indicate that: CD40L on B cells"'causes
lupus-like dlsease in the presence of yet unknown environme

tal factors that by themselves ‘do not induce lhe disease. Thus, o
ectoplc CD40L, expresslon onB. cells may play a crucial role in

development of SLE The Joumal of Immunalagy, 2002; 168
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ystemic Jupus erythematosus {SLE)’ is a chronic autoim-
mune disease manifesting inflammatory damage in a va-
tiety of organs including glomerulonephritis (1, 2). The
etiology of SLE involves both genetic and environmental factors
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(3), although the details are Jargely unknown. This disease is char-
acterized by production of autoantibodies to varicus nuclear com-
ponents (1, 2). Lupus-like disease is induced by abnormalities in
either regulators of B cell Ag receptor signaling such as Lyn (4-
6), Src homology domain 2-containing: protein tyrosine phospha-
tase (7), and FeyRIIB (8), or regulators of apoptosis such as Bim
{9). However, none of the abnormalities of these molecules is
shown so far in SLE patients.

CDA40 is a member of the TNFR family and is expressed in cells
such as B cells, macrophages, and dendritic cells (10, 11). Its li-
gand, CD40 ligand (CDA40L), is a member of the TNF ligand fam-
ily, expressed mainly on activated T cells. CD40/CD40L plays a
pivotal role in cell activation. In B cells, interaction with CD40L
promotes proliferation and survival of B cells, Ig isotype switch-
ing, and germinal center reaction (11). In patients with SLE,
CD40L Has been reported to be overexpressed on T cells and ec-
topically expressed on B cells (12, 13). Ectopic expression of
CD40L on B cells is also observed in lupus-prone BXSB mice
(14). Clegg et al. (15) have demonstrated that constitutive CD40L
expression on T cells induces thymic atrophy due to enhanced
apoptosis of thymocytes. They also showed inflammatory bowel
disease and thickening of the glomerular capillary: wall in the
transgenic mice and suggeésted that these pathological changes may
be due to abnormal T cell selection in thymus. However, autoan-
tibody production or inflammatory changes in the glomeruli were
not demonstrated in these mice.

We have established transgenic mouse lines expressing CD40L
ectopically on B cells.® At 8-12 wk of age, CD4(L-transgenic
mice show increase of both B cell number and serum Ig level by
2-fold and 5-fold, respectively. B cells are resistant to apoptosis
induced in vitro, probably due to constitutive CD40 signaling in B
cells. However, B cells are not spontaneously activated in these
mice, because almost ail the B cells are quiescent in vivo and show
normal expression of surface markers for matoration and activa-
tion of B cells, such as IgD, IgM, CD23, and CD86. Remarkably,
these mice show normal T cell development in thymus and exhibit
only mild inflammatory bowel disease in contrast to the finding in
transgenic mice expressing CD40L on T cells. In this study we
demonstrate that CD40L-transgenic mice spontanecusly produce
autoantibodies such as anti-DNA Abs and develop lupus-like glo-
merulonephritis as they age. These findings indicate that ectopic

4 Y, Aiba, T. Higuchi, T, Nomura, J, Matsuda, K. Mochida, K. Furukawa, M. Suzuki,
H. Kikutani, T. Tokvhisa, T. Takemori, T. Honjo, and T. Tsubata. CD40 signaling
promotes maturation of germinal center B cells in vivo. Submitted for publication.
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ABSTRACT  The common e-subunit of glyco-
protein hormones (CGe) is a core protein shared by
follicle-stimulating hormone {FSH), luteinizing har-
mone (LH), and thyroid-stimulating hormone {TSH). In
order to obtain a molecular basis for an efficient
superovulation technique applicable to a wide range of
animal species and to discuss the phylogenetic aspect
based on molecules related to the reproductive system,
we determined cDNA sequences of CGa in seven
laboratory animals: the guinea pig, Mongolian gerbil,
golden hamster, mastomys, Japanese field vole, the
JF1 strain of Mus musculus molossinus, and rabbit.
Comparison of the inferred CGa amino acid sequences
of these animals and cther mammals (human, mouse,
rat, cow, pig, and sheep) showed that the signal
peptides and the first ten residues at the N-terminus
of the apoprotein were variable, while the rest of the
apoproteins were highly censerved. in particular, all
rodents had a leucine residue at the apoprotein
N-terminus, except the guinea pig, which had a pheny-
lalanine residue, as in the cow, pig, sheep, and rabbit.
Phylogenetic trees constructed from amino acid se-
guences svggest a closer relationship between the gui-
nea pig and articdactyls than to rodents, confirming the
taxonomic peculiarity of the guinea pig. Mol Reprod.
Dev. 62: 335-342, 2002. ® 2002 Wiley-Liss, Inc.

Key Words: superovulaticn; pituitary; phylogeny

INTRODUCTION

A wide variety of laboratory animals are currently
used as experimental models for scientific studies
(Poole, 1986). In addition to the more commonly used
mice and rats, other species currently used as experi-
mental models include: rabbits (Oryctolagus cuniculus)
in immunology and allergy studies; guinea pigs {Cavia
porcellus) in the fields of bacteriology, immunolegy, and
nutrition; golden hamsters (Mesocricetus auratus) in
virology; Japanese field voles (Microtus montebelli) as a
nutritional model for herbivores; Mongolian gerbils
(Meriones unguiculatus) as an epilepsy model; mast-
omys {(Praomys coucha) in oncology and virclogy
studies; and wild mice, like the JF1 strain of Mus
muscilus molossinus, in genetic studies (Koide et al.,
1998). The production and storage of these species for
laboratory analyses could be more efficient if the

© 2002 WILEY-LISS, INC.

techniques of embryo/oocyte/sperm freezing often used
in lab mice could be applied to such a wide array of
animals.

The superovulation induction methed using gonado-
tropins is an embryo manipulation technique that is
essential for facilitating the production and storage of a
wide range of laboratory animals. Before establishing
this technique as an effective and widespread labora-
tory procedure, it is first necessary to understand the
species-specific endocrinological and reproductive pro-
cesses of target animals. Most laboratory rodents
show incomplete estrous cycles, in which they lack
the active luteal phase in a nonpregnant cycle. There
are, however, some exceptions: guinea pigs exhibit a
complete estrous cycle and active luteal phase (Reed
and Hounslow, 1971); and Japanese field voles are
copulatory ovulators (Goto and Hashizume, 1978), as
are other voles (Breed and Clarke, 1970) and rabbits
(order Lagomorpha). Despite these reproductive dif-
ferences, the selection of gonadotropins for ovulation
induetion in laboratery animals seems to be largely
dependent on the availability of pharmaceuticals
rather than on scientific data, such as the endocrino-
logical processes of the target animals.

Artificial ovulation with commercially available
gonadotropins is effective in many species, but there
are some exceptions and the results are not consistent
from one species to another. The combination of equine
chorionic gonadotropin (eCG) and human chorionic
gonadotropin (hCG) injections, which is a method
widely used for superovulation induction in mice, fails
to induce ovulation in guinea pigs (Rawson et al., 1979).
In rabbits, multiple injections of follicle-stimulating
hormone (FSH) are more effective at inducing super-
ovulation than a single injection of eCG (Hirabayashi
et al., 2000). Within laboratory mice, the variation in
response to exogenous gonadotropins between strains
is still a practical problem (Suzuki et al., 1996). The
reproductive processes involved in superovulation,
such as ovarian follicle growth and ovulation, are
governed by gonadotropins. Therefore, to establish
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ABSTRACT  The guinea pig represents an
excellent animal mode! for the study of reproduction
in humans and most domestic animals because unlike
the mouse and rat, it undergoes a complete estrous
cycle. In this study, we investigated the availability
of ovarian oocytes during the estrous cycle, and the
follicle stimulating hormone (FSH) receptor {FSH-R)
homologies between guinea pigs and other species, in
order to identify an effective gonadotropin and optimal
time-of-application for the induction of superovulation
in the guinea pig. The number of collectable ovarian
oocytes showed biphasic changes with peaks at the
midluteal and pre-ovulatory stages. On the other hand,
the number of oocytes that matured in vitro remained
constant (~10 cocytes) until day 14 post-ovulation
and increased thereafter. The deduced amino acid
sequence of the guinea pig FSH-R showed greater
similarity to the primate FSH-R than to the rodent FSH-
R, which suggests that commercially available human
menopausal gonadotropin (hMG) may be a better
inducer of superovulation in guinea pigs. Indeed,
significantly more oocytes (5.4 + 1.6, range 0-17,
n=10) were obtained from hMG-treated guinea pigs
at the pre-ovulatory stage than during spontaneous
ovulation (3.6+0.1, n=96; P<0.05), whereas
guinea pigs that received hMG at the midluteal stage
(n=3) did not ovulate. These results indicate that
hMG is an effective, albeit stage-dependent, inducer of
superovulation in the guinea pig, and that FSH-R
homologies should be taken into account when
choosing hormones for superovulation. Mol Reprod.
Dev. 64: 219-225, 2003.
© 2003 Wiley-Liss, Inc.

Key Words: guinea pig; superovulation; in vitro
maturation; FSH-receptor; hMG

INTRODUCTION

The guinea pig represents an excellent animal model
for studies of reproduction in humans and most domes-
tic animals, since it is the only laboratory rodent with
a complete estrous cycle, consisting of both follicular
and luteal phases that resembles those of humans

© 2003 WILEY-LISS, INC.

{menstrual cycle), cows, ewes, and pigs. In contrast,
most laboratory rodents like mice, rats, and hamsters
exhibit endocrinologically different, incomplete estrous
cycles, which lack functional luteal phases. Guinea pig
oocytes that have been matured in vitro, as well as
naturally ovulated cocytes (Yanagimachi, 1972}, can be
fertilized in vitro (Yanagimachi, 1974). Guinea pig
embryos can be cultured to some extent in semi-defined
media and, importantly, trophoblast outgrowths can be
observed in vitro in serum-free media (Suzuki et al.,
1993). Guinea pig and human blastoeysts undergo the
same interstitial-type implantation and generate syn-
cytiotrophoblasts, These features support the use of the
guinea pig as a more reliable model of human reproduc-
tion than mice or rats.

However, difficulties exist in the adoption of the
guinea pig model for reproductive research. A consider-
able animal population must be maintained because
guinea pigs have smaller litter sizes and longer gesta-
tion periods than other rodents. Another major problem
is the low availability of oocytes. Normally, guinea pigs
ovulate only a few oocytes (3.6 £0.1), as judged by the
number of corpora lutea (CL) (Suzuki et al., 1993).
Interestingly, injections of equine chorinonic gonado-
tropin (eCG) and human chorinonic gonadotropin
(hCG), which are often used to induce superovulation
in mice, are not effective in guinea pigs (Reed and
Hounslow, 1971; Donovan and Lockhart, 1974). Onlya
few other methods have been reported for the induction
of superovulation, including treatment with luteinizing
hormone (LH) (Terranova and Greenwald, 1981) or anti-
LH (Garza et al., 1984). The choice of gonadotropin
for ovulation induction in laboratory animals seems
to be dictated largely by the commercial availability of
the drug rather than by the endocrinoclogical status of
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We - synthesized a galactose derivative, N-octyl-4-epi-g-valien-
amine {NOEV), for a molecular therapy {chemical chaperone ther-
apy) of a human neurogenetic disease, B-galactosidosis {Gmy-
gangliosidosis and Morquio B disease). It is a potent inhibitor of
lysosomal B-galactosidase in vitro. Addition of NOEV in the culture
medium restored mutant enzyme activity in cultured human or
murine fibroblasts at low intracellular concentrations, resulting in
a marked dec¢rease of intracellular substrate storage. Short-term
oral administration of NOEV to a model mouse of juvenile G-
gangliosidosis, expressing a mutant enzyme protein R201C, re-
sulted in significant enhancement of the enzyme activity in the
brain and other tissues. Inmunochistochemical stain revealed a
decrease in the amount of Gumi and Gaq in neuronal cells in the
fronto-temporal cerebral cortex and brainstem. However, mass
biochemical analysis did not show the substrate reduction ob-
served histochemically in these limited areas in the brain probably
because of the brief duration of this investigation. Chemical
chaperone therapy may be usefu) for certain patients with S-gal-
actosidosis and potentially other lysosomal storage diseases with
central nervous system involvement.

H ereditary deficiency of Iysosomal acid B-galactosidase (-
galactosidosis) causes two clinically distinct diseases in
humans, Gu-gangliosidosis and Morquio B disease (1). The
mode of inheritance is autosomal recessive. Gp-gangliosidosis
is a generalized neurosomatic disease occurring mainly in early
infancy, and rarely in childhood or young aduits. Morquio B
disease is a rare systemic bone disease without central nervous
system involvement.

Glycoconjugates with terminal B-galactose residues accumu-
late in tissues and urine from patients with these clinical
phenotypes. Ganglioside Gwa; and its asialo derivative Gag
accumulate in the Gu-gangliosidosis brain. High amounts of
oligosaccharides derived from keratan sulfate or glycoproteins
are detected in visceral organs and urine from Gum-
gangliosidosis and Morquio B disease patients.

At present only symptomatic therapy is available for human
B-galactosidosis patients. Allogeneic bone marrow transplanta-
tion did not modify subsequent clinical course or cerebral
enzyme activity in a Portuguese water dog affected with G-
gangliosidosis (2). Amniotic tissue transplantation was not ef-
fective in a patient with Morquio B disease (3). Enzyme re-
placement therapy conducted for Gaucher disease and other
lysosomal storage diseases is not available at present for B-gal-
actosidosis.

Recently we reported results of a molecular approach {chem-
ical chaperone therapy) for restoration of mutant w«-galactosi-

15912-15917 | PNAS | December 23,2003 | vol. 100 | no. 26

dase in Fabry disease. Galactose and its structural analog,
1-deoxygalactonojirimycin, restored residual enzyme activity in
cultured human lymphoblasts from patients with a-galactosidase
deficiency (4, 5) and transgenic (Tg) mouse tissues expressing a
mutant enzyme causing Fabry disease (5, 6). Some mutant
proteins are unstable at neutral pH in the endoplasmic reticu-
lum/Gelgi apparatus and are rapidly degraded without appro-
priate molecular folding (7, 8). Certain exogenous compounds
that inhibit enzyme activity in vitro bind to the enzyme intra-
cellularly, resulting in the formation of a complex that stabilizes
and transports the catalytically active enzyme to lysosomes.
Under the acidic condition in lysosomes, the complex dissociates,
and the mutant enzyme remains stabilized and functional.

In this study, we synthesized a compound for possible molec-
ular therapy of brain pathology in B-galactosidosis and con-
firmed its restorative effect on the model mouse brain after
short-term oral administration.

Materials and Methods

Synthesis of a B-Galactosidase Inhihitor, N-octyl-4-epi-g-valienamine
{NOEV). We chemically modified a glucocerebrosidase inhibitor
(Fig. 14; compound 1) (9-11} by replacing the ceramide moiety
with simple aliphatic chains (11, 12) and multistep epimerization
at C-4 (13). In this study, we chose an N-octyl derivative,
N-octyl-4-epi-B-valienamine (Fig. 1B) for experimental studies
of chemical chaperone therapy (5) in murine Gu;-gangliosidosis.
We use the term NOEV as abbreviation of this compound. Its
structure was assigned by a combination of COSY, total cor-
relation spectroscopy (TOCSY), and heteronuclear sequential
quantum correlation (HSQC) NMR spectroscopy. NMR spectra
were recorded with a Vartan UNITYINOVA 500 ['H (500
MHz) or 1*C (125 MHz)] spectrometer, Chemical shifts were
expressed in ppm downfiled from the signal for internal Me,Si
for solutions in CD;0D. The sample temperature was 23°C, and
concentration was 10 mg/ml.

Cell Culture and NOEV Experiments. Human and murine fibroblasts
were cultured and used for enzyme inhibition/restoration ex-
periments. Fibroblasts from human patients with Gpy-
gangliosidosis or Morquio B disease were kindly provided by

Abbreviations: NOEVY, N-octyl-4-epi-g-valienamine; KO, knockout; Tg, transgenic; X-Gal,
5-bromo-4-chloro-3-indolyl-g-p-galactopyranoside.
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Abstract

Ablation of GLUT4 in adipose tissues results in whole body insulin resistance and hlgh-fat feeding down-regulates GLUT4
mRNA in white adipose tissues. Previous studies demonstrated that adipose tissue specific element(s) (ASE) of the murine GLUT4
gene is located between —551 and —442 relative to transcription start site and that high-fat responsive element(s) (HFRE) for down-
regulation of the GLUT4 gene is located between bases —1001 and -442. To further characterize these regulatory elements, the
regulation of GLUT4 minigenes containing —70!, —551, and -506 bp of S-flanking region was studied in transgenic mice, GLUT4
minigene mRNA from -506 transgenic mice did not express in adipose tissues, indicating that ASE located within 45 bp is located
between bases —551 and -506. An 80-kDa of nuclear DNA binding protein was found to bind to a -TCCTCGTGGGAAGCG-
element located between bases =551 and —537. High-fat diet feeding down-regulated GLUT4 minigene mRNA in —701 transgenic
mice, but not in —551 transgenic mice, indicating that HFRE is located within 150 bp between bases -701 and -551 of the GLUT4

gene and is distinct from ASE.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Glucose transport; Fat intake; Adipose tissue; Insulin resistance; Transporter protein

Glucose transport into the cell is the rate-limiting step
in insulin-activated glucose clearance under physiologi-
cal conditions [1-3). GLUT4, the insulin-responsive
glucose transporter, is expressed in skeletal muscles,
heart, and adipose tissues, and plays a major role for
glucose transport [4]. Although skeletal muscle tissue
accounts for the majority of whole body insulin-stimu-
lated glucose uptake, adipose tissues also play an im-
portant rele for maintenance of insulin sensitivity

¥ Abbreviations: ASE, adipose tissue specific element(s); HFRE,
high-fat responsive element(s); WAT, white adipose tissue; BAT,
brown adipose tissue; C/EBP, CCAAT/enhancer-binding protein;
PPAR, peroxisome proliferator-activated receptor; LXR, liver X,
receptor,
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in vivo. Especially, the amount of GLUT4 is one of the
critical factors in adipose tissues; the insulin resistance in
skeletal muscles is a result of impaired signaling path-
way from insulin receptor to GLUT4 vesicle [5], whereas
a decrease of GLUTY protein is a major cause of insulin
resistance in adipose tissues [6]. Transgenic mice with
overexpressed GLUT4 selectively in adipose tissues
display increased insulin sensitivity [7]. Ablation of
GLUT4 in adipose tissues caused insulin resistance in
skeletal muscles by unknown mechanism(s) [8]. In the
experimental high-fat diet-induced insulin resistance, the
effect of the diet consumption to reduce GLUT4 gene
expression preferentially affects adipocytes [9). In addi-
tion, decreases in GLUT4 protein and mRNA levels in
white adipose tissues (WAT) but not in skeletal muscles
have been reported in NIDDM and obese patients
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ABSTRACT

The mastomys is a small laboratory rodent that is native to
Africa. Although it has been used for research concerning re-
productive biology, in vitro fertilization (IVF) and intracytoplas-
mic sperm injection are very difficult in mastomys because of
technical problems, such as inadequate sperm capacitation and
large sperm heads. The present study was undertaken to examine
whether mastomys spermatids could be used to fertilize oocytes
in vitro using a microinsemination technique, because sperma-
tids are more easily injected than mature spermatozoa into oo-
cytes. Most mastomys oocytes (80%-~90%) survived intracyto-
plasmic injection with either round or elongated spermatids.
Round spermatids had liftle oocyte-activating capacity, similar
to those of mice and rats, and exogenous stimuli were needed
for normal fertilization. Treatment with an electric pulse in the
presence of 50 tM Ca** followed by culture in 10 mM ScCl, led
to successful oocyte activation. After injection of round sper-
matids into preactivated oocytes, 93% of oocytes were normally
fertilized (male and female pronuclei formed), and 100% of cul-
tured cocytes developed to the 2-cell stage. However, none
reached term after transfer into recipient females. Elongated
spermatids, which correspond to steps 9-11 in rats, activated
oocytes on injection without additional activation treatment. Af-
ter embryo transfer, five offspring (6% per transfer) developed
to term., These results indicate that microinsemination with sper-
matids is a feasible alternative in animal species that are refrac-
tory to IVF and sperm injection and that using later-stage sper-
matids may lead to increased production of viable embryos that
can develop into normal offspring.

early development, embryo, gamete biology, in vitro fertilization,
spermatid

INTRODUCTION

Intracytoplasmic sperm injection (ICSI) is a technique
used to fertilize cocytes by delivering spermatozoa directly
into the ooplasm using micromanipulating devices. Mam-
malian ICSI was initially designed to examine the fertiliza-
tion steps in the coplasm after delivering sperm heads from
epididymal or testicular spermatozoa [1, 2]. Early ICSI ex-
periments were conducted with golden hamsters, because
these animals provided the best model for studying mam-
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malian fertilization [3-5] and because the injection proce-
dure was well tolerated by hamster oocytes [1]. However,
it was very difficult to evaluate the ability of fertilized oo-
cytes to develop into fetuses or offspring in the hamster,

-because hamster embryo development in vitro is arrested

at the 2-, 4-, and 8-cell stages. In 1995, Kimura and Yan-
agimachi [6] established highly reproducible ICSI in' mice
and confirmed that, in laboratory species, at least some oo-
cytes fertilized by direct injection with spermatozoa could
develop to term. Since then, immature sperm cells (sper-
matids and spermatocytes) [7-10], sperm with motility de-
fects [11], misshapen sperm [12], and freeze-dried sper-
matozoa [13] have been used to produce healthy offspring
in mice, and the range of ICSI applications has been sig-
nificantly expanded (for review, see [14]). In general, how-
ever, a high degree of skill is needed for successful ICSI
in rodents because of technical or biological problems, such
as fragile ococytes, large sperm heads (e.g., rats [15]), and
arrest of embryo development in vitro (e.g., golden ham-
sters [16]).

The mastomys (Praomys coucha) is a small rodent that
is native to Africa. It has good reproductive performance
under conventional breeding conditions and has been used
for biomedical research since its introduction to the labo-
ratory in the 1900s [17]. Although the mastomys provides
a good experimental model for studying oncology, parasi-
tology, virology, and endocrinology [17], its use for repro-
ductive biology, especially embryology, is limited because
of the poor availability of fertilized ococytes for experimen-
tation. Femnale mastomys respond well to the conventional
superovulation regimen for laboratory mice and rats, and
I10-30 ococytes per female are usually obtained (unpub-
lished results). However, hormonal treatment of females
fails to induce normal estrous behavior for unknown rea-
sons, and fertile mating rarely occurs [18]. In vitro fertil-
ization (IVF) of superovulated oocytes with epididymal
spermatozoa is possible, but fertilization efficiency and fer-
tilized cocyte developmental ability are too poor for IVF
to be practical [19]. This results, at least in part, from dif-
ficulty in capacitating mastomys spermatozoa and in main-
taining their motility [19]. For the same reason, artificial
insemination in this species is usually unsuccessful (unpub-
lished results). Additionally, ICSI is very difficult in mas-
tomys, because the oocytes are fragile and the sperm have
large heads.

An alternative method of in vitro oocyte fertilization is
the nse of immature sperm cells (spermatogenic cells), such
as spermatids. As in most mammalian species, the masto-
mys spermatid nucleus is smaller and softer than the sperm
nucleus and, therefore, should be more safely injected into
oocytes using smaller injection pipettes. In some species,
including mice [20], rats [21], rabbits {22}, and humans
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