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We have previously shown that mice inoculated intranasally with a wild-type baculovirns (Autographa
californica nuclear polyhedrosis virus [AcNPV]) are protected from a lethal challenge by influenza virus.
However, the precise mechanism of induction of this protective immune response by the AcNPV treatment
remained unclear. Here we show that AcNPV activates immune cells via the Toll-like receptor 9 (TLR9)/
MyD88-dependent signaling pathway. The production of inflammatory cytokines was severely reduced in
peritoneal macrophages (PECs) and splenic CD11c* dendritic cells (DCs) derived from mice deficient in
MyD88 or TLRY after cultivation with AcNPV. In contrast, a significant amount of alpha interferon (IFN-e)
was still detectable in the PECs and DCs of these mice after stimulation with AcNPV, suggesting that a
TLR9/MyD388-independent signaling pathway might also participate in the production of JEN-o by AcNPV,
Since previous work showed that TLRY ligands include bacterial DNA and certain oligonucleotides containing
unmethylated CpG dinucleotides, we also examined the effect of baculoviral DNA on the induction of innate
immunity, Transfection of the murine macrophage cell line RAW264,7 with baculoviral DNA resulted in the
production of the inflammatory cytokine, while the removal of envelope glycoproteins from viral particles, UV
irradiation of the virus, and pretreatment with purified baculovirus envelope proteins or endesomal matura-
tion inhibitors diminished the induction of the immune response by AcNPV. Together, these results indicate
that the internalization of viral DNA via membrane fusion mediated by the viral envelope glycoprotein, as well -
as endosomal maturation, which releases the viral genome into TLR9-expressing cetlular compartments, is

necessary for the induction of the innate immune response by AcNPV,

The baculovirus Autographa californica nuclear polyhedrosis
virus (AcNPV) has long been used as a biopesticide and as an
efficient tool for recombinant protein production in insect cells
(39, 42). Subsequently, its efficacy for the delivery of high-level
expression of foreign genes under the control of mammalian
promoters in infected mammalian cells was also demonstrated
(12, 26, 48). Since it causes no visible cytopathic effects, even at
high titers, and does not replicate in mammalian cells (49), this
baculovirus is now recognized as a useful viral vector, not only
for the expression of foreign proteins in insect cells, but also
for gene delivery to mammalian cells (4, 9, 12, 16, 26, 28, 37, 45,
48, 49, 53, 54).

AcNPV was also shown to be capable of stimulating inter-
feron (IFN) production in mammalian cell lines and can confer
protection from lethal encephalomyocarditis virus infections in
mice (18). We demonstrated that intranasal inoculation with
AcNPV induces a strong innate immune response and protects
mice from a lethal challenge of influenza A and B viruses (1).
Furthermore, inoculation with baculovirus induces the secre-
tion of inflammatory cytokines, such as tumor necrosis factor
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Emerging Infectious Diseases, Research Institute for Microbial Dis-
eases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Ja-
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alpha (TNF-a), interleukin-6 (IL-6), and IL-12, in RAW?264.7,
a murine macrophage cell line. However, the precise mecha-
nism of induction of the protective immune response by a
pretreatment with AcCNPV remained unclear,

Members of the IL-1 receptor/Toll-like receptor {TLR) su-
perfamily are key mediators of innate and adaptive immunity
(5). Toll, the first member of this superfamily to be identified,
was initially discovered as a factor involved in dorsoventral axis
formation in fly embryos and was later shown to participate in
host defense mechanisms (38). A family of TLRs exists in
mammals and has been shown to play an important role not
only in the recognition of a wide variety of infectious patho-
gens and their praducts, but also in protection of the host from
infections with pathogens. So far, 11 TLR family members and
their corresponding ligands have been identified, with TLR1
being the only orphan receptor among them. Different TLRs
have been shown to mediate immune responses to a variety of
different pathogen-derived elements. For example, TLR4,
TLRS, and TLR are essential for the recognition of lipopoly-
saccharides (LPS), bacterial flagellin, and bacterial DNA con-
taining unmethylated CpG motifs, respectively (21, 24, 27, 46).
TLR2 is implicated in the recognition of peptidoglycan (PGN)
and lipopeptides (7, 13, 50, 57), while TLR6 can associate with
TLR2 and recognize PGN and lipopeptides derived from my-
coplasma (44). On the other hand, TLR3 has been shown to
activate immune cells in response to virus-derived double-
stranded RNA (6). Although synthetic imidazoquinoline com-
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pounds and guanosine analogs with antiviral activities have
been shown to activate TLR7 and TLRS (25, 36), it was re-
cently demonstrated that single-stranded RNAs from RNA
viruses are the natural ligands of these receptors (17, 23). The
most recently identified TLR, termed TLR11, senses bacteria
that cause infections of the bladder and kidney (60). In sum-
mary, TLRs recognize specific components derived from
pathogens and activate a signaling cascade that causes proin-
flammatory cytokine production and subsequent immune re-
sponses.

TLRs share a common cytoplasmic Toll~IL-1 receptor
(TIR) domain. MyD88, also a TIR domain-containing protein,
associates with TLRs and acts as an adapter that recruits 1L-1
receptor-associated kinase and TNF receptor-associated factor
6 (TRAF6) to TLRs. Macrophages isolated from MyD88-de-
ficient mice fail to activate NF-«B and Jun N-terminal protein
kinase or to produce inflammatory cytokines in response to
microbial components such as lipopeptides, LPS, and CpG-
rich bacterial DNA (20, 52), indicating that MyD&8 is a critical
component in the signaling pathway that leads to the produc-
tion of inflammatery cytokines.

Viruses are obligate intracellular parasites; accordingly, viral
proteins synthesized in host cells bear modifications that reflect
the identity and characteristics of the host. Therefore, viral
particles do not display exclusively pathogen-associated molec-
ular patterns. Although the mechanisms by which the innate
immune response is induced by viral infection are poorly un-
derstood, there is increasing evidence suggesting that TLRs
function to detect viruses and trigger inflammatory responses.
For instance, respiratory syncytial virus and mouse mammary
tumor virus activate innate immunity through TLR4 (22, 34,
47), which is a signaling receptor for LPS. Similarly, hemag-
glutinin from wild-type measles virus was reported to activate
TLR2 (10), which also recognizes certain elements of gram-
positive bacteria and fungi. Herpes simplex virus type 1
(HSV-1) and human cytomegalovirus have also been shown to
recognize TLR2 (15, 35}, while vaccinia virus encodes proteins
containing amino acid sequences similar to the Tol/IL-1 re-
ceptor domain and inhibits IL-1-, IL-18-, and TLR4-mediated
signal transduction (11).

It was recently shown that HSV-1 and -2, whose genomes
contain abundant CpG motifs, can induce angiogenesis and a
variety of diseases, including herpes stromal keratitis, that pro-
duce chronic inflammatory responses via a TLRY/MyD88-de-
pendent signaling pathway (33, 40, 61). HSV-1 and -2 are also
able to trigger alpha interferon (IFN-a) secretion from plas-
macytoid dendritic cells through TLR9/MyD388-dependent sig-
naling (33, 40). The TLR9-mediated recognition of HSV by
immunocompetent cells suggests that this recognition pathway
may be important for the recognition of other DNA viruses.

For this study, we characterized the innate immune response
induced by AcNPV. Peritoneal macrophages and splenic
CDl1c™ dendritic cells obtained from TLRS or MyD88 knock-
out mice exhibited severe reductions in proinflammatory cyto-
kine production following stimulation with AcNPV, whereas a
significant amount of IFN-a was still detectable in these cells.
In addition, the frequency of CpG motifs in the ACNPV ge-
nome was similar to that of bacterial DNA and significantly
higher than that of mammalian DNA. Furthermore, stimula-
tion by AcNPV was eliminated by a treatment with inhibitors
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of endosomal acidification. These results indicate that the in-
ternalization of viral AcNPV DNA via membrane fusion by
envelope glycoproteins found in the endosome is required for
the induction of a TLR9/MyD88-dependent innate immune
response.

MATERIALS AND METHODS

Mice and cell culture. C57BLJ6 mice were purchased from Clea Japan, Inc.,
Tokyo, Japan. MyD88-deficient (MyD88™/~) mice were established as previously
described (2) and backcrossed more than eight times with C57BL/6 mice.
TLRS™~ mice were penerated as previously described (24). The mice were
injected intraperitoneally with 2 ml of 4% thioglycolate (Sigma-Aldrich Co., St.
Louis, Mo.), and cells were harvested 3 days later by peritoneal lavage. The
mouse macrophage cell line RAW?264.7 was purchased from Riken Celt Bank
(Tsukuba, Japan) and maintained in Dulbecco’s modified Eagle's medium (Sig-
ma-Aldrich} supplemented with 10% (volivol) heat-inactivated fetal calf serum
(FCS), 1.5 mM L-glutamine, 100 U of penicillin/ml, and 100 ug of streptomy-
cin/ml at 37°C in a 59 CO, humidified incubator.

Viruses and reagents. AcNPV was propagated in Spodoptera frugiperdu (S£-9)
cells in S£.6001I insect medium supplemented with 10% (volivol) heat-inacti-
vated FCS. A mutant baculovirus, AcNPVAS4, which lacks the gp64 envelope
protein and possesses the green fluorescent protein gene under the control of the
polyhedrin promoter in the gp64 gene locus, was generated (Y. Kitagawa et al.,
unpublished data). AcNPV and AcNPVA64 were purified as previously de-
scribed (1). The inactivation of ACNPV was petformed with a Stratalinker 2400
(Stratagene, La Jolla, Calif.) using short-wavelength UV radiation (UVC, 254
nm) at a distance of 5 em for 30 min on ice (1.6 X 10* mI/em?). The inactivation
of infectivity was verified by a plague assay with 5£-9 cclls.

AcNPV DNA was isolated from the purified virions by a treatment with 10 mg
of proteinase K (Sigma-Aldrich)/ml and 10% sodium dodecyl sulfate (SDS) in
sterile phosphate-buffered saline (PBS) for 2 h at 55°C. The viral DNA, was
purified by phenol-chloroform-isoamy| alcohol extraction, precipitated at 12,000
X g, and resuspended in sterile endotoxin-free Tris-buffered saline. RNAs were
removed by incubation with RNase A (10 mg/ml) (Wako Pure Chemical Indus-
tries, Osaka, Japan) for 1 h at 37°C, and the viral DNA was extracted as described
above. The resultant DNA exhibited a single band by electrophoresis, and nei-
ther protein nor ehromosomal DNA of insect ¢ells was detected.

Phosphorothicate-stabilized mouse CpG (mCpG) oligodeoxynuclectides
(ODN1668) (TCC-ATG-ACG-TTC-CTG-ATG-CT) and human CpG {hCpG)
oligodeoxynucleotides (ODN2006) (TCG-TCG-TTT-TGT-CGT-TTT-GTC-
GTT) were purchased from Invitrogen (Tokyo, Japan). Guanosine, 2'-deoxy-G,
§-bromo-G, 7-methyl-G, 7-allyl-8-oxo-G (loxoribine) was purchased from Invi-
vogen (San Diego, Calif.). LP§ denved from Salmoneila enterica serovar Min-
nesota {Re-595), PGN derived from Staphylococcus aureus, monodansylcadav-
erine {MDC), and chloroquine were purchased from Sigma-Aldrich. Bafilomycin
Al and ammoenium chloride were purchased from Wako Pure Chemical Indus-
tries. An anti-p39 mouse monoclonal antibody was kindly provided by G. F,
Rohrmann. The virus stocks and the other TLR ligands were free of endotoxin
(<0.01 endotoxin units/mi), as determined by use of a Pyrodick endotoxin mea-
sure kit (Seikagaku Co., Tokyo, Tapan).

Production of authentic and truncated forms of gp64 proteins. cDNAs en-
coding a deletion mutant of gp64 lacking the transmembrane region {gp64ATM)
as well as a wild-type version of gpd4 were obtained by PCRs with AcNPY DNA
as a template. The same 5° primer (5'-CATAAGCTTATGGTAAGCGCTATT
GTTTTATAT-3" ) was used to amplify the gp64 and gp64ATM cDNAs, and the
3" primers were 5'-GATTICTAGAATATATTGTCTATTACGGTTTCT-¥ and
5 GATTCTAGAATCGAAGTCAATTTAGCGGCCAA-Y, respectively. cDDNAs
were subcloned into HindIII and Xbal sites in pIB/V5-His (Invitrogen). The
sequences of the recombinant plasmids, pIBgp64/V5-His and plBgp64ATM/VS-
His, were confirmed by DNA sequencing. These plasmids were transfected into
§£-9 cells by the use of Unifector (B-Bridge International, Inc., San Jose, Calif.}.
After 3 days of incubation, the recombinant gp64 proteins were purified from cell
lysates or supemnatants by use of a column of nickel-nitrilotriacetic acid beads
(QIAGEN, Valencia, Calif.). The protein concentrations were determined by
use of a Micro BCA protein assay kit (Pierce, Rockford, IlL). The recombinant
proteins were analyzed by SD8-12.5% polyacrylamide gel electrophoresis {(SDS—
12.5% PAGE) under reducing conditions, stained with GelCord Blue staining
reagent {Pierce), and detected by immunoblotiing analysis with an antihexahis-
tidine monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, Calif.).

Isolation of peritoneal cells and cytokine production, To evaluate cytokine
production from macrophages in vitro, we seeded thioglycolate-elicited perito-
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neal cells (PECs) into 96-well plates at a concentration of 2 X 10% cellsawell and
stimulated them with various doses of AcNPV and loxonbine, After 24 h of
incubation, the culture supernatants were collected and analyzed for cyviokine
production. The concentrations of IL-12 p40 and IFN-a in culture supernatants
were determined by enzyme-linked immunosorbent assays (ELISAs). ELISA kits
for OptEIA mouse IL-12 p4) Set and mouse IFN-a were purchased from BD
PharMingen (San Diego, Calif.) and PBL Biomedical Laboratories {New Bruns-
wick, N.1.), respectively. Total RNAs were isolated by the use of Sepazol-RNA
I (Nacalai Tesque, Kyoto, Japan), electrophoresed, and transferred to nylon
membranes. Hybridization was performed with the indicated cDNA probes as
previously described (2). cDNA probes specific for IL-12 p40 were established as
previously described (31). To determine the effects of infection with AcNPV on
cyiokine production, we seeded the mouse macrophage cell line RAW264.7 into
six-well plates a1 a concentration of 10° cellsAwell and stimulated them with
various TLR ligands, with or without endosomal inhibitors such as chioroquineg,
bafilomycin Al, MDC, and ammonium chlonide. For cell stimulation, AcNPV (5
ug/ml), LPS (10 ng/ml}, PGN (2.3 pg/ml), and mCpG (200 ng/ml) were used.

Preparation of splevic dendritic cells and cytokine secretion. To prepare
splenocytes containing dendritic cells (DCs), we cut spleen tissues into $mall
fragments and incubated them with RPMI 1640 containing 400 U of collagenase
{Wake)/ml and 15 pg of DNase (Sigma-Aldrich)/ml at 37°C for 20 min. For the
last 5 min, 5 mM EDTA was added, and single-cell suspensions were prepared
after red blood cell lysis. CD11c™ cells were purified by magnetic cell sorting with
anti-CD11c microbeads (Milienyi Biotec GmbH, Bergisch Gladbach, Germany)
according to the manufacturer’s instructions and were used as splenic DCs.
Enriched cells containing >%% CD11c™ cells were seeded into 96-well plates a1
a concentration of 10° cellspwell and stimulated with various doses of AcNPV or
loxoribine. Culture supematants were collected, and the production of IL-12 p40
and IFN-a was determined by ELISAs.

Indirect immunofluorescence assay and flow cytometric analysis, 293T cells
transfected with a plasmid encoding human TLRY were disledged with PBS
containing 5 mM EDTA 48 h after transfection. The cells were incubated with
PBS containing 2% FCS and an anti-Flag (M2) monoclonal antibody (1:1,000)
{Santa Cruz Biotechnology} for 1 h at 4°C, washed twice with PBS containing 2%
FCS, and further incubated with fluorescein isothiocyanate-conjugated goat anti-
mouse immunoglobulin G (IgG) (Sigma-Aldrch) in PBS containing 2% FCS for
1 h a1 4°C. The cells were then fixed with 4% paraformaldehyde for 20 min, and
the surface expression of human TLRY was observed by fluorescence microscopy
(UFX-II microscope; Nikan, Tokyo, Yapan). Intracellular staining was examined
after permeabilization with 0.5% Triton X-100. Stained cells were also analyzed
by flow cytometry with a FACSCalibur instrument (Becton Dickinson, San Jose,
Calif.}, and the data were analyzed with CellQuest software (Becton Dickinson).

NF-xB-luciferase reporter gene assays with 293T cells. 293T cells were trans-
fected with an NF-xB-dependent luciferase reporter plasmid (pELAM-Luc)
together with human TR expression vectors by the use of Lipofectamine 2000
(Life Technologies, Grand Istand, N.Y.). pELAM-Luc (kindly provided by D. T.
Golenbock) contains a human E-selectin promoter introduced into the pGL3
reporter ptasmid {Promega, Inc.,, Madison, Wis.). The human TLRY expression
vector (kindly provided by T. H. Chuang) consists of a preprotrypsin signal
peptide and a Flag epitope tag followed by an in-frame human TLRY ¢cDNA
sequence (14). At 24 h postiransfection, the cells were stimulated with hCpG
DNA (10 pg/ml) or AcNPV DNA (18 pg/ml) for 24 h. The luciferase activity was
determined as previously described (49} and calculated as the degree of induc-
tion compared with an untreated control.

Detection of AcNPV capsid protein in murine macrophage cells by Western
blot analysis. RAW264.7 murine macrophage cells (10° cellsiwell) infected with
AcNPYV at a dose of 40 pg/m]l were washed extensively after 1 h of adsorption and
harvested after 4 or 6 h of incubation. The cells were lysed in buffer containing
1% Triton X-100, 135 mM NaCl, 20 mM Tris-HCI {pH 7.5), 1% glycerot, and
protease inhibitor cocktail tablets (Roche Molecular Biochemicals, Mannheim,
Germany). The lysed sample was separated by SDS-12.5% PAGE and trans-
ferred 1o polyvinylidene difluoride membranes (Millipore, Tokyo, Japan). An
anti-p39 mouse monoclonal antibody was used to detect the AcNFV capsid
protein, which was visuatized with the SuperSignal West Femto chemilumines-
cent substrate (Pierce).

RESULTS

Immune system activation by AcNPV is not mediated by
viral envelope glycoprotein. It was previously reported that an
IFN-stimulating preparation purified from S£-9 cells infected
with AcNPV exhibited IFN production both in vitro and in vivo
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FIG. 1. Immune system activation of macrophages by heat-dena-
tured or gp64-deficient AcNPV. (A) Purified particles of the mutant
virus, ACNPVAG4, lack gp64, as assayed by immunoblotting. (B) The
production of TNF-o in RAW264.7 cells (10° cellsiwell) inoculated
with ACNPV (5 pg/ml) (bar 2) or ACNPVA64 (5 pg/ml) (bar 3) was
determined 24 h after inoculation by a sandwich ELISA 1 is an
uninfected control. Data are shown as means + SD. {C) AcNPV and
PGN were incubated at 70°C for 30 min, Treated and untreated sam-
ples were inoculated into RAW264.7 cells (10° cellsivell) and incu-
bated for 24 h. The production of TNF-a was determined by a sand-
wich ELISA, Data are shown as means * 5D,

and that induction was inhibited by monoclonal antibodies
against the AcNPV envelope glycoprotein gp64 (18). To verify
these observations, we constructed a mutant baculovirus lack-
ing gp64, which we called AcNPVAG64, and examined its ability
to stimulate an immune response in RAW264.7 cells, which are
highly sensitive to TLR stimulation and respond by producing
inflammatory cytokines at a level comparable to that observed
in primary macrophages (1). The absence of gp64 in purified
particles of AcNPVA64 was confirmed by immunoblotting
(Fig. 1A). The mutant virus lost the ability to induce TNF-u
production in inoculated RAW264.7 cells {Fig. 1B), a result
that is consistent with the previous observation that gp64 ap-
pears to play an important role in the induction of the immune
response by AcNPV (18). Because some microbial products
are known to induce cytokine production in macrophages, it
was important to eliminate the possibility that contamination
with microbial products contributed to the immune system
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activation by AcNPV. Although the stimulation of macro-
phages by AcNPV was completely eliminated by incubation at
70°C for 30 min (Fig. 1C), stimulation by the bacterial com-
ponents PGN and LPS was resistant to heat treatment (Fig. 1C
and data not shown). These data indicate that the activation of
macrophages by AcNPV is mediated by heat-labile viral com-
ponents rather than by LPS and PGN.

To further verify the involvement of gp64 in immune system
stimulation by baculovirus, we prepared expression plasmids
encoding both wild-type gp64 and a C-terminally truncated
gpb4 protein (gp64ATM) with a C-terminal Hisg tag to allow
for purification. Upon transfection of Sf9 cells, both recombi-
nant proteins were detected, while gp64ATM was efficiently
secreted into the culture supernatant (Fig. 2A). The protein
from cells expressing gp64ATM was purified by column chro-
matography, producing a single band corresponding to
gp64ATM and comparable to viral gp64 (Fig. 2B). We also
tried to obtain the wild-type gp64 protein from the cell lysates
but could not purify it to a homogeneous band (data not
shown).

The activities of AcNPV, gp64ATM, and PGN on
RAW264.7 cells were then examined. A dose-dependent in-
duction of TNF-a and IL-6 was observed for RAW264.7 cells
treated with AcNPV and PGN, whereas cytokine production
was not observed for cells treated with gp64ATM (Fig. 2C). In
addition, gp64ATM was not able to induce IFN-a production
in RAW264.7 cells (Fig. 2D). Furthermore, the pretreatment
of macrophage cells with gp64ATM inhibited immune system
activation by AcNPV but had no effect on the activation by
PGN (Fig. 2E), suggesting that the gp64ATM protein still
retained some of the biological functions of the wild-type gp64
protein, at least in terms of its interaction with host cells. These
results indicated that gp64 is an essential element of AcNPV-
induced immune system activation in RAW264.7 cells but that
it does not directly participate in the reaction. Viral compo-
nents other than gp64 may be more directly involved in this
process.

AcNPV induces inflammatory cytokine production through
a MyD88/TLR9-dependent pathway. Immune cells from
MyD88- or TLR-deficient mice are unresponsive to TLR li-
gands, as assayed by their levels of cytokine production (5).
Therefore, we used PECs and splenic CD11c* DCs obtained
from MyD88- and TLR-deficient mice to determine whether
or not the TLR signaling pathway is responsible for the acti-
vation by AcNPV. Thioglycolate-elicited PECs were isolated
from wild-type, MyD88~/~, TLR2™/~, TLR4™'", and
TLR9™/~ mice and examined by ELISA and Northern blot
analysis for the induction of IL-12 following exposure to
AcNPV. Wild-type macrophages inoculated with AcNPV pro-
duced large amounts of IL-12 in a dose-dependent manner,
whereas MyD88- or TLR9-deficient macrophages had severely
reduced IL-12 production (Fig. 3A). PECs from TLR2™/~ and
TLR4™/~ mice produced IL-12 at wild-type levels in response
to AcNPV (Fig. 3A).

Loxoribine is a potent inducer of cytokine production in
macrophages and functions through a TLR7-dependent path-
way (36). PECs from wild-type, TLR2™/~, TLR4™~, and
TLR9™/~ mice all produced IL-12 in response to loxoribine,
whereas no IL-12 production was observed in PECs from
MyD88~‘~ mice (Fig. 3A). The transcription of IL-12 p40
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mRNA was also impaired in MyD88- and TLR®-deficient mac-
rophages stimulated with AcNPV (Fig. 3B). We further exam-
ined the response of splenic CD11lc™ DCs 10 AcNPV and
loxoribine. Wild-type and TLR4 ™/~ splenic CD11¢* DCs pro-
duced IL-12 in response to AcNPV in a dose-dependent man-
ner, whereas the production of IL-12 was severely impaired in
MyD88~/~ and TLR9™/~ mice (Fig. 3C). In response to lox-
oribine, splenic CD11¢* DCs from TLR4™/~ and TLR9 ™/~
mice exhibited higher IL-12 production levels than wild-type
cells, whereas the production of IL-12 was completely inhibited
in MyD88™'~ mice (Fig. 3C). These results indicate that Ac-
NPV induces the production of inflammatory cytokines in im-
munocompetent cells through a MyD88/TLR9-dependent
pathway,

AcNPYV produces IFN-o through a MyD88/TLR9-indepen-
dent pathway. IFNs are important mediators of the early host
defense against various viral infections. Since ACNPV has also
been shown to be a potent inducer of IFN-a (Fig. 2D) (18), we
investigated whether IFN-« production induced by AcNPV is
dependent on the MyD88 and TLRY signaling pathways. Al-
though IFN-« induction by the TLRS ligand, CpG oligonucle-
otides, was completely abolished in PECs and splenic CD11¢*
DCs derived from MyD88~/~ or TLR9™~ mice (data not
shown), IFN-a production in response to AcNPV was less
impaired (Fig. 4A). This contrasted sharply with the complete
loss of IL-12 production observed for these cells (Fig. 3). Mac-
rophages from MyD88™/~ and TLR9™/~ mice exhibited a
slight reduction in IFN-a and IFN-§ mRNA transcription in
response to AcNPV (Fig. 4B). These results indicate that
AcNPV induces the production of inflammatory cytokines in
immunocompetent cells through a MyD88/TLRS-dependent
pathway, while other MyD88/TLRS-independent pathways are
also involved in the production of IFNs.

AcNPV DNA stimulates immune system activation in mac-
rophage cell lines. CpG motifs present in the genomes of many
bacteria are unmethylated, whereas eukaryotic genomes are
much more likely to undergo methylation. Previous work dem-
onstrated that bacterial DNAs and certain oligonucleotides
containing unmethylated CpG dinucleotides can stimulate
PECs and DCs (18, 32). In addition, TLR9 is essential for the
immune response to CpG-rich DNA, since TLR9-deficient
mice are refractory to such stimulation (24). The frequency of
bicactive CpG motifs in the AcNPV genome was similar to
that observed for Escherichia coli and HSV DNAs (61) and
significantly higher than that in murine and entomopoxvirus
DNAs (Table 1).

To determine the methylation status of the AcNPV genome,
we digested DNAs isolated from AcNPV, S£9 cells, E. coli,
and 293T cells with the restriction enzyme Hpall, which cannot
cleave when the cytosine adjacent to the cleavage site
(CC | GG) is methylated. While DNA isolated from 293T cells
was refractory to Hpall digestion, DNAs from AcNPV, Sf-9
cells, and E. coli were sensitive to Hpall digestion, indicating
that most of the CpG dinucleotides in AcNPV were unmeth-
ylated (Fig. 5A).

To determine the ability of AcNPV DNA to stimulate an
immune response in vitro, we purified the viral DNA from
virions. RAW264.7 cells were then treated with purified viral
DNA or PGN with or without liposomes (Fig. 5B). The trans-
fection of viral DNA with liposomes resulted in the production
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FIG. 2. Immune system acfivation by ACNPV in macrophages is not mediated by gp64. (A} Wild-type gp64 and a deletion mutant lacking the
transmembrane region of the gp64 envelope protein (gp6dATM) were expressed in S£-9 cells. Whole-cell lysates and culture supernatants were
subjected to SDS-PAGE under reducing conditions and visualized by immunoblotting with an antihexahistidine monoclonal antibedy. Lane 1, cells
transfected with pIB/VS5-His; lanes 2 and 3, cells transfected with pIBgp64ATM/V5-His and plBgp64/V5-His, respectively. The heavy chains of the
antibody are indicated by asterisks. (B) Purified AcNPV virions (lane 2) and gp64ATM (lane 3) were analyzed by SDS-PAGE and Coomassie blue
staining. Lane 1, molecular mass markers. {C) Activation of mouse macrophage RAW264.7 cells (10° cellsiwell) treated with the indicated amounts
of AcNPV or gp64ATM. The production of TNF-a and IL-6 in culture supernatants after 24 h of incubation was determined by sandwich ELISAs.
PGN was used as a positive control. Data are shown as means * SD. (D) Production of IFN-a in RAW264.7 cells (10% cellsfwell) inoculated with
ACNPV (5 pg/ml) or gp64ATM (5 pg/ml), as determined by a sandwich ELISA after 24 h of incubation. Data are shown as means * SD,
(E) Production of TNF-ox in RAW264.7 cells (10° cellsiwell) inoculated with AeNPV (20 pe/ml) or PGN (2.5 pg/mb), with or without a
pretreatment with the indicated amounts of gp64ATM for 2 h at 37°C, After 24 h of incubation, the production of TNF-o in culture supernatants
was determined by a sandwich ELISA. Data are shown as means * SD. :

of TNF-a, but this effect was not observed in the absence of  (Fig. 5C). These results indicate that the internalization of viral
liposomes. The enhancement of TNF-a production by lipo- DNA is necessary for the activation of the AcNPV-mediated
somes was not observed in cells treated with PGN, and the ~ TLR9 signaling pathway. Thus, the impaired immune system
addition of liposomes alone did not elicit TNF-a production activation by AcNPVAG64 in macrophages may result from a
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FIG. 3. AcNPV activates PECs and DCs in a MyD88/TLR9-dependent manner. (A) PECs (2 X 10° cellsiwell) from wild-type (CS7TBL/S) or
MyD88-, TLR2-, TLR4-, or TLR9-deficient mice were stimulated with the indicated amounts of AcNPV or loxoribine. The production of IL-12
p40 in culture supernatants was measured by a sandwich ELISA. Data are shown as means * SD. (B) Northern blot analysis of murine macrophage
cells stimulated with ACNPV, PECs (6 X 10° cellspwell) from wild-type or MyD88- or TLR9-deficient mice were stimulated with AcNPV (10 pg/ml)
for the indicated times, Total RNAs were extracted and subjected to Northern blot analysis. (C) Splenic CD11c* DCs were prepared from
wild-type or MyD88§-, TLR4-, or TLR%-deficient mice and enriched by magretic cell sorting. Splenic DCs (10° celisfwell) were stimulated with the
indicated amounts of AcNPV or loxoribine for 24 h, The production of IL-12 p40 in supernatants was measured by a sandwich ELISA. Data are

shown as means * SD.

failure to internalize viral DNA via gp64-mediated membrane

fusion. )
To further confirm that viral DNA activates the signaling

pathway following internalization via gp64, we inactivated

AcNPV by UV irradiation and examined the production of
TNF-a in RAW264.7 cells. UV irradiation diminished the
AcNPV-mediated induction of TNF-a, but the addition of
liposomes restored the activation (Fig. 5C). These results
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FIG. 4. IEN production by AcNPV is mediated by a MyD88/TLR-independent process. (A} PECs (2 X 10° cellsiwell) and splenic CD11c*
DCs (1 x 10° cellswell) were prepared from wild-type or MyD88- or TLR9-deficient mice and stimulated with the indicated amounts of AcNPV
or lexoribine for 24 h. The production of IFN- in culture supernatants was measured by a sandwich ELISA. Data are shown as means = SD.
{B) Northern blot analysis of murine macrophage cells stimulated with AcNPV. PECs (6 % 10° cellsiwell) from wild-type or MyD88- or
TLRS-deficient mice were stimulated with ACNPV (10 wg/ml) for the indicated times. Total RNAs were then extracted and subjected to Northern

blot analysis.

suggest that the denaturation of gp64 by UV irradiation im-
paired the fusion capability of the envelope protein, thus in-
hibiting the internalization of viral DNA into the cell via mem-
brane fusion.

AcNPV DNA induces NF-kB activation through human
TLRSY. Signaling via TLRs occurs through the sequential re-
cruitment of the adapter molecule MyD88 and the serine-
threonine kinase IL-1 receptor-associated kinase, which leads
to the activation of mitogen-activated protein kinases and the
nuclear factor NF-kB (51). To assess whether or not the ex-
pression of human TLR9 confers celiular responsiveness to
AcNPV DNA, we transfected 293T cells with a human TLRS
expression plasmid and a pELAM luciferase reporter plasmid
together with ACNPV or hCpG, which was used as a positive
control (Fig. 6A). Although NF-«B activation was not ob-
served for cells transfected with undigested AcNPV DNA,

TABLE 1. CpG motif frequencies in ACNPV and other genomes®

Frequency of appearance

Motil
E. coli Mouse HSV-1 AcNPV AmEPV
CACGTT 1.30 0.11 0.76 0.90 0.17
AGCGTT 1.70 017 . 042 112 0.15
AACGTC 0.60 011 0.73 0.98 0.17
AGCGTC 1.30 0.15 0.85 0.85 0.15
GGCGTC 1.40 0.15 4.0 1.10 0.02
GGCGTT 2.50 0.15 151 137 - 0.10
Average 1.53 0.14 1.38 1.05 0.13

* The frequency at which each CpG hexamer appeared in the E. colf, mouse,
HSV-1, AcNPV, and Amsacta moorei entomopoxvinis genomes was deterrnined
by using published sequence data. The GenBank accession numbers for the
complete genomes of ACNPV and AmEPV are NC 001623 and NC 002520,
respectively. The complete genomes of E. coli X-12 and HSV-1 and mouse
chromosome sequences were described previously (61),
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FIG. 5. Activation of mouse macrophage cell line by AcNPV DNA.
(A) Methylation status of genomic DNA. Genomic DNAs oblained
from AcNPYV, 8£-9 cells, E. coli, and 293T cells were digested with the
methylation-sensitive restriction enzyme Hpall. Undigested (—) and
digested (+) samples were analyzed by agarose gel electrophoresis.
(B) RAW264.7 cells (10° cells/well) were treated with AcNPV DNA (5
pg/ml) or PGN (2.5 pg/ml) in the absence {—) or presence (+) of
liposomes for 24 h, and the production of TNF-a in culture superna-
tants was determined by a sandwich ELISA. Data are shown as means
= SD. (C) Activation of RAW264.7 cells (10° cells/well} inoculated
with untreated or UV-inactivated AcNPV (5 pg/ml) in the presence or
absence of liposomes was assessed by the production of TNF-a in
culture supernatants. Data are shown as means = SD.

HindIIl-digested viral DNA and hCpG exhibited significant
NF.kB activation, suggesting that undigested viral DNA is
incapable of penetrating cells by transfection. No activation of
NF-xB was observed in 293T cells cotransfected with a human
TLR2 or TLR4 expression plasmid when stimulated with di-
gested AcNPV DNA (data not shown),

Recent work demonstrated that the endogenous expression
of TLR3, TLR7, TLRS, and TLRY was mainly detected in the
cytoplasmic vesicles of macrophages (58). To examine the lo-
calization of transiently expressed TLRY, we transfected 293T
cells with a TLRY expression plasmid and examined TLR9
expression by immunofluorescence microscopy and cell sort-
ing. The expression of TLRY in the cytoplasm was three times
higher than that at the cell surface (Fig. 6B and C). These
results indicate that the introduction of AcNPV DNA into the

J. VIROL.
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FIG. 6. AcNPV DNA induces NF-«B activation through human
TLRY. (A) 203T cells were transfected with an empty or human TLR9
expression vector together with a pELAM luciferase reporter plasmid.
Twenty-four hours after transfection, the cells were stimulated with
digested or undigested AcNPV DNA (10 pg/ml). hCpG (10 pg/ml) was
used as a positive control. The luciferase activity was determined at
24 h postiransfection and expressed as the level of induction compared
with that detected in cells transfected with the human TLRS expres-
sion vector alone. Data are shown as means * $D. (B) Immunofiuo-
rescence micrographs of 293T cells transfected with an N-terminal
Flag-tagped human TLRY expression vector and stained with an anti-
Flag {M2) menoclonal antibody. The intracellular {left) and cell sur-
face (right) expression of TLR? is shown. Nuclei were stained with
propidium iodide (PI). Samples were observed by confocal micros-
copy. (C) The surface and intracellular expression of human TLR? in
293T cells transfected with an N-terminal Flag-tagged human TLR9Y
expression vector (+) or an empty vector (—) and stained with an
anti-Flag monoclonal antibody was examined by fluorescence-acti-
vated cell sorting.

cytoplasm is specifically detected by human TLR9 and results
in the activation of NF-kB.

AcNPY requires endosomal maturation to induce immune
system activation in macrophages. To further explore the role
of endocytosis in the signal transduction pathway triggered by
AcNPV DNA, we examined the effect of endosomal matura-
tion or acidification inhibitors. As shown in Fig. 7A, chloro-

" quine was able to inhibit immune system activation of

RAW264.7 cells treated with AcNPV and mCpG oligonucle-
otides in a dose-dependent manner, but no inhibition of LPS
or PGN activation was observed. Other inhibitors of endoso-
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FIG. 7. AcNPV requires endosomal maturation to induce immune system activation in macrophages. (A) RAW264.7 cells (10°

cellsiwell) were

stimulated with AcNPV (5 ug/mt), mCpG (200 ng/ml), LPS (10 ng/ml), or PGN (2.5 pg/ml) at the indicated concentrations of chloroquine. After
24 h of incubation, the production of TNF-« in culture supernatants was determined by a sandwich ELISA. Chloroquine was added to the cells
2 h before stimulation. Data are shown as means £ SD. (B) RAW264.7 cells (10° cells/well) were treated with AcNPV (5 wg/ml) or LPS (10 ng/mi)
and with the indicated concentrations of endosomal maturation inhibitors. After 24 h of incubation, the production of TNF-a in culture
supernatants was determined by a sandwich ELISA. The inhibitors were added to the cells 2 h before stimulation. Data are shown as means *

SD.

mal maturation, such as ammonium chloride, bafilomycin Al,
and MDC, inhibited AcNPV-induced, but not LPS-induced,
immune system activation (Fig. 7B). Together with our other
data, these results indicate that endosomal acidification and/or
maturation is a key step in AcCNPV-induced immune system
activation via TLRY, a process that requires the release of the
viral genome into TLR9-expressing cytoplasmic vesicles fol-
lowing the internalization of viral DNA by endocytosis through
gp64-mediated membrane fusion.

AcNPY penetrates macrophages via the phagocytic pathway.
To further confirm that baculovirus was internalized inte mac-
rophages, we inoculated RAW264.7 cells with a recombinant
baculovirus carrying a luciferase gene under the contro! of a
mammalian promoter, AcCAGluc (49). As shown in Fig. 8A,
the expression of luciferase was observed in 293T cells, but not
RAW264.7 cells, that were infected with AcCAGIuc. The viral
capsid protein was clearly detected by immunoblotting for both
293T and RAW264.7 cells infected with AcNPV, but the pro-
tein level was greatly diminished in RAW264.7 cells by 6 h
postinoculation, probably as a result of degradation (Fig. 8B).

These results suggest that baculovirus can penetrate into dif-
ferent cells via gp64-mediated endocytosis but that it translo-
cates into different subcellular compartments in different cells.
In 293T cells, the nucleocapsid was apparently able to reach
the nucleus, where the reporter gene was efficiently transeribed
following uncoating. However, in the immunocompetent
RAW264.7 cells, the nucleocapsid appeared to have been
trapped by the phagocytic pathway, and degraded viral DNA
was then translocated into TLRS-expressing intracellular com-
partments (58).

DISCUSSION

We have previously demonstrated that intranasal inocula-
tion with AcNPV induces a strong innate immune response
that protects mice from a lethal challenge with influenza virus
(1). The lungs of mice inoculated with AcNPV exhibited a
marked infiltration of macrophages, which presumably inhibit
the growth of influenza virus in the lung tissues. The baculo-
virus envelope glycoprotein gp64 contains mannose, fucose,
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FIG. 8. AcNPV penetrates macrophages through the phagocytic
pathway. (A) 293T and RAW264.7 cells (10° cellsiwell) were inocu-
lated with a recombinant baculovirus possessing the luciferase gene
under the contro! of the CAG promoter, AcCAGluc (49) (10 and 20
pg/ml). Cells were harvested 24 h after infection, and relative lucif-
erase activities were determined. (B) 293T and RAW264.7 cells (10°
cellsiwell) were inoculated with AcCAGluc (40 pg/ml), washed exten-
sively after 1 h of adsorption, and harvested after 4 or 6 h of incuba-
tion. The presence of the p39 capsid protein in cells inoculated with
AcNPV was determined by immunoblotting with an anti-p39 mono-
clonal antibody.

and N-acetyl-glucosamine modifications but no detectable ga-
lactose or terminal sialic acid residues (29). The mannose
receptor (MR) recognizes a range of carbohydrates present on
the surfaces and cell walls of microorganisms. MR is primarily
expressed on macrophages and DCs and is involved in MR-
mediated endocytosis and phagocytosis. In addition, MR plays
a key role in host defense and the induction of innate immunity
(8). Therefore, it is tempting to speculate that gp64 interacts
with MR through its mannose modifications in macrophages
and DCs of mice inoculated with AcNPV. However, our data
contradict such a model; instead, we show that it is ACNPV
DNA, not the gp64 glycoprotein, that induces immune system
activation in a MyDB8/TLRS-dependent manner.

Recently, it was shown that plasmacytoid DCs (pDCs) nat-
urally produce IFN-« in response to viruses (30). HSV-1 and
-2, whose genomes contain abundant CpG motifs, are able 1o
induce the production of IFN-a in pDCs. The HSV-induced
production of IFN-a in pDCs derived from MyD88- and
TLRY-deficient mice was completely eliminated (33, 40). The
recognition of the HSV genome by TLRS was shown to be
mediated by an endocytic pathway that can be inhibited by
chloroquine or bafilomycin Al. In this study, we demonstrated
that AcNPV induces proinflammatory cytokines through a

1. VIROL.

MyDS88/TLR9-dependent signaling pathway, whereas signaling
molecules other than MyD88 may participate in IFN-o pro-
duction in response to AcNPV. Recently, MyD88-independent
TLR signaling events involving TIR domain-containing adap-
tor inducing IFN-p3 (TRIF) were described (59). Therefore, it
is possible that the TRIF pathway is one means by which
AcNPV induces MyD88-independent IFN production. How-
ever, future studies are needed to clarify the precise mecha-
nisms of this induction.

While UV irradiation of AcNPV abolishes its ability to stim-
ulate an immune response, the addition ¢f liposomes is able to
restore this activity. UV-inactivated HSV is capable of induc-
ing the production of IFN-a in pDCs (40), indicating that viral
replication is not required for the HSV-induced immune re-
sponse. In contrast, UV jrradiation of AcNPV abolishes im-
mune stimulation in macrophages, while internalization of the
inactivated virus by liposomes restores the activity. These re-
sults, in conjunction with our data for AcNPVA64, indicate
that the AcNPV-induced production of cytokines in immuno-
competent cells requires a fusion process mediated by gp64
that leads to internalization of the viral genome into the cells.

Recently, several viral envelope glycoproteins were shown to
induce immune system activation through TLRs (10, 22, 34,
47). However, gp64 does not directly participate in a TLR-
mediated immune response. TLR family members are ex-
pressed differentially at very low levels on the surfaces of dif-
ferent immune cells and appear to respond to different stimuli
(43). A recent study indicated that LPS and CpG-rich DNA
activate TLRs in distinct cellular compartments (3), Internal-
ization and endosomal maturation are required for CpG-rich
DNA to activate TLR9, but not for LPS to activate TLR4 on
the plasma membrane. We showed here that the inhibition of
endosomal maturation by a treatment with chloroquine abol-
ishes the immune system activation of AcNPV in a dose-de-
pendent manner. These results imply that immune system ac-
tivation by AcNPV through TLR? requires membrane fusion
via gp6é4 as well as the liberation of the viral genome into
cytoplasmic vesicles expressing TLR9.

Interestingly, Lund et al. demonstrated that the TLR7-me-
diated immune recognition of single-stranded RNAs from ve-
sicular stomatitis virus and influenza virus requires endosomal
acidification (41). The recognition of HSV-1 and HSV-2 viral
DNAs through a TLR9/MyD88-dependent pathway in pDCs
also requires endosomal acidification (40). These data indicate
that TLR7 and TLR9 expressed in the endosomal or lysosomal
compartments of immunocompetent cells recognize the viral
genome entering the cell through receptor-mediated endocy-
tosis or phagocytosis, leading to the secretion of inflammatory
cytokines and IFNs. However, the precise mechanisms by
which viral genomes translocate to TLR-expressing compart-
ments are still unknown.

Since the first report on the immunostimulatory potential of
bacterial DNA, which found that the main immunogenic frac-
tion of mycobacterial lysates consists of genomic DNA (55, 56),
substantial progress has been made towards understanding the
immunostimulatory potency of CpG-rich DNA motifs, which
are more common in bacteria than in vertebrates. For instance,
TLRS was shown to be responsible in vivo for immune system
stimulation by oligodeoxynucleotides containing unmethylated
CpG motifs (24). Like bacteria, ACNPV contains a significant
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number of potentially bioactive CpG motifs. Interestingly, the
frequency of CpG motifs in HSV DNA, which has been shown
to be involved in the induction of angiogenesis in stromal
keratitis (61), was similar to that in E. coli DNA. In contrast,
the frequency of CpG motifs in the genome of an insect pox-
virus was much lower than that for AcNPV (Table 1).

In conclusion, we have demonstrated that AcNPV has the
ability to induce innate immune system activation through a
MyD88/TLR9-dependent pathway. The molecular mecha-
nisms of viral uptake, intracellular processing, and the induc-
tion of potent antiviral activity in immune cells require further
investigation. However, the strong immune response induced
by AcNPV makes it a promising candidate for a novel, adju-
vant-containing vaccine vehicle against infectious diseases. In
particular, our findings raise the possibility that AcNPV may
be harnessed therapeutically to induce a host immune re-
sponse against various infectious diseases caused by pathogens
invading the respiratory tract,
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