Table 2 Distributions of mother's age at birth for all offspring

Mother's age at birth Count Parcent
15 317 2.2
20 3,340 236
25 4,662 33.0
30 3,386 239
35 1,770 125
40 595 4.2
45-50 70 05
Total 14,140 100.0

born between 1925 and 1955, Table 2 gives the distribution of
maternal age at birth.

Genotype data do not provide complete information on recombi-
nation counts, which complicates the analysis. To handle this missing-
data problem!?, we applied two different statistical methods. The first
method, called ‘mean imputation, imputes the recombination counts
using the best guesses. The way we implemented this method makes it
robust, meaning that the calculated P values are insensitive to model
mmis-specifications or potential artifacts in the data. There is some loss
of efficiency, however, and effects tend to be underestimated, The
second method is likelihood-based, is fully efficient but computation-
ally intensive, and can be sensitive to model mis-specification.

Using the robust method, we estimated the effect of maternal age
on recombination rate to be 0043 recombinations per year (s.e. =
0.011; P = 0.00018). Because we used family-adjusted recombination
counts and the ages of mothers at birth, the age trend that we detected
existed ‘within family’ {i.e., a child born to a mother later in life tends
to have more maternal recombinations than a child born earlier in her
life} and was not simply a consequence of the possibility that some
mothers tend to have children later in life and also happen to have
higher recombination rates. The Lkelthood-based method gives an esti-
mate of 0.082 recombinations per year (5.6 = (.012; P < 1 x 107%),

R

Recombination rates compared with age group 20
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Figure 1 Recombination rate and maternal age. Using the age group 20
as the reference, the estimates and 95% confidence intervals for the
differences in recombination rates between the other age groups and age
group 20 are shown. Maternal ages of 40 and more were grouped into a
single bin. There is a trend towards increase, but the data deviate from
linearity with a slight drop in the estimate from age 25 to 30 followed by a
big jump from age 30 to 35. Although the drop from age 25 to 30 is not
statistically significant and probably not real, the data do support a relatively
big incremental increase from age 30 to 35. An exact linear refationship
between recombination rate and maternal age is not consistent with the
data and is rejected by a goodness of fit test (P < 0.005).

Although the effect is significant even with the conservative method,
the higher estimate based on the likelihood method is probably better.
To determine whether the age effect is well fitted by a linear relation-
ship, we fitted a mode] treating maternal age as a categorical variable
using the likelihood method (Fig. 1; the distributions of maternal
recombination counts of individual offspring are shown in Supple-
mentary Fig. 1 online). The age effect is already apparent for relatively
young women, and there is a marked increase in recombination rate
from age 30 to 35. Notably, the rate of increase of matemal non-
disjunction accelerates during this time frame.

The maternal age effect translates into only an additional two
recombinations, or ~4% of the average maternal recombination
rate, over a period of 235 years. But the relevance and importance of
the observed effect depends on the underlying causes. There are at
least two possible explanations for the results: first, recombination rate
among the eggs of a woman increases as she ages; and second, the
recombination rate of eggs does not increase, but there is a selection
effect that increases the chance of an egg with more recombinations to
produce a successful live birth. This selection effect probably exists
even early on, but becomes stronger as the woman ages.

The first explanation is unlikely to be true, because recombinations
take place prenatally and a ‘production line’ hypothesis would have to
be invoked as outlined above, Moreover, this increase contradicts the
observed decrease in chiasma frequency reported for mice. The second
explanation, related to selection forces, is more plausible. A higher
number of recombinations along a chromosome might reduce the
chance of maternal age—related nondisjunction, the leading cause of
pregnancy loss due to aneuploidy in the fetus. Maternal nondisjunc-
tion is associated with maternal age and reduced levels or altered
placement of recombination’®, Altered recombination has been iden-
tified for all examined cases of trisomy arising at the first stage of
maternal meiosis. Consequently, increasing amounts of meiotic
recombination may be protective for certain forms of nondisjunction,
depending on the location of the additional exchanges. There is
eviderce, at least for chromosome 15, that multiple recombinants
may be more resistant to nondisjunction because of increased stability
of the bivalent over time!®. Age-related abnormalities in spindle
morphology and chromosome alignment at the meiotic plate have
been reported®®, suggesting that some components of the meiotic
apparatus are susceptible to the effects of aging, It has also been
proposed that the sister chromatid cohesion complex may suffer an
age-related breakdown!”. If this is true, then meiotic tetrads from
older oocytes may retain their integrity on the basis of their chaismata
alone. Greater numbers of recombination would then provide addi-
tional protection from age-related mejotic breakdown.

Under the selection hypothesis, women with higher recombination
rates would have more children. To examine this possibility, we
regressed the total number of children of the mother on (i) the
(estimated) recombination rate of the mother; (ii) the number of
genotyped children of the mother; {iii) the mother’s mean age at the

Table 3 Estimated effects for four predictors of family size

Estimated  Standard
Predictor effect error (5.8} Pvalue
Recombination rate of mother 0.0109 C.0041 0.0076
MNumber of genctyped children of the mother 0.6815 ¢.0212 0.0000
Maother's average age at birth of her children 0.0002 0.0045  0.9637
Birth date of rnother ~0.0469 0.0022 0.0000
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Table 4 Estimated_ effect of mother’s age on recombination rate for different parts of the genome

Centromeric kalf

Telomere minus 6 cM Telomeric 6 cM

Female genetic length {cM) 23.204
Recombination increase per year (s.e.} 0.038 (0.0072)
Percent increase per year {s.e.) 0.158 (0.0299)

20.483 1.152
0.041 (0.C065) 0.009 (0.0014)
0.201 (0.0316) 0.761 (0.1231)

The centremerie half censists of the part of each chremoseme arm that is next to the centromere and accounts for roughly cne-half of that chromosome arm in female genetic

distance. The telomeric 6-cM region is defined as in Supplementary Table 1 online.

times of birth of the genotyped children; and (iv) the mother’s birth
date (Table 3). As expected, the number of genotyped children of the
mother is correlated with the total number of children of a mother,
but the correlation is not perfect (R = 0.19). Its inclusion in the
regression ensures that any correlation observed between family size
and recombination rate of a mother is not spurious: a higher number
of recombinations is not estimated or detected simply because more
children are genotyped. After accounting for the generational trend,
recombination rate has a positive and statistically significant effect
(P = 0.0076) on family size. With the mother’s mean age at the times
of birth of the genotyped children, which happens to be non-
significant, also included in the regression, mothers who have a larger
number of children have a higher recombination rate not simply
because they have more children at a later age. Although it is
significant, the effect of recombination rate on family size is modest.
This is not surprising, as many factors affect family size.

We investigated whether the maternal-age effect is specific to certain
genomic regions, as data from nondisjoined chromosomes indicate
that there is selection against specific chiasmatic configurations!s. The
age effect is roughly the same for long and short chremosomes.
Dividing each chromosome arm into two roughly equal parts on the
basis of female genetic distance, the telomeric halves have a slightly
higher percentage increase per year than the centromeric halves, but
the difference is not significant. Focusing on marker intervals within
& <M of our most telomeric marker (Supplementary Table 1 online),
we determined that the percentage increase per year for these
telomeric regions is roughly four times higher than that of the rest
of the genome (P < 0.0001; Table 4). Because these regions account
for only ~2.5% of the genome in genetic length, however, ~90% of
the yearly increase of recombinations observed is accounted for by the
other parts of the genome.

We observed no assodation of recombination rates with paternal
age (Supplementary Table 2 and Supplementary Fig. 2 online}, nor
did we identify a systematic difference in recombination rates between
or within men. A previous report using an immunofluorescence
method to examine exchanges in human spermatocytes described
significant variation in recombination rates within and among men,
but no age effect'®. The observed variation identified among sperma-
tocytes, but not live births, suggests that selection occurs at the level of
spermatocytes. Presumably, the checkpoints for such meiotic disrup-
tions are more stringent in spermatocytes than in oocytes!”.

The proposed selection hypothesis explains the maternal-age effect
and the correlation of maternal recombination rate with family size.
But there could be alternative explanations. A recent paper’” chal-
lenged the doctrine that all the oocytes of a woman are produced when
the woman is still at her fetal stage and suggested that follicular
renewal may occur in the postnatal mammalian ovary. If true, this
would provide a natural time ordering of the oocytes that corresponds
to the dates of birth of the children and an alternative explanation for
the age effect we observed. But this theory does not explain why
mothers who have higher recombination rates have more children.

Our cbservations and hypotheses do not contradict this new theory;
there could be both follicle renewal and selection associated with
recombination counts.

Among the 5463 families studied, 1,090 mothers make up 545
independent sister pairs. Based on the correlation of estimated
recombination rates of these sisters, the heritability?! of recombination
rate is estimated to be 30.4% (s.e. = 8.5%; P = 0.0004), which
supports the idea that there is a large genetic component to recombi-
nation rate. Together with the hypothesis that reproductive success of
eggs is dependent on the number of recombinations they have across
the genome, these data imply that not only do recombinations have a
role in evolution by yielding diversity of combinations of gene variants
for natural selection, but they are also under selective forces acting
at the level of chromosome segregation and reduced survival of
mis-segregated cocytes.

METHODS

Data collection and genotyping. We obtained all the biological samples used in
this study according to protocols approved by the Data Protection Commission
of Iceland and the National Bioethics Committee of Iceland. We obtained
informed consent from all participants. Al personal identifiers were encrypted
using a code that is held by the Data Protection Commission of Iceland'2.
Details concerning genotyping, allele-calling and genotype quality control can
be found in the supplemental material of our previous stady’.

Statistical methods. The first method we applied to study the age effect is
called mean imputations' and is similar to the method we used previously'.
With all the farnily data, we first fitted a male and a female genetic map using
maximurn likelihood and the EM algorithm?2. We then calculated the expected
paternal and maternal recombination counts of each child conditional on the
observed genotype data and the fitted maps. We calculated the conditional
expected recombination counts using the simulation option of our linkage
program Allegro®; we carried out 100 simulations and computed the averages.
We then treated these estimated recombination counts as though they were the
actual recombination counts in the subsequent analysis. To study the age effect,
we regressed the family-adjusted recombination counts on the family-adjusted
age of mother at birth of the child (the family-adjusted value is the difference
between the value of a child and the value averaging over all the children in the
same family). Using the family-adjusted values not only ensures that any
potential artifacts are eliminated, because any bias would have the same effect
on all children in the family, but it also implies that any age effect detected will
not be confounded by the differences between mothers. We obtained the
P values through a randomization test. The children in a family were permuted
and the analysis repeated. We did this 25,000 times, and the two-sided P value
reported is twice as large as the fracton of times that the permutations
produced an estimated effect bigger than or equal to the observed effect of
0.043. This method is robust and completely insensitive to model mis-
specifications. There is, however, loss of efficiency and the effect tends to be
underestimated. This is because the mean imputations are done under the
model of no age effect; hence, the estimated effect has 2 tendency to shrink

. towards the null hypothesis. The amount of shrinkage is proportional to the

amount of missing information, which is expected te be quite small for the data
set in our previous study! as over 5,000 markers were used there; but, as only
~ 1,000 markers were used here, the shrinkage is expected to be greater, Also,
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when there are only two siblings genotyped and the genotypes of grandparents
are not available, the data can provide a good estimate of the total maternal and
paternal recombination counts in the family, but the data are completely
uninformative regarding whether a crossover occurs with one child or the
other, and, as a consequence, the mean imputations would be the same for both
siblings. Hence, when using mean imputations in conjunction with a family-
adjusted analysis, families with two siblings genotyped are completely unin-
formative. As including these families would not add information but would
further shrink the estimated effect, we used only the 2,177 families with three or
moreé siblings genotyped when applying this method. But we used all 5,463
families for the likelihood approach described below, and also when the mean
imputations wete used to study the relationship between family size and
recombination rate of a mother.

The second method we used was a full-likelihood approach, which is
maximally efficient but may not be as robust as our first method. It is based
on a model that assumes a multiplicative maternal effect which is constant
across the genome, that is, any effect on recombination rate is assumed to affect
all genomic regions equally, unless otherwise specified. The multiplicative effect
is modeled as a function of the mother, the gamete and the age of the mother at
birth. The mother and gamete effects are modeled as random effects and the
age effect is modeled as a fixed effect. We employed the following model for the
mean number of maternal crossovers per gamete per chromosome: flyg: =
explet + P X ageng) X exp{Up + Upg), where m indexes mother, g indexes
gamete, ¢ indexes chromosome and Uy, and Up, are assumed to be indepen-
dent and normally distributed. The full model can be viewed as a generalized
linear mixed model®¥ with a Poisson random conditional component, log link
and normally distributed random effects. To simplify the analysis, we assumed
the absence of any crossover interference throughout the model. This can create
some biases a5 interference exists?>, but the effect is likely to be modest for the
parameters of interest in this study. To transform from the multiplicative scale
to the additive scale, we took (exp(P) — 1) times the total estimated length of
the maternal genome as the additive effect of maternal age on recombination
rate. Because the recombination counts are not directly observed, even with the
assumption of no interference, maximizing the likelihcod under both the null
hypothesis (no age effect and the alternative hypothesis is challenging, going
beyond the difficulties found in standard generalized linear mixed models. To
meet these computational challenges we applied various computational tech-
niques that include the Monte Carlo Newton-Raphson algorithm, Monte Carlo
EM-algorithm and importance-reweighting of the samples simulated from
Allegro under the null hypothesis?*6%, Standard errors for the model
parameters are determined on the basis of the observed Fisher information,
and P values are obtained on the basis of likelihood ratio tests. When studying
potential differences between genomic regions, a separate o and p are assigned
to each genomic group.

In Figure 1 and Supplementary Figure 2 online, the confidence intervals
have incorporated the uncertainties of both the recombination rate of the
particular age bin and the recombination rate of age bin 20. In Supplementary
Figure 1 online, the box plots are constructed using a central box, indicating the
range of the middle 50% of recombination (from the first to the third quartiles)
with the median value indicated by a horizontal bar within the box, and
whiskers (the dashed vertical lines and the hinged horizontal lines at their edge}
that extend to the furthest data point that is not more than one-and-a-half times
the width of the interquartile range beyond the central box. All other
recombination values further away are indicated individualty by horizontal lines.

Note: Supplementary information is available on the Nature Genetics website.
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Background

The contribution of low-penetrant susceptibility variants to cancer is not clear. With the aim
of searching for genetic factors that contribute to cancer at one or more sites in the body, we
have analyzed familial aggregation of cancer in extended families based on all cancer cases
diagnosed in Iceland over almost half a century.

Methods and Findings

We have estimated risk ratios (RRs) of cancer for first- and up to fifth-degree relatives both
within and between all types of cancers diagnosed in Iceland from 1955 to 2002 by linking
patient information from the Icelandic Cancer Registry to an extensive genealogical database,
containing all living Icelanders and most of their ancestors since the settlement of kceland.

We evaluated the significance of the familial clustering for each relationship separately, all
relationships combined (first- to fifth-degree relatives) and for close (first- and second-degree)
and distant {third- to fifth-degree) relatives. Most cancer sites demonstrate a significantly
increased RR for the same cancer, beyond the nuclear family. Significantly increased famiiial
clustering between different cancer sites is also documented in both close and distant relatives.
Some of these assoclations have been suggested previously but others not.

Conclusion

We conclude that genetic factors are involved in the etiology of many cancers and that these
factors are in some cases shared by different cancer sites. However, a significantly increased RR
conferred upon mates of patients with cancer at some sites indicates that shared environment
or nonrandom mating for certain risk factors also play a role in the familial clustering of cancer.
Our results indicate that cancer is a complex, often non-site-specific disease for which increased
risk extends beyond the nuclear family.
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Introduction

Highly penetrant susceptibility variants explain only a
small fraction of the genetics of 2ll cancer cases. As an
example, mutations in the BRCAI and BRCA2 genes account
for around 2%-3% of all breast cancer cases [1,2), although
more prevalent founder mutations in these genes can explain
up to about 10% of the disease in some populations [3,4,5,6,71.
However, the role of genetics in the remaining breast cancer
cases and the majority of other cancers is not clear,

Family studies have given insight into the contribution of
genetic and environmental factors to the etiology of cancer.
Case-control, registry- and population-based studies have
evaluated familial clustering using either risk ratio (RR)
estimations for relatives of cancer patients, or kinship
coefficient (KC) estimations for cancer patients, The largest
of these studies, utilizing either the Utah Population and
Cancer Registry Database or the Swedish Family-Cancer
Database, have demonstrated excess familial clustering at
practically all cancer sites in the body [8,9,10,11,12]. Most of
these studies have been able to evaluate familial clustering
only within the nuclear family, thus making it more difficult
to separate the roles of shared environmental and genetic
factors in the familial aggregation of cancers. However, in one
of these studies [12], in which familial clustering was evaluated
for more distant relatives, significant clustering outside the
nuclear family was demonstrated for a number of cancer sites.
Extended familial clustering has also been reported in studies
of individual cancers [13,14,15,16,17,18,19,20,21,22].

Twin studies have also evaluated the role of genes versus
environment in cancer susceptibility. The largest study
involved close to 45,000 twins from Denmark, Sweden, and
Finland where the RR of same type of cancer was calculated
for individuals with affected twins and compared to those
without an affected twin [23). The authors concluded that for
the majority of cancer sites only a limited part of the risk
could be explained by heritable factors. Exceptions to this
were cancers of the prostate, colon and breast,

In addition to well documented familial clustering for the
majority of individual cancers, aggregation of different types
of cancers in families has also been observed. Reports have
been published on the results of systematic analysis of the
aggregation of different cancers using the Utah Population
and Cancer Registry Database [24,25]. In addition to
demonstrating excess familial clustering for most cancer
sites, these studies also indicate that an excess is also shared
by different cancer sites. In these studies, cancer clustering
was evaluated ecither by calculating the RR for first-degree
relatives or KC between different cancer sites. While distant
relationships contributed to the overall calculation of KC,
their contributions were not evaluated separately in the
studies between cancer sites, hence making it more difficult
to separate the effects of genetic and environmental factors
in these studies,

We have studied a registry of all cancer cases diagnosed in
Iceland from 1 January 1955 to 31 December 2002, with the
aim of searching for evidence of genetic factors both at
individual cancer sites and those shared by different sites. By
cross-referencing cancer prevalence in relatives of cases with
the aid of a comprehensive nationwide genealogy database,
we have estimated RR separately for first- to fifth-degree
relatives of all cancer patients diagnosed in Iceland over 48 y,
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Familial Clustering of Cancers

We demonstrate here an increased cancer risk in relatives
outside the nuclear family (third- to fifth-degree relatives) for
many cancer sites. These relatives share significant genetic
makeup but are less likely to share environmental factors
beyond those shared by the general population, indicating
that genetic factors may be involved. By applying the analysis
across different cancer sites we also demonstrate shared
familiality between certain cancer sites both in close and
distant relatives. These results suggest that cancer can be
considered a broad phenotype with shared genetic facters
crossing different cancer sites. That is, the difference between
cancers at various sites may in part be the consequence of
variable expressivity of the same cancer-predisposing genes,

Methods

This study was approved by the National Bioethics
Committee of Iceland, the Data Protection Authority of
Iceland, and the Icelandic Cancer Society. All names of
patients listed in the Icelandic Cancer Registry (ICR) and the
genealogic database were encrypted through a process
approved by the National Bicethics Committee and the Data
Protection Authority before being analyzed [26]),

Cancer Ragistry

The ICR of the Icelandic Cancer Society is a carefully
constructed database containing practically complete records
of all cancer cases diagnosed in Iceland after 1 January 1955
[27). Records are received at the ICR from all hospitals in the
country that treat cancer patients, and the very few not listed
are individuals who are diagnosed while living abroad.
Furthermore, the records are verified by a continuouns
interaction between the ICR and Icelandic hospitals and
clinicians. Approximately 95% of cases are histologically
verified [28]. In the present study we used International
Classification of Disease version 10 codes as the basis for
defining phenotypes. A total of 81 unique phenotypes were
analyzed. In this paper we present data from 27 sites with
more than 200 cases cach (Table 1). For the 48 years (1
January 1955 to 31 December 2002) a total of 32,534
individuals were found in our genealogy database. Cancer
incidence in Iceland is comparable to the Nordic countries of
Europe and is detailed in [27].

Genealogic Database

deCODE Genetics has built a computerized genealogy
database of more than 687,500 individuals [29,30]. The names
of all 288,000 Icelanders currently alive and a large
proportion of all Icelanders who have ever lived in the
country are in the database. The genealogy of the entered
individuals is recorded from multiple sources including
church records and censuses from previous centuries and,
more recently, from published genealogy books. The geneal-
ogy database is quite complete from the 18th century on, thus
allowing quite distant relationships to be traced accurately.

Mates are individuals of the opposite sex who have one or
more children in common, regardless of marital status.

Calculations of RRs

The RR for relatives is a measure of the risk of discase fora
relative of an affected person compared to the risk in the
population as a whole. More precisely, for a given relation-
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ship the RR for disease B in the relatives of probands with
disease A is defined as

__ P(Rg|Py)

RE = P{Rsz) °’ )

where P, denotes the event that the proband is affected
with disease A, and Rp denotes the event that the relative is
affected with disease B. Note that disease A and disease B can
be the same in this definition. Using Bayes' rule it can be
shown that for symmetric relationships, RR is the same if the
roles of A and B are switched, i.e., the RR for disease A in the
relatives of probands with disease B is the same as the
described above. In this study we always chose the less
common phenotype as the proband when estimating RR.

A basic underlying assumption in our estimation of RR is
that of conditional independence of ascertainment, or
censoring, (Ors and Op, are the events that the relative and
proband are observed with diseases A and B, respectively:

P(Oppy OpalPa, Pp) = P(Opg|Re)}P{OpalPys). {(2)

Some form of this assumption is used by most methods
estimating RR [31].

Obtaining valid estimates of the RR is not always
straightforward, since the method of ascertainment of
affected cases critically affects the estimation, and inappro-
priate estimators can lead to bias or inflated estimates {32].
The use of a nationwide registry of patients covering close to
five decades decreases much of the potential sampling bias.
However, the ascertainment of the ICR depends on the year
of birth of individuals. This dependence needs to be
addressed when estimating the RR.

The approuch chosen here is to estimate the RR for a
number of subpopulations, where prevalence is reasonably
constant, and combine them into a single estimate of RR for
the full population. Let r be the number of relatives of
probands, counting multiple times individuals who are
relatives of multiple probands [33], let 2 be the number of
refatives of probands that are affected (again possibly
counting the same individual more than once), let # be the
size of the population, and finally let x be the number of
affected individuals in the population. If P(Rp) and P(Rg | Pa)
can reasonably be assumed to be constant in the population,
then x/n and e, respectively, are estimates of these proba-
bilities. Given these estimates, RR is consistently estimated by

ajr

pysg {3)
Assuming the population can be split into N subpopula-
tions, such that within each subpopulation PRy} and PRy |
Py) can be assumed to be constant, although they may vary
between subpopulations, and assuming furthermore that RR
is the same in all the subpopulations, then the RR is
consistently estimated by a convex combination of the
estimates for the subpopulations. We selected weights for
the combination such that the efficiency of the estimator was
at maximum for RR equal to one. Making the simplifying
assumption that the relatives are independent {while this
assumption is not entirely correct, it affects only efficiency,

not validity), the optimal weight for group j is
wy = L (4)

A
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(this is the inverse of the variance of the estimate for RR in
subpopulation f), where g, 1, x, and n are defined as above,
restricted to the subpopulation j. Note that probands are not
restricted to the subpopulation. Given these weights, our
estimate of RR is

o, 4l 5"’: any

iy -

=1 xX/m -
N A (5)

s %

,Z‘: ! ,.-;75‘—%-

In this study, the most relevant variations in P(Rg} and
PRy | Ps) stem from time-dependent censoring of affected
status and sex-specific differences. Hence, we have stratified
the population so that j runs over groups of people of the
same sex and born in the same 5-y periods. For a fixed year-
of-birth stratum, there is censoring of affected status {missing
data) based on year of onset because of the fact that records
cover only the period 1955-2002. Our approach is designed
to address this type of missing data. As an example of the
stratification, the breast cancer patients in our analysis were
born in the years 1865 to 1970 (5-y strata), yielding 35
subpopulations, 22 for female patients, but enly 13 for male,
as this cancer is rare for males.

To assess the significance of the RR obtained for a given
group of patients, we compared their observed values with
the RR computed for up to 100,000 independently drawn and
matched groups of contro! individuals. Each patient was
matched to a single control individual in each control group.
The control individuals were drawn at random from the
genealogic database with the conditions that they had the
same year of birth, the same sex, and the same number of
ancestors recorded in the database at five generations back as
the matched patients. Empirical p values can be calculated
using the control groups; thus, a p value of 0.05 for the RR
would indicate that 5% of the matched control groups had
values as large as or larger than that for the patient’s relatives
or spouses. The number of control groups required to obtain
a fixed accuracy of the empirical p values is inversely
proportional to the p wvalue. We therefore selected the
number of control groups generated adaptively up to a
maximum of 100,0600. When none of the values computed for
the maximum number of control groups were larger than the
observed value for the patient’s relatives and mates, we report
the p value as being less than 0.00001. Using a variance-
stabilizing square-root transform, an approximate confidence
interval may be constructed based on the distribution of RR
for control groups [33].

As another test for significance of RR between cancer sites,
we used combined estimators for risk in relatives of degree 1
and 2 together, degrees 3, 4, and 5 together, and degrees 1
through 5 together. If RR, is the RR for relatives of degree d,
then RR, — 1 is known to decrease proportional to 279 as d
increases for a monogenetic single variant or additive disease
models, and faster for more complex disease models [34].

Denote the estimate of RR,, then choose a test statistic of the
form

. (R/}\{,; -1)
> wi———, (6)

d 2d
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with d summed over the relevant degrcss. For RR4 close to

one, the variance of the estimate RRy is inversely pro-
portional to the number of relatives of degree 4 for the
proband. Based on the Icelandic genealogy for the cancers
being studied here, the number of relatives is proportional to
%, where the value of y quantifies how the number of relatives
grows with each degree of relatedness to the proband. This
factor ¥ varies only slightly between cancers and is on average
2.46, Minimizing the variance of the test statistic in equation
6 with respect to the weights yields the statistic

> 1.23”(R/}{,, -1, (7)

As above, the choice of weights and the form of the statistic
affects only power, not validity, To assess significance, the
observed value of the statistic was compared to its value for
multiple matched control groups as described above.
Although our evaluations of familial clustering, for both
close and distant relatives, are based on RR, an alternative
approach based on comparing KCs among patients and
among controls exists {12,24,25). The two approaches are
closely related, and our choice was made in part because
relative risk is a less technical concept and its application to
genetic counseling more direct. Also, the relationship
between relative risk and the power to map disease genes
by linkage analysis has been thoroughly investigated [34,35].

Results

We have studied the familial clustering of cancer by
estimating RR for first- and up to fifth-degree relatives both
within and between all cancer sites. Here we present results
for 27 sites that contain 200 or more cancer cases each, based
on International Classification of Disease version 10 codes,
These 27 sites represent 89% of all cancer cases in the ICR.

Risk Estimations for Cancer at Same Site

A significantly increased RR to first-degree relatives of
patients with cancer was seen for 22 of the 27 cancer sites
{Table 1). Among the statistically significant RRs, the highest
estimates were for lymphoid leukemia, Hodgkin's disease, and
cancer of the thyroid, meninges, lip, testis, and larynx (RR
above three). These cancers, except for thyroid cancer, were
among the least prevalent sites (200-400 cases), as reflected in
the large standard deviation of the RR estimates (Table 1}.
First-degree relatives of individuals with breast, lung, kidney,
pancreatic, ovarian, and esophageal cancer and multiple
myeloma, had between 2- and 3-fold increased risk of
developing the same cancer.

The medians of the distribution of the estimated RR values
in first- to fifth-degree refatives were 2.0, 1.32, 1.21, 1.10, and
1.04, respectively, for the 27 sites.

When calculating a combined p value summarizing the
significance of the increased risk for first- to fifth-degree
relatives, 21 sites were significant at a nominal p value level of
0.05. Sixteen of those sites remained significant after
Bonferroni adjustment for the 27 individual tests (p value <
0.00185) (Table 1). To discriminate between familial cluster-
ing in close and distant relatives, combined p values were also
calculated for first- and second-degree relatives on one hand
and for third- to fifth-degree relatives on the other hand

(5. PLoS Medicine | http/www plosmedicine.org
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{Table 1). Fourteen sites were nominally significant for the
distant relationships (third- to fifth-degree relatives) of which
eight were significant after Bonferroni adjustment. These
eight sites were all within the group of 16 sites demonstrating
significant familial clustering in all relationships.

The RR for developing cancer at the same site was also
estimated for mates of cancer patients at 22 out of the 27
individual sites. The remaining five sites are sex-specific and
calculations thus not applicable. For seven rare cancer sites,
affected mates were not observed, corresponding to a RR of
zero. Only lung, stomach, and colon cancer were character-
ized by significantly increased RR values in mates (Table 1).

Risk Estimations between Cancer Sites

We calculated RR between all cancer sites for first- and up
to fifth-degree relatives and mates (results for the 27 largest
sites are shown in Table $1). As done for the individual cancer
sites, p values were caleulated for all {first- to fifth-degree),
close (first- and second-degree), and distant (third- to fifth-
degree) relationships. Figure 1 shows a diagram representing
20 pairs of cancer sites that associate with a combined p value,
significant at a level of 1 X 107% for first- to fifth-degree
relationships, This level was significant at the 0.05 level aftev
Bonferroni adjustment for the 351 tests (number of unique
pairs of cancers). The strength of the distant familiality (i.e,
the p value for third- to fifth-degree relatives) between these
pairs of cancers is represented by the thickness of the lines
joining sites in Figure 1.

é@f
0

Figure 1. A Schematic Representation of Cancer Pairs Demonstrating
Significant Familial Aggregation

Cancer pairs that demonstrate significant familial co-clustering (first-
to fifth-degree relatives) at the 0.05 level after adjustment for
multiple testing (nominal p value < 1 X 107% are joined by lines.
The thickness of the lines joining the pairs are based on nominal p
values corresponding to the significance of the familiality in distant
relatives {third to fifth degree): bold, # £ 0.001; solid, ¢ < 0.0]; and
dashed, ¢ < 0.05. The number on the lines joining each pair indicates
the cross-cancer RR in first-degree relatives. Shaded ovals correspond
to individual cancer sites that were significant for the combined
group of first- to fifth-degree relatives at the 0.05 level after
Bonferroni adjustment (see Table 1).

DOI: 10.1371journal pmed.0010065,g001
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In total, 17 cancer sites were involved in 20 significant pairs
of sites (Figure 1). Stomach and prostate cancer were involved
in most pairs, seven and six pairs, respectively, followed by
colon, ovarian, and cervical cancer, each involved in three
pairs. The estimated RRs for the 20 pairs are between 1.1 and
1.7 for first-degree relatives and between 1.1 and 15 for
second-degree relatives (Figure 1; Table §1). The highest RRs
in first-degree relatives between cancer sites were seen for
esophagus—cervix, with a RR of 1.74, pancreas-ovary, with a
RR of 1.66, and colon-rectum, with a RR of 1.64.

All of the 20 pairs shown in Figure 1 were nominally
significant (¢ value < 0.05) for distant relationships, of which
nine were significant at the 0.001 level In the latter group,
prostate, rectum, stomach, and cervical cancers each ap-
peared in two pairs, and colon cancer in three.

Discussion

In this study we have comprehensively analyzed familial
aggregation of cancer cases in a whole nation, both within
and between pairs of cancer sites. The completeness of our
genealogy database allows us to accurately trace distant
relationships, which we believe is unique to this study.
Linking the ICR to our nationwide genealogy database thus
has made it possible to uncover distant familial connections
between cancer cases, and reach beyond shared environ-
mental factors to identify individual and combined cancer
sites with the strongest genetic influences. Furthermore, even
though the genetic effect decreases with more distant
relationships, the sample sizes used to estimate familiality
are dramatically larger for the distant relationships than for
the closer ones. This compensates to some extent for the
lower effect and adds considerable statistical power to the
~ study,

In this paper we restrict the presentation and discussion to
the most significant findings. However, we provide results for
all pairs of 27 cancer sites in Table $1, as a resource for other
researchers interested in the familiality of specific cancers.

The largest population-based studies reported to date,
evaluating familial clustering within the same cancer site, are
from Utah and Sweden [8,9,10]. These studies report RR
values for first-degree relatives [36] that are comparable to
those presented here for first-degree relatives. For example,
the median RRs for the occurrence of the same cancer in
first-degree relatives were 2.15, 1.86, and 2.00 for the Utah,
the Sweden, and our study, respectively. Also, RR values in
first-degree relatives ranged between 1.5 and 3.0 for the
majority of sites, i.e, 69%, 82%, and 60%, in Utah, Sweden,
and this study, respectively.

As seen in Utah and Sweden, high RR values were found in
this study for multiple myeloma, lymphoid leukemia, and
thyroid, testicular, and laryngeal cancer. The RR for thyroid
cancer in first-degree relatives was much higher in Utah and
Sweden (8.48 and 9.51) than in Iceland {3.02). One possible
explanation of the lower RR may be the high incidence of
thyroid cancer in Iceland, due to an excess of the papillary
subtype [18,37], which is not a part of the multiple endocrine
neoplasia syndromes.

The cancer sites showing the highest RR for first-degree
relatives tend to be among the rarer sites. There are two
potential reasons why rare tumors tend to show higher RRs
than common cancers. Being common, the baseline fre-
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quency is not low and that creates a bound on how large the
RR can be. Also, common cancers are expected to be
genetically complex, whereas it is more likely for a rare
tumor to be closer to a Mendelian trait, caused by rare alleles
with high penetrances,

Most individual cancer sites, or 16 out of the 27 studied
here, showed familiality as evidenced by significant p values
(after adjustment for multiple testing) for the combined
group of first- to fifth-degree relatives. Furthermore, eight of
these 16 sites remained significant even after exclusion of the
first- and second-degree relatives (after adjustment for
multiple testing). The majority of the 16 significant cancer
sites are among the sites of the most prevalent cancers,
indicating that we may lack power to detect extended
familiality for the less prevalent cancer sites. Indeed the
median number of cases per cancer site was 943 for the 16
significant sites compared to 342 for the non-significant sites.
Nevertheless, significant familial clustering {first- to fifth-
degree relatives) is seen for some of the less prevalent sites,
i.e, lymphoid leukemia and esophagus and meningeal cancer.

The largest cancer twin study reported to date [23)
documented significant heritability of prostate (42%), color-
ectal (35%), and breast cancer (27%) and provided suggestive
evidence for limited heritability of leukemia and stomach,
lung, pancreas, ovarian, and bladder cancer. All of these
cancer sites showed significant familial clustering in our
study. However, when the analysis was restricted to distant
relatives, lymphoid leukemia, pancreatic, and ovarian cancer
were no longer significant, Although close to 45,000 pairs of
twins were included in the study (of which 10,803 had been
diagnosed with cancer), the study clearly lacked statistical
power to detect the effects of heritable factors for the less
prevalent cancer sites.

A significantly increased risk of the same cancer was seen in
mates only for individuals diagnosed with stomach, lung, or
colon cancer. These results are in accordance with previous
reports, including Swedish population-based studies, except
for colon cancer [38,39,40,41). Environmental factors in adult
life (including lifestyle and infections) or nenrandom mating
could explain the higher risk of these cancer types in mates.
The RR was not significant or not observed in mates for other
sites,

We also assessed the significance of familial clustering
between cancer sites by calculating combined p values
corresponding to the increased risk for first- to fifth-degree
relationships. With this method, we detected 17 cancers that
linked into 20 pairs of sites that were significant after
adjustment for multiple testing, Stomach and prostate cancer
appeared more frequently in the pairs than other cancer
types, followed by colon, ovarian, and cervical cancer. We
emphasize again, as with the same-cancer calculations, that
we might lack power to connect rare cancers to other cancer
sites. This possibility is highlighted by the fact that the 17
cancers in the significant pairs are the most prevalent cancer
sites in Iceland.

Some connections seen here between cancer sites may be
partly explained by known high-risk genes involved in
heritable syndromes. Thus, mutations in genes associated
with hereditary nonpolyposis colorectal cancers could ex-
plain a part of the risk shared between stomach, colon, rectal,
and endometrial cancer, and possibly brain and ovarian
cancer [42,43). In a similar manner, mutations in BRCA1 and
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BRCA2 may explain in part the cluster seen between prostate,
breast, ovarian, and possibly pancreatic cancer [20,44,45,46),
Other known but even rarer cancer syndromes are likely to
explain only a handful of cases.

Undiscovered genetic factors could contribute to some
connectionsseen here to amuch greater extent than the known
susceptibility factors. Although these could include unknown
high-risk susceptibility genes, they are more likely multiple
genetic variants, each conferring small to moderate risk,

Familial clusters were identified between cancer sites, both
in close and distant relatives, that do not correspond to
known cancer syndromes. These include lung, esophageal,
cervical, and stomach cancer, which, interestingly, have been
associated with environmental rather than genetic factors.
One explanation for this excess familiality between these
cancer sites is an interaction of genetic susceptibility factors
with environmental carcinogens (e.g, tobacco and diet) or
infectious agents. Thus, the same environmentat factor could
interact with the same genetic susceptibility factor or factors
to induce different cancers (i.e., smoking in lung and cervical
cancer). Alternatively, different environmental factors could
interact with the same genetic susceptibility factor or factors
to increase the risk for different cancers (i.e., smoking in lung
cancer and human papilloma virus in cervical cancer).

Hormone-related cancers form another risk cluster, Thus,
shared genetic susceptibility factors could directly influence
the hormonal metabolism to induce breast, prostate, thyroid,
or ovarian cancer in carriers. Alternatively, shared genetic
factors could interact with dietary factors to induce aggre-
gation of cancers at these sites in related individuals. A
significantly increased risk of breast, prostate, cervical, and
non-melanoma skin cancer was recently reported in first-
degree relatives of early-onset breast cancer patients from
Sweden that tested negative for BRCAT and BRCA2 mutations
[47). Our data support the notion that unknown susceptibility
variants that increase the risk of breast and prostate cancer
and melanoma remain to be characterized.

Two more groups of cancers with shared risk were
identified that each include sites that share the same
developmental progenitors: the prostate, kidney, and bladder
are sites derived from the nephrogenic ridge while colon,
rectum, and stomach are derived from the primitive gut tube.
Therefore, the sites in each group may share risk alleles that
regulate embryonic development, which can later play a role
in oncogenesis.

Interestingly, three cancer sitesitypes, non-melanoma skin,
brain, and melanoma, that do not have significant same-
cancer familial clustering demonstrate significant cross-
cancer familial clustering with more prevalent cancer sites,
i.e., rectum, stomach, and kidney cancers, respectively.

Previous reports systematically evaluating the significance
of co-clustering of cancer pairs in families have utilized the
Utah Population Database. In these studies lip and prostate
cancers appear to associate most frequently with other cancer
sites. The same is true for prostate cancer in our study,
whereas lip cancer does not significantly associate with any
other cancer sites. This can at [east in part be explained by
the difference in age-standardized incidence rates for lip
cancer in Iceland and Utah (Iceland 1.1 and Utah 2.4) [48]. In
contrast, stomach cancer associates with seven other cancer
sites out of the 20 significant pairs in our study, but only three
other sites in the Utah study. Of the 20 cancer pairs that
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Familial Clustering of Cancers

significantly associate in our study, eight concur with the
Utah studies. ’

Because the increased cross-site RR extends beyond the
nuclear family, shared genetic factors may contribute to the
risk of more than one cancer type. This suggests that cancer
could be considered a broad phenotype with shared genetic
factors across cancer sites. Therefore cancer should in certain
cases be studied in a broader context than previously done.
Combining multiple cancers that show increased cross-site
RR may serve to increase the power of linkage and case-
control studies, Qur results also have implications for genetic
counseling and imply that the focus of attention should
broaden to the history of multiple cancer types in relatives
within and outside the nuclear family. These results also
suggest the utility of comparing expression profiles and in
vitro biological processes across the cancers that we have
identified as sharing genetic risk. The isolation of cancer
predisposition genes with broad effects may define new rate-
limiting pathways that can be used to search for drug targets
for a more focused treatment with fewer side effects but with
utility across multiple cancers.

Supporting Information

Table §1. Cross-Site RR Estimates for Relatives and Mates of Patients
Diagnosed with Cancers at 27 Sites with 200 Cases or More

Found at DOT 10.1371fjournal pmed.0010065.5t001 (1.9 MB DQC),
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Determination of recombination rates across the human genome has been constrained by the limited resolution and
accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers
for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the
genetic order of polymorphic markers; (i) improve the precision of estimates of genetic distances; (iii} correct portions
of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombi-
nation rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence
(GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences
in locations of recombination maxima. We detected systematic differences in recombination rates between mothers

and between gametes from the same mother, suggesting that there is some underlying component determined by
both genetic and environmental factors that affects maternal recombination rates.

Introduction

The draft sequence of the human genome' has markedly
advanced the understanding of human genetics. Because the
available sequence is that of a reference genome, however, it does
not provide insight into the genomic variability that is responsi-
ble for much of human diversity. Along with mutation, a major
mechanism generating variability in the eukaryotic genome is
intergenetational mixing of DNA through meiotic recombina-
tion of homologous chromosomes. The standard approach to
studying rates of recombination across the genome is to build a
genetic map by genotyping, with a high density of markers, a
large number of individuals in families and then match this to
the corresponding physical map.

Existing genetic maps?~* have been used extensively in linkage
analysis in the mapping of disease genes and the assembly of
human DNA sequences. One limitation of present genetic maps
is the low resolution inherent to modest sample size. The Marsh-
field map?, considered the current standard by most scientists, is
based on only 188 meioses. This affects the accuracy of the esti-
mates of recombination probabilities, and for markers separated
by no more 3 cM, makes even the marker order somewhat unre-
liable. We collected a substantially larger set of genetic mapping
data that provides information on 1,257 meioses. The draft
sequence of the human genome facilitates the construction of a
high-resolution genetic map by clarifying the order of the mark-
ers where the genetic data lack resolution; the genetic data, in
turn, can be used to check and improve the sequence assembly.
In addition, a higher-resolution genetic map and an accurate

physical map together provide better estimates of recombination
rates with respect to physical distances, which are essential to
understanding the intergenerational variability of the genome.
Thus, our results should facilitate the formulation and testing of
hypotheses about the relationships between sequence content
and recombination rate and between recombination rate and the
degree of linkage disequilibrium.

Results

Data collection

We genotyped 869 individuals in 146 Icelandic families, consist-
ing of 149 sibships and providing information on 628
male/paternal and 629 female/maternal meioses, with 5,136
microsatellite markers>*3, Both parents of 95 sibships were
genotyped and for 52, a single parent was genotyped (see Web
Tables A and B online for more details of the families and the
microsatellite markers used). As cornpared to the eight large sib-
ships on which the Marshfield map is based, most with grand-
parents genotyped, the information on recombinations in our
data set is slightly less complete, With more than six times the
number of meioses, the average resolution of our map is proba-
bly about five times that of the Marshfield map.

Of the 5,136 markers, 4,690 (91.3%) were placed in sequence
contigs of the August 2001 freeze (released in October 2001) of
the Human Genome Project Working Draft at the University of
California, Santa Cruz!. We placed another 82 (1.6%) markers
through our own in silico analysis of the public sequence. The
remaining 364 markers, or 7.1%, could not be located in the cur-
rent public sequence.

deCODE genetics, Sturlugotu 8, IS-101 Reykjavik, Iceland. Correspondence should be addressed to A.K. (e-mail: kong@decode.is) or K.S.

{e-mail: kstefans@decode.is).
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The entire set of genotype data, coded for anonymity to
protect privacy, is available to investigators with a valid
research plan.

Determination of marker order

The Marshfield map and all previous genetic maps were con-
structed without the benefit of the draft sequence as a refer-
ence. Because of the low resolution of the data, simply
determining the order of the markers was a substantial under-
taking. Our higher resolution, resulting from the large sample
size, and the availability of the draft sequence made our task
easier. The correct ordering of the markers was still not
straightforward, however, as there are discrepancies between
the draft sequence and other genetic and physical mapping
data®. We ordered the markers using our genetic data, and used
the draft sequence as a default when our data lacked resolu-
tion. We used our genetic data to resolve cases where there was
more than one hit for 2 particular marker in the draft sequence
from BLAT or ePCR (Web Note A online). Also, where our
genetic data provide strong support for a marker order differ-
ent from that of the draft sequence, we modified the physical
locations of the markers along with the corresponding
sequence. We made some additional changes to the draft
sequence using other physical mapping data (see Methods and
Web Note B online}. In total, we made 104 modifications to the
August 2001 UCSC sequence assembly, amounting to about
3.4% of the genome, affecting 84 of 543 contigs (15% of con-
tigs) and representing 40% of the genome sequence (Web
Tables C and D online). For ordering markers, the average res-
clution of our marker map is about 0.5¢M. (Web Table E
online gives the physical positions of our markers and incor-
porates these modifications.)

Genetic distances

We used an extended version of our multipoint linkage program,
Allegro'0, to estimate the genetic distances between consecutive
markers on our corrected marker map in males and females by
applying the method of maximum likelihcod and the expecta-
tion-maximization (EM) algorithm!!, (Web Table E online con-
tains the resulting sex-averaged and sex-specific genetic maps.)

Aside from sampling errors, genotyping errors not causing
inheritance incompatibilities can inflate the genetic distances sub-
stantially, as one genotyping error can lead to one or more false
double recombinations, We examined each genotype using the
extended version of Allegro and identified 2,123 problematic geno-
types. The removal of each one led to a reduction of two or more
obligate crossovers. We eliminated these 2,123 genotypes from the
final estimation of genetic distances and thereby reduced the esti-
mated genetic length of the genome by about 11%. Although most
of these genotypes probably reflected genotyping errors, some may
represent mutations. Also, apparent multiple recombinations could
result from gene conversions or DNA rearrangements; a common
inversion of an approximately 3 Mb region of 8p was recently iden-
tified from the CEPH genetic data and later confirmed by FISH!'2,
To ensure that data that could lead to similar interesting discoveries
remain available, we have included these 2,123 problematic geno-
types (flagged as such) in the data distribution.

Our estimate of the total genetic length of the genome (the 22
autosomal chromosomes and the X chromosome) spanned by
our markers is 3,615 cM—not significantly different from the
estimate of 3,567 ¢M indicated by the Marshfield map (Table 1).
Notably, however, the length of chromosome 1 (the longest chro-
mosome} indicated by our map is 13.8 ¢cM (4.99%) less than that
indicated by the Marshfield map. For the two shortest chromo-
somes (chromosomes 21 and 22), however, our lengths are

Table 1 « Physical and genetic lengths of individual chromosomes

Marshfield Genetic length according Recombination rate (¢cM Mb-1)

sex-averaged to this study (cM) Number
Physical Genetic Sex Sex . Excluding of

Chromosome  length (Mb) length (cM) averaged Male Female averaged centromere markers
1 282.61 284.07 270.27 195.12 345.41 0.96 1.08 468
2 252.48 261.61 257.48 189.55 325.41 1.02 1.05 407
3 224,54 219.34 218.17 160.71 275.64 0.97 0.99 369
4 205.35 206.59 202.80 146.54 259.06 0.99 1.00 302
5 199.24 197.54 205.69 151.20 260.19 1.03 1.06 334
6 190.87 189.00 189.60 137.62 241.59 0.95 1.03 293
7 168.50 178.84 179.34 128.35 230.33 1.06 1.09 246
8 158.14 164.25 158.94 107.94 209.94 1.01 1.04 247
9 150.21 159.61 157.73 117.25 198,20 1.05 1.25 193
10 145.63 168.81 176.01 133.89 218.13 1.21 1.25 256
1" 152.96 145.66 152.45 109.36 195.53 1.00 1.03 260
12 153.39 168.79 171.0% 135.54 206.64 i.12 1.17 239
13 100.44 114.98 128.60 101.31 155.88 1.28 1.28 175
14 87.09 127.84 118.49 94.62 142.36 1.36 1.36 161
15 87.25 117.36 128.76 102,57 154.96 1.48 1.48 125
16 106.45 129.33 128.86 108.10 149.62 1.21 1.47 151
17 89.45 125.83 135.04 108.56 161.53 1.51 1.56 181
18 89.37 125.12 120.59 98.62 142.57 1.35 1.41 158
19 69.44 100.61 109.73 92.64 126.82 1.58 1.75 120
20 59.37 95.70 98.35 74.72 121.97 1.66 1.84 141
21 29.97 50.06 61.86 47.31 76.40 2.06 2.06 67
22 31.19 56.55 65.86 48.96 82.76 2.1 2.1 66
X 156.83 179.95 179.00 179.00 1.14 1.19 177
Total 3,190.77 3,567.44 361471  2,590.48  4,459.94 1.13 1.19 5,136

The lengths, including those from the Marshfield map, correspond to the chromosome regions spanned by aur markers and will in general be shorter than the
actual total lengths. The recombination rate for a chromosome excluding the centromere is calculated by deleting the genetic length and physical fength of the

two markers flanking the centromere.
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Fig. 1 Sex-averaged recombination rate for chromosome 3. Points corre-
spond to sex-averaged crossover rates, calculated using moving windows 3
Mb in width; the shift from the center of one bin to the next is 1 Mb, The
sex-averaged genetic distance for each 3-Mb window was calculated on the
basis of our genetic map, and assumes a constant crossover rate between
two adjacent markers. The solid curve was fitted to the points using smooth-
ing splines?S, ¢ represents the centromere; cd represents the three recombi-
nation deserts and j the recombination jungle identified by Yu et al.13 using
data abtained from CEPH families.

11.8¢M (23.6%) and 9.3 cM (16.5%} greater than the lengths
indicated by the Marshfield map,

Because of differences in recombination rates between the
sexes, the estimated genetic length of the female autosomal
genome {4,281 cM) differs from that the male genome
(2,590 cM) by a ratio of 1.65.

High-resolution map shows fine structure of
recombinations

We compared the high-resolution genetic map with our corrected
sequence to derive recombination rates in centimorgans per
megabase across the genome (Web Table E online gives estimated
sex-averaged and sex-specific recombination rates at the marker
locations). The shorter chromosomes usually have higher recombi-
nation rates than the longer ones, and the relationship between the
average recombination rate and the physical length of a chromo-
some can be fitted well by a smooth curve (see Web Fig, A online).
The average recombination rates of chromosomes 21 and 22 are
twice as high as those of chromosomes 1 and 2. Recombination
rates also vary across individual chromosomes, as iltustrated by the
sex-averaged crossover rates for chromosome 3 (Fig. 1; Web Fig. B
online contains the corresponding plots for the other chromo-
somes). The crossover rate varied from over 3 ¢cM Mb™! at the
telomere of the short arm to less than 0.1 ¢M Mb™! at the cen-
tromere and its immediate surroundings on the short arm. Most
interesting is the large number of local recombination peaks and
valleys throughout each chromosome, Using the same 8 CEPH
farnilies from which the Marshfield map was constructed, Yu ef al.13
identified 19 recombination ‘deserts, defined as regions with
crossover rates less than 0.3 ¢cM Mb™, and 12 recombination jun-
gles, defined as regions with crossover rates greater than 3 ¢cM
Mb~1, Three of the deserts and one of the jungles identified by Yu et
al1? are on chromosome 3 (locations indicated in Fig. 1). We iden-
tified the same jungle, but none of their three deserts; however, we
identified other potential desert regions. With respect to the whole
genome, we detected 8 of the 19 deserts
identified by Yu et al.}® (5 with recombi-
nation rates between 0.3 and 0.5) but

chromosome 1

sex-averaged recombination rate (cM/Mb)

150 200

cated pattern, however (for comparison, see ref. 4). Notably,
although locations of local peaks and valleys for the two sexes
tend to coincide, there are some instances of phase shifts, such
that a peak for males corresponds to a valley for females and vice
versa. Two such regions lie near the centromere on the p arm of
chromosome 1 and around 25 Mb on chromosome 7, In addi-
tion, the ratio of sex-specific recombination rates fluctuates
greatly across the chromosomes {Web Fig. C online). Over the
whole genome, the correlation between male and female
crossover rate is 0.57, high enough to lend support to the notion
that underlying variables, such as sequence content and physical
location, may explain a large fraction of the variation in sex-aver-
aged crossover rates.

Correlation of recombination with sequence parameters
Many statistically significant correlations between recombination
rates and sequence content have been identified using genetic
maps such as the Marshfield map. These correlations are usually
small, however, and parameters explaining a substantial percent-
age of the variance of recombination rates have not been identi-
fied. For example, among parameters relating to sequence
content, the highest correlation seen in the study that identified
recombination deserts and jungles!? was with GC content, and
this explained only 5% of the variation in sex-averaged recombi-
nation rates (R? = 0.03). In contrast, we saw much stronger corre-
lation with GC content {correlation = 0.39, R? = 0.15) and other
sequence parameters (Table 2). When we used the parameters

chromosome 7

found better agreement with the 12 jun-
gle regions, all located at the telomeres. It
is likely that the discrepancy with regard
to recombination deserts is due to the
small sample size of the original study!?,
We calculated the crossover rates in
males and females across chromosomes
1 and 7 (Fig. 2) much as we did the sex-
averaged crossover rates (Fig. 1), but
using a larger bin size (6 Mb as com-
pared to 1 Mb). This provides poorer
resolution but is necessary to ensure
that the estimates have similar preci-
sion. We confirmed that crossover rates
in females are much higher around the

recombination rate (cM/Mb}

centromeres, whereas those in males o 50
tend to be higher towards the telom-
eres’. Our data show a more compli-
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Fig. 2 Sex-specific recombination rates for thromosomes 1 and 7. Solid line, femate; dashed line, male,
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Table 2 + Results of simple and multiple regressions with sex-averaged recombination rate as the response

Predicting sex-averaged recombination rates

Simple
regression
Predictor Coef. std. err. RZ
Poly{A)poly(T) fraction -0.44 0.03 0.19
CpG fraction 0.40 0.03 .16
GC content fraction 0.3% 0.03 0.15
RefSeq gene count 0.14 0.03 0.02
PPY/PPU fraction 0.30 0.03 0.09
UniGene cluster count 0.22 0.03 0.05

Multiple regression
{best three predictors)

Multiple regression
(all predictors)

P-value Coef. Std. error Coef. Std. error
0 -2,23 0.13 ~1.96 0.13
0 1.42 0.10 1.27 0.10
0 -3.27 0.22 -2.70 0.20
0 —0.30 0.05
0 0.20 0.04
0 0.29 0.05
R2=0.37 R2=0.32

We used 957 non-overlapping 3 Mb bins for individual data points. Fractions of sequence contents are all adjusted for the number of 'N’ bases in the draft sequence,
and only bins with less than 50% N bases are used. Results presented are based on standardized values (lineasly transformed to have mean 0 and variance 1) of the
response variable (recombination rate) and the six predictors. This does not affect 2 or the P values, but makes the fitted coefficients more readily interpretable.

simultaneously to predict sex-averaged recombination rates using
multiple regression, six parameters together explained about 379
of the variance and just three—CpG motif fraction, GC content
and poly(A)poly{T) ((A)»y and (T),,) tract fraction—
explained about 32% of the variance. Although GC content was
positively correlated with recombination rate when assessed sepa-
rately, in the multiple regression fit it was negatively correlated
with recombination rate, Close inspection showed that the three
best predictors are all highly correlated pairwise: the correlation
between CpG fraction and GC content is (.94, the correlation

Table 3 « Pearson sample correlation coefficients between
the number of maternal recombinations on individual
chromosomes and the number of maternal recombinations
in the corresponding genome complement

Correlations of maternal gametic
recombination rates across the genome
(after adjusting for the mother effect)

Genomic Correlation with the P-value
region rest of the genome
Chr.1 0.14 0.0224
Chr, 2 0.19 0.0020
Chr. 3 0.32 <0.0001
Chr. 4 0.19 0.0014
Chr.5 0.24 0.0001
Chr. 6 0.21 0.0004
Cchr.7 0.16 0.0074
¢hr. 8 0.15 0.0120
Chr. 9 0.17 0.0051
Chr. 10 017 0.0040
Chr, 11 0.13 0.0288
Chr. 12 0.18 0.0040
Chr. 13 0.18 0.0040
Chr. 14 0.16 0.0107
Chr. 15 0.01 0.8686 (NS)
Chr. 16 0.17 0.0045
Chr. 17 0.07 0.2333 (NS)
Chr. 18 0.18 0.0028
Chr. 19 0.26 <0.0001
Chr. 20 0.14 0.0240
Chr. 21 013 0.0378
Chr, 22 0.05 0.3820 (NS}
Chr. X 0.23 0.0001

Chr. 1-8 0.40 <1010

Also computed is the correlation between the first eight chromosomes with
their complement. The correlations are calculated adjusted for the mother
effect; for each chromasome, we compute the average number of maternal
recombinations in a family, and this is subtracted from the number of maternal
recombinations of each child in that family. N3, nonsignificant.
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between CpG fraction and poly(A)/poly(T) fraction i{s —0.85 and
the correlation between GC content and poly(A)/pely(T) fraction
is -0.96. This might suggest that these parameters capture essen-
tially the same predictive information and that using two or three
of them together would not substantially improve the prediction.
But that is not the case: in particular, GC content is negatively cor-
related with recombination rates after adjustment for
poly{A}/poly(T) fraction and CpG fraction. Thus, regions with
the highest recombination rates tend to be those with high CpG
fraction but low GC content and poly(A)/poly(T) fraction. Three
other parameters—reference sequence genes, UniGene cluster
and polypyrimidine/polypurine ratio (PPY/PPU)—are weakly,
but statistically significantly, predictive of recombination rates.

The substantially greater power to predict recombination
rates, as compared with previous studies, that we obtained by
using sequence parameters is probably a consequence of the sub-
stantially higher resolution of our genetic map, the availability of
the draft sequences and our use of multiple regression.

We also observed a significant correlation between sex-aver-
aged recombination rates and cytogenetic bands as defined by
FISH mapping'* (R? = 0.06, P < 0.00001). Specifically, among G
bands, staining intensity (G25, G50, G75, G100) is inversely cor-
related to recombination rate. The G-negative bands have
recombination rates somewhere between those of the G50 and
G75 bands. This correlates well with GC content: in G bands,
staining intensity decreases with GC content, but G-negative
bands have a GC content sornewhere between those of G530 and
G75 bands.

Individual differences in recombination rates

On the basis of the 62 sibships with four or more sibs and both
parents genotyped, comprising 269 male and 269 female
meioses, we confirmed previous findings* of a systematic differ-
ence in recombination rates between mothers (P = 0.002} but
not fathers. Notably, even after we adjusted for this ‘mother
effect the number of recombinations was still positively corre-
lated among chromosomes within the same maternal gamete.
Thus, after adjustment, the correlation between the number of
maternal recombinations on chromosome 3 and the sum of the
maternal recombinations on the other 22 chromosomes was 0.32
(P < 0.0001). The correlation with the corresponding comple-
ment of the genome was positive for each of the 23 chromosomes
(Table 3) and statistically significant in 20 of 23 cases. We artifi-
cially divided the genome into two halves of about equal genetic
lengths, chromosomes 1-8 and chromosomes 9-22 plus X, and
observed a correlation between the number of maternal recom-
binations in the two halves of 0.40 (P < 1 x 1071%), We did not
detect similar correlation for the paternal recombinations.
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The systemnatic mother effect and the maternal gamete effect
that exists even after adjustment for the mother effect suggest
that there is some yet unidentified factor—which may be partly
genetic and partly environmental and varies within and between
mothers—that has a global influence on maternal recombination
rates affecting most, if not all, chromesomes simultaneousty.

Comparison of the high-resolution and Marshfield maps
We saw a few large discrepancies and many small ones between
our map and the Marshfield map. In the Marshfield mapandtoa
lesser extent in ours, often more than one marker has been
assigned the same position, reflecting a lack of resolution. The
5,012 markers shared by the two maps are assigned to 2,866 dis-
tinct positions in the Marshfield map and to 3,690 positions in
our map. Even when we considered only pairs of markers that
were apparently resolved on the Marshfield map, our marker
order often did not agree with theirs. For example, among pairs
of markers separated by 0.05-3.0cM in the Marshfield map (not
limited to adjacent pairs on the map), the two markers were
ordered in reverse on our map in 6.7% of cases (5.5% where we
had apparent resolution in our genetic data and 1.2% where our
ordering of markers was based entirely on the draft sequence).
Even when there was agreement as to marker order, the differ-
ences in estimated genetic distances were sometimes substantial
(see Web Table F online for more details).

An accurate genetic map is crucial for linkage analysis, in
which the locations of disease-susceptibility genes relative to a
set of markers are estimated—and particularly for multipoint
analysis, in which information from multiple markers is
processed simultaneously!>1%, In theory it is better to use sex-
specific maps for linkage analysis'?, but in practice, nearly all
published linkage scans are based on a sex-averaged
map. Our map, based on over 600 meioses per sex,
may make it possible to realize the theoretical gain
obtainable by using sex-specific maps.

Corrections to the human sequence

In the process of collecting and analyzing our genetic
data, we compated them with three Golden Path assem-
blies of successive freezes of the draft sequence, those of
December 2000, April 2001 and August 2001. Apart
from combining the information from both sources to
obtain a best estimate of the marker order, this process
also serves as a monitor of the changes and progress
made in the sequence assembly. Using our genetic data,
we ordered the markers by minimizing the number of
obligate crossovers!®, When the relative order of two or
maore markers have no effect on the number of obligate
crossovers, the genetic data are considered to have no

Lt

W
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Fig. 3 Comparisans of our order and the Santa Cruz orders for the
April and August 2001 freezes of the draft sequence, All discrepan-
cies between our order and these freezes for chromosome 3 are
shawn. Physical positions of the geriomic segments in the figure are
indicated either by giving the starting and ending position of the
segment, or by giving a single position when the segment is less
than 100 kb in length. Physical positions shown are with respect to
cur modified sequence. Region 5 contains over 40 markers, of which
only a subset are shown. Adjacent markers in red indicate that our
genetic data lack sufficient resolution to determine the order, The
misplacement of the marker £351307 in region 1 appears tc be an
errer in the annotations instead of an actual problem with the
assembly, as our in silico analysis using the August freeze sequence
put the marker at the right place. With regions 7 and 8, our order
agreed with the December 2000 freeze. Regions 4 and 10 were
apparently difficult regions for the assemblies, and although our
genetic data revealed some inconsistencies, some uncertainty as to
the order remained.
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resolution. There were many instances where our genetic data
had resolution, but our preferred order differed from that of
either the April 2001 or August 2001 freeze, as illustrated for
chromosome 3 (Fig. 3). The most illuminating case is that of
region 5, covering approximately 22Mb. The December 2000
freeze {not illustrated in the figure) and the August 2001 freeze
both inverted the black and red segments together, a change
involving about 8 Mb of the sequence. Compared with the
December 2000 freeze, the April 2001 freeze further inverted the
blue and black segments together, expanding the problematic
region to about 22 Mb. This second error was corrected in the
August 2001 freeze, but the 8 Mb inversion remained.

For the genome as a whole, although many changes occurred
between the December 2000 freeze and the April 2001 freeze,
there was no real improvement at the level of macro-assembly—
some errors were corrected, but they were replaced by a similar
number of new errors. But the August 2001 freeze appearsto be a
real improvement over the April 2001 freeze: most errors involv-
ing large segments of DNA were corrected and the total number
of errors was reduced.

A genetic map for SNPs

Given a reliable assembly of the human sequence, markers for
which we have no direct genetic mapping data can be assigned’
positions on the genetic map through linear interpolation
between the sequence/physical map and our genetic map.
Indeed, we have assigned genetic locations to about 2 million
SNPs in the public databases!® in a way that can be used by scien-
tists in selecting and using SNPs for genetic mapping analysis
(see Web Table G online).

Santa Cruz Santa Cruz
Mb (Apr 2001 iroeze) our order (Aug 2001 freeze)
27 D3S45EY D354559 Das1307
D352387 Dasze87 D3S4559
D351539 D3S1539 D3s2387
3.1 Das1307 0351307 D3s1539
10.6 D351597 D3536371 p3s369t
} 14 p3saset ——— | pastser D3§1597
184 D353608 D353610 D353610
} D353610 D383608
D3IS3640
} 19.1 D352420 \ D3S3608
T |ws \ D383640 D353640
D352420 D382420
} 743 D352329 D3S1285 D351285
b351285 D353644 D352329
74.6 D3I5I644 pasza29—" | pasases
3 76.1 D352446 D383697 D383697
D351538
v D353679 D353524 D353524
A 0353568 D353568
D353653
D353653 0353853
> 0353568 Y
D3S3507
D353524 0351577 D353679
0253697 D3524d6 Fortvme
Das1538
) DISIS77 D353679 * D351577
93.0 DIsas0r 0383507
1131 D3s3652 D3s1753 D353852
B v 0351753 =< | p3sassz —— | Dasizss
} 1726 D353589 D351584 D353689
173.1 D3si584 D353689 D351584
2039 D353603 D353662 D3szs03
I I D3SIEE2 T I D3ISI603 I D3sIE62
03S157T D3S1E18 0351618
T | 2097 D3SIE18 < I D3s15Te D3sI571
2228 Dp352480 D35240 D381265
D3S1305 D351305 pasierz
D381265 D351265 D351317
D3S3TO7 pagizr2 D3s3r07
Dasisrt >< Dastan D35240
273 D3s1272 Das3707 0351305
} I qter I not mapped I D35350 I mappad to Tpter
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Discussion

The recombination map of the human genome described here
reveals marked regional differences in recombination rates,
Because meiotic recombination probably contributes to evolu-
tionary change in humans, the regional differences in recombi-
nation rate raise the possibility that DNA changes contributing
to evolution may not be entirely random, but rather may be more
concentrated within specific regions. The regional differences in
the recombination rate have prompted the speculation that
recombination may be driven by sequence features such as the
density of genes, the nature of genes and the presence of sequence
repeats, among others. But differences in recombination rates
between men and women demonstrate that there is more to
recombination than just sequence. First, the frequency of recom-
bination in the autosomes of females is 1.65 times that in the
autosomes of males, although the autosomes are not known to
contain any sex-specific sequence differences. If recombination
events drive evolution, women may contribute more, in this
regard, than do men. Second, there are regions in the genome
where the recombination rate is particularly high in women and
particularly low in men, and vice versa (data presented here and
ref, 20). This indicates that forces outside the sequence con-
tribute substantially to the determination of recombination rate.

Our observation of interfamily variation in maternal recombi-
nation rates is in agreement with previous reports of variable
rates of chiasma formation?! and crossover® in humans, and sug-
gests that genetic factors may directly influence maternal recom-
bination rates. This is in accordance with the finding in maize of
a gene that controls recombination rates®2.

We saw significant differences in recombination rate among
maternal gametes even after accounting for interfamilial differ-
ences. This suggests that stochastic factors operating during
development or gametogenesis, or environmental factors acting
over the many years of prophase of meiosis I in females, may
affect the recombination rates of particular gametes,

We have achieved our original goal of constructing a more
accurate genetic map of over 5,000 polymorphic microsatellite
markers, But the intrinsic value of our primary data goes beyond
that of the map from which it was constructed. For example,
there have always been numerous disagreements between various
human physical and genetic maps, which have not disappeared
with the availability of the draft sequence. Theoretically, it is
preferable to obtain a consensus order by combining and evalu-
ating the original sources of data rather than by combining the
resulting maps. In addition, although most discrepancies arise
from limitations of the data, some may result from polymor-
phisms of macro-rearrangements'?, Indeed, rearrangement
polymorphisms, together with differences in individual maternal
recombination rates, may account for some of the discrepancies
in marker order and distance between the Marshfield map and
our genetic map. Our data, by themselves or in conjunction with
other data, can help to identify such rearrangement polymeor-
phisms. These may be more frequent than expected and may
contribute substantially to human phenotypic variation and,
hence, natural selection. Recent studies?*?4 of linkage disequilib-
rium at a few locations suggest that local recombination hot
spots tend to occur every 50-100 kb. When such data become
available for the whole genome, it will be possible to determine
whether the regions of high recombination rate that we have
identified are driven by higher densities or higher intensities of
recombination hot spots.

Methods
Data collection and genotyping. We obtained all biological samples used
in this study according to protocols approved by the Data Protection Com-
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mission of Iceland {DPC) and the National Bicethics Committee of Ice-
land. We obtained informed consent from all patients and their relatives
whose DNA samples were used in linkage studies. We encrypted all person-
al identifters using an algorithm whose key was held by the DPC??, Details
concerning genotyping, allele-calling, and genotype quality control are in
Web Note C online.

Genotype data. Investigators interested in obtaining a copy of the genotype
data should submit a completed agreement formn (see Web Form A online) by
fax to 354-570-1903 or by mail to Statistics Map, deCODE Genetics ehf,
Sturlugata 8, IS-101 Reykjavik, Iceland. Data will be distributed on a CD-
ROM, in a manner consistent with the protection of privacy. In addition to
the removal of personal identifiers, the genotype data provided is also coded
for anonymity. Specifically, allcles for each marker are randomly coded, but
the coding is consistent across families. As a consequence, all results reported
here can be repreduced independently with this data,

Ordering markers. With the genetic data, we evaluated an order of the
markers based on the corresponding number of obligate
recombinations'®. This is 2 robust method based on the simple idea that if
there is a crossover between two markers and if the order of the two mark-
ers is reversed, the single crossover will appear to be three consecutive
crossovers, one in front of, one between, and one after the two markers. We
performed computations by modifying our program, Allegro'?, and used a
simulated annealing approach to search efficiently for orders that mini-
mize the number of obligate crossovers. When the relative order of two or
more markers had no effect on the number of obligate crossovers, we con-
sidered the genetic data to lack resolution. When our genetic mapping data
had resolution and our preferred order was in disagreement with the
sequence assembly, we censidered modifying the sequence assembly. When
the data was informative, we took a single recombination between the two
markers as enough to determine the order of the two markers, as the wrong
order would require two more recombinations than the right order, and
this led to a likelihood ratio >2 x 102 for distance smaller than 2 cM. We
made 86 modifications to the assembly of the August 2001 sequence freeze
with suppert from our genetic data: 53 supported by a reduction of four or
more obligate recombinations (likelihood ratio >4 x 10%) and 33 support-
ed by a reduction of two obligate recombinations (likelihood ratio >2 x
10%). We made an additional 18 modifications in cases where our genetic
data lacked resolution, but there was strong support from alternative
sources of physical mapping data (see Web Note D online for details on
how sequence modifications were carried out).

Genetic distances. We estimated recombination probabilities between
adjacent markers and then converted these to genetic distances using the
Kosambi map so that they were directly comparable with the Marshfield
map. We first calculated sex-specific distances and then averaged these to
obtain the sex-averaged distances.

Correlation with cytogenetic bands. We determined statistical significance
by one-way analysis of variance where recombination rate was the response
and band-type was treated as a factor with five unordered categories: the G-
negative bands and the G bands of four different staining intensities.

Differences in recombination rates. Because the data were not fully infor-
mative, there is some, though relatively little, uncertainty regarding the
actual number of recombinations. To minimize the impact of the uncer-
tainty in the data without unnecessarily complicating the presentation
here, we used only sibships with four or more children and for which both
parents were genotyped (62}, accounting for a total of 269 meioses, to
study maternal and paternal recombinations. We used Allegro to simulate
100 replicates of recombination patterns conditional on the genotype data
and the estimated male and female maps. For each gamete, we used the
number of maternal and paternal recombinations averaged over the 100
replicates for subsequent calculations. We used one-way analysis of vari-
ance, treating identity as mother or father as a factor, to obtain P-values
when testing for mother and father effects. For the mother effect, the
between-mother mean square and within-mother (residuals) mean square
were 97.9 and 56.5, respectively, giving a F statistic of 1,73 (97.9/56.5) with
61 and 207 degrees of freedom (P = 0,002}, Information on the individual
families is in Web Table H online.
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We obtained the P-values in Table 3 for the correlations of individual

chromosomes with their genome complement on the basis of a permuta-
tion test; we performed 10,000 random permutations of the 269 mother-
adjusted recombination counts. The P-value for the correlation between
the first eight chremosomes with their genome complement was sup-
ported by asymptotic approximations corresponding to tests based on
either the Pearson product moment, Spearman’s rho or Kendall’s tau. Also,
the largest correlation coefficient obtained based on 500,000 permutations
of the 269 recombination counts was only 0.28, substantially smaller than
the observed value of 0.40.

Note: Supplementary information is available on the Nature
Genetics website.
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A common inversion under selection in Europeans

Hreinn Stefansson!?, Agnar Helgason'3, Gudmar Thorleifsson!, Valgerdur Steinthorsdottir!, Gisli Masson!,
John Barnard?, Adam Baker!, Aslaug Jonasdottir!, Andres Ingason’, Vala G Gudnadottir!, Natasa Desnical,
Andrew Hicks!, Arnaldur Gylfason!, Daniel F Gudbjartsson', Gudrun M Jonsdottir!, Jesus Sainz!,

Kari Agnarsson!, Birgitta Birgisdottir!, Shyamali Ghosh', Adalheidur Olafsdottir!, Jean-Baptiste Cazier!,
Kristleifur Kristjansson?, Michael L Frigge!, Thorgeir E Thorgeirsson!, Jeffrey R Gulcher!,

Augustine Kong"? & Kari Stefansson!-

A refined physical map of chromosome 17¢21.31 uncovered a 900-kb inversion polymorphism. Chromosomes with the inverted
segment in different orientations represent two distinct lineages, H1 and H2, that have diverged for as much as 3 million years
and show no evidence of having recombined. The H2 lineage is rare in Africans, almost absent in East Asians but found at a
frequency of 20% in Europeans, in whom the haplotype structure is indicative of a history of positive selection. Here we show
that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children

and have higher recombination rates than noncarriers.

Though important for evolution, large chromosomal rearrangements
such as deletions, duplications and inversions are generally thought to
be deleterious. These large-scale polymorphisms contribute substan-
tially to genomic variation among humans and account for much of
the genomic difference between humans and other primates'=3, The
architecture of large inversion polymorphisms suggests they may
occur through nonallelic homologous recombination assisted by low-
copy repeats positioned in the genome in an inverted orientation®3.

Genotype analysis may show whether a segment is duplicated or
deleted, by means of an apparent gain or loss of heterozygosity, respect-
ively. In contrast, inversions are difficult to detect, particularly those of
moderate size. Genotypes of markers inside inverted regions are
consistent among relatives and, unless inversions are several megabases
in size, they are not easily detected with standard cytogenetic assays, A
few large and common inversion polymorphisms have been detected
in the human genome, the most notable being a large inversion on
chromosome 8p (ref. 5). These may be only the tip of the iceberg.

Here we describe, for the first time to our knowledge, a 900-kb
inversion polymorphism at 17q21.31, a region that contains several
genes, including those encoding corticotropin releasing hormone
receptor 1 (CRHRI) and microtubule-associated protein tau
{MAPT). Previous studies have characterized two highly divergent
MAPT haplotypes, H1 and H2, and noted the existence of strong
linkage disequilibrium {LD) across a 1.6-Mb region contairing the
geneS'2, We provide a detailed description of the unusual haplotype
structure in this inverted region, evaluate the impact of natural
selection in the past and present, and discuss the implications for
our understanding of human evolutionary history.

RESULTS

Discovery of a 900-kb inversion polymorphism

The Build 34 assembly of chromosome 17q21.31 is chimeric, con-
structed to a large extent from clones representing different MAPT
haplotypes of type H1. We used a set of chromosome-specific BAC
contigs to show that there is a 900-kb inversion polymorphism in this
region (Fig. 1). We generated the chromosome-specific assembly from
RP11 BAC clones {Roswell Park Cancer Institute Human BAC
Library) originating in a DNA sample from one individual. The two
RP11 chromosomes represent MAPT haplotypes of type H1 and H2
based on the characteristic alleles for a dinucleotide marker in intron
nine® (DG175142) and a characteristic 238-bp deletion in the same
intron on the H2 background®, By genotyping RPI1 clones from
17q21.31 for 60 microsatellite markers and assembling the clones into
chromosome-specific contigs, we found that the H2 haplotype was
structurally different from the Build 34 assembly. The segment from
44.1 to 45.0 Mb is inverted on the H2 background compared with the
H1 background and Build 34. Furthermore, a 127-kb tandem duplica-
tion containing exons 1-13 of the N-ethylmaleimide-sensitive factor
gene (NSF) is located upstream of a full-length copy of NSF in the H1
variant in Build 34. The same NSF exons are also duplicated on the H2
chromasome, but the H2 duplication is larger (280 kb), spanning the
H1 duplication and extending to the 5" end of the gene LOC284058.
The two NSF copies (the partial copy with exons 1-13 and the
full-length copy) are separated by only 100 kb on the H1 chromosome
in the RPL1 library, whereas on the H2 chromosome in the RP11
library, the partial copy of NSF is inverted and located 1 Mb upstream
of the full-length copy of NSE
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