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Boundaries of the Blocks

gions), which is consistent with pre-

Table 1. vious observations that most TF-
Human Mouse binding sites were located within this
region (Praz et al. 2002; Liu et al
Repeat 3% 20% 2003). Among the TF-binding sites,
Alu-type SINE  16% : Bl-type SINE 8% 179 sites (88%) were located within
MiR-type SINE 3% B2-type SINE 4% -

- _ the blocks. On the other hand, we

LINE . &% LINE 3% & I . .
TR 28 LTR 39 - also observed that 24 sites (12%) in
. MER 29 MER 204 human genes were located outside of
others 1% others 0% _the blocks, where no significant se-
Gap in genomic sequence 0% 4% quence similarities were found. For
g:tc;?aractenzed 133& 76% each of these sites, we both manually

100% S

and computationally examined

" Indicated sequences were observed at the corresponding frequencies at the boundaries of the blecks.

around the boundaries of the blocks were evaluated, the average
G+C contents were 58% and 53% in the sequences inside (proxi-
ma! sides to the TSSs) and outside (distal sides to the TSSs) of the
blocks, respectively. The difference overall distributions of the
G+C contents between them was statistically significant accord-
ing to the standard ¢ test (p < 1.0¢-136), although the G+C con-
tents vary between PPRs. The average frequencies of the di-
nucleotide, CpG, were 12.7 sites/200 bp and 9.0 sites/200 bp for
the regions inside and outside the blocks, respectively. Again, the
difference in their distributions was statistically significant
(P < 1.0e-105). As shown in Table 3, essentially the same results
were obtained from mouse PPRs. This observation also supports
our claim that the sequences inside and outside of the blocks are
qualitatively distinct,

Mapping of TF-Binding Sites

To study the relationship between the relative positions of the
blocks and the TF-binding sites embedded in the upstream re-
gions, we mapped previously determined TF-binding sites. For
this, we used the information contained in TRANSFAC (version
7.4). This database is the most widely used database in which
detailed information concerning TF-binding sites, which have
been characterized by various experimental methods, is com-
piled (Kel et al. 2003). In the 3324 promoter pairs, there were 238
experimentally characterized TF-binding sites for human genes
(further references about each of the TF-binding sites are re-
corded in TRANSFAC). Of these, 203 sites {85%) were located in
regions proximal to the TS3s (within the —1 kb to +200 bp re-

whether the same kind of TF-binding
site could be identified in the corre-
sponding regions of the promoter se-
quences of the mouse gene, All of
these sites were completely missing from the corresponding re-
gions of the mouse promoters, although there stili remains a
slight possibility that real TF-binding sites are located in regions
distant from the TSSs, or that the TF binding sites were so di-
verged that they could not be identified using a computational
method.

We performed similar analyses with regard to the computa-
tionally predicted TF-binding sites. Among the 1898 predicted
TF-binding sites in human PPRs, 1704 (90%) were located within
the blocks and 194 (10%) outside of the blocks. This corresponds
well with the above results regarding the “experimentally char-
acterized” TF sites. Essentially similar results were obtained from
analyses from the mouse side, too (Table 3).

Correlation Between Sequence Conservation

in the Promoters and Molecular Functions

and Tissue Specificity of the Genes

We examined whether there is any correlation between sequence
divergence of the promoters and molecular functions and expres-
sion patterns of the corresponding genes. We calculated the fre-
quency of the PPRs in which blocks covered less than 50% (600
bp) of the sequences (designated as “encrocached” PPRs) for each
of the GO categories (Harris et al. 2004). Similarly, the frequency
of those promoters was calculated for each population of the
genes that showed tissue-specific patterns of gene expressions.
For the expression profiles, we used the data obtained by 1AFLP,
which is an RT-PCR-mediated high-throughput method for de-
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Figure 3 Sequence alignments around the boundary of the block and that of the first intron and the second exon using SSEARCH, (4) Sequences of
human and mouse PPRs were aligned using SSEARCH with a 50-bp moving window around the boundary of the block. The broken line represents the
boundary of the block calculated using LALIGN. The vertical axis represents the average score of the SSEARCH calculated for the corresponding position.
The horizontal axis represents the relative position to the boundary. (8) Result of an analysis similar to that shown in A, using the proximal sequences
of the 5* end of the second exons. The broken line represents the exon-intron boundary. The horizontal axis represents the relative position to the
exon-intron boundary.
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G+C Content and CpG Frequency Inside and Outside the Blocks

detecting relatively short motifs out-

Table 2. side putative blocks separated by
Outside of - Within . constitutive insertion or deletions of
=1Kbto "~ =T1kbto “Within Outside the nucleotides, However, we con-
+200 bp +200 bp block “of block sider that such & possibility is low, be-
) ] cause we selected relatively simple

Human Experimentally confirmed 35 203 179 (88% 24 (12%
predicted ND 1898 1704 Ego%g 194 %10%; programs, LALIGN and SSEARCH,
Mouse  Experimentally confirmed 31 108 102 (94%) 6 (6%) run by parameters for which no spe-
Predicted ND 1853 1668 (90%)  185(10%) - Cial “parameter tuning” was per-

The sequences * 200 bp of the boundaries of the “blocks” were used for the calculation. ND = not

determined.

tecting relative amournts of gene expression {(Kawamoto et al.
1999; the iAFLP data used in this study are presented at http://
cdna.ims.u-tokyo.ac.jp/iAFLD.x1s). We tentatively defined the
gemnes as “tissue specific” when more than 30% of the transcripts
were attributed to a particular tissue.

As shown in Table 44, the frequency of the encroached P'PRs
was significantly increased in the GO category of “transcription
regulators”, which is the group of genes of TFs (p < 0.0002). In
the 203 TF genes, the frequency of the genes with such promoters
was 39%, which was higher than the frequency calculated for any
other GO category. We also observed that encroached PT'Rs were
enriched in genes whose expression patterns were “brain spe-
cific” (Table 4B), Although statistical significantce in this case was
not as clear as the case of the transcription regulators, the en-
richment was higher than any other tissues (p < 0.05).

DISCUSSION

Here we have described the first systematic and quantitative
comparison of promoters regarding the manner in which and the
extent to which promoter sequences are conserved between hu-
man and mouse genes. Using 3324 pairs of PPRs of human and
mouse genes, we first demonstrated that the conserved parts fre-
quently stood out against the nonconserved parts, forming
blocks. The sequence similarities of around 65% in these blocks
extended upstream of the TSSs and disappeared at particular
points, on average, 510 bp upstream of the TSSs. This is incon-
sistent with the view generally held hitherto. The initial descrip-
tions of the sequence similarity among promoters indicated that
the independent alternations of the nucleotides are distributed
in a gradually increasing manner in proportion to the distance
from the TSSs (as shown in Fig. 1). Although the results of a
previous study using 41 human-mouse promaoter pairs suggested
the block structure of the sequence conservation in the promot-
ers, it was considered likely to be an artifact of the alignment
program used (Jareborg et al. 1999). In the present study, we
scrutinized the sequence alignments mainly using two alignment
programs that are based on different algorithms and demon-
strated that the block structures were observed regardless of the
alignment programs in about cne-third of the examined PPRs
(Figs. 2, 3; for further details on the alignment programs, see
Ureta-Vidal et al. 2003).

There still remains some possi-

formed a pricri. We also demon-
strated that this observation was ro-
bust against the changes of the
parameters (Supplementary data Figs.
2 and 3). Although it is possible fur-
ther “optimization” of the programs and parameters may be use-
ful for further precise determination of the boundaries of each of
the blocks, we consider such perturbation would not greatly in-
fluence our conclusion that the segmentation occurred just
arcund the TSSs very frequently.

It was also unlikely that our observations were cbtained due
to defects in our data set, Only rare data should represent spuri-
ously identified promoter sequences resulting from erroneously
cloned full-length cDNAs (truncated cDNAs), because, in most
cases, the sequences could be aligned at least to some extent. If
the promoters were spurious at all, they would not show any
significant match against their counterparts. Mispairing of para-
logs as orthologs could bring about the results observed here. As
paralogs are generated by gene duplication (Frazer et al. 2003h),
it ts possible that there is some synteny just around the genic
regions, which disappears at the boundaries of the duplication
points. However, at least 80% of mouse genes have only a single
identifiable homologous gene in the human genome, which
should be an ortholog (Waterston et al. 2002). Also, we used the
pairing information of the orthologs according to LocusLink in-
formation, in which 1:1 homologous genes are further inspected
to pair orthologs (Wheeler et al. 2004). This should have ex-
cluded any remaining pseudo-orthologous pairs from our data
set. Considering that the block structure was observed for more
than one-third of the promoters, contamination by paralogs
should not account much for our observations.

Based on all these facts and our {indings, we concluded that
the block structure s, in fact, a feature of the sequence conser-
vation in about one-third of the PPRs examined here. We con-
sider that this discontinuous manner of the sequence conserva-
tion should be a quite frequent feature of prometers throughout
the human and mouse genomes. Although we could not show
whether such discontinuous conservation would be observed in
more distal regions from the TSSs in the gene of the remaining
pepulation, it is significant that such dynamic changes occurred
just proximal regions of the TSSs at least one-third of the PPRs. In
order to understand how the transcription modulation has
evolved, this information should become the fundamental data.

Within the blocks, the sequence similarity was relatively
uniform (Fig. 2) with an average identity of 65%. The overall

bility that the block structure ob-
served in the present study was iden-
tified due to the inherent inability of
the pre-existing alignment programs,

Table 3. TF Binding Sites Inside and Outside the Blocks

most of which are designed for align-
ing sequences of genic (especially of
protein-coding) regions. Also, we

Human " Mouse
Inside block  Outside block  Inside block  Outside block
G+C content 58%* 53% 56% 48%
CpG frequency (sites/200 bp) 12,74 5.0 11.0 6.0

could not completely refute the pos-
sibility that alignment procedures
employed here were not suitable for

The frequencies of the TF biﬁding sites were calculated for each of the indicateﬁ_regions. Statistical
significance of the enrichment was “p < 1.0¢-136 and **p < 1.0e-105. i
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: Table 4. Correlation Between the Gene Ontology, Expresslon Prof‘ les, and Sequence

EE vy

blocks. Consistently, the G+C con-
tent and CpG frequency were higher
inside the blocks than outside (Table

i Conservation in the PPRs

Frequency

Total number Number of genes 3). This may also reflect that the se-
A. GO annotation of genes with encroached PPRs (%) quences cutside the blocks were for-
T N eign to the promoter sequences.
;::J‘::;E:’;’L{:gjlaw' ‘ ?g; g ;g 7 Genomic rearrangements, such
Enzyme o 8n 225 .26 :  as deletions, insertions, or recombi-
Enzyme regulator - 91 23 25 . nation, may have taken place arcund
- Cell adhesion molecule : 56 14 25 the distal regions of the blocks. It is
?Efeﬂceﬁmm“"ity 353 Bi g: possible that the human genome has
ransporter . been rearranged significantly more in
 Signal transducer 362 78 22 © the course (';‘f evo%trzltion thgn previ-
~Total 3324 -9 28 . ously thought. Although further con-
- Total ror of h Number of ; :  firmation Is necessary, our result
< . otat humber O germes wi . umber 0f genes requen . i i
B. Tissue tissue-specific geneg expression  with encroach%d PPRs ?%) Y ; fg;:vt?];? :&%rsegzﬁgfx)ipggi:ﬁ
Brain/neuron 156 53 4% ‘ throughout the human_ and mouse
- Gastrointestinal . o 35 .. 29 - genomes. Consistent with this pos-
tmmune c S o8 29 . - .30 ¢ sibility, recent publications have
Reproductory - 7 e 137 34 T 28 ¢ provided evidence that a large pro-
* Endocrine ' : A Y 4 24 portion of previously identified
Circulatory/| blood 22 5 24 human-mouse syntenic regions con-
Others 148 42 29 " :
tain multiple microrearrangements
Total 3324 o 28 {Pevzner and Tesler 2003). Frazer et

" The numbers and the frequencies of the genes were shown far each of the GO (4) and TAFLD (B)
- categories. Statistical significance of the enrichment was *p < 0.0002 and **p < 0.05, respectively (for

further details on the procedure, see Methods).

sequence similarity between human and mouse at neutral sites
has been estimated to be 53-54%, when assessed using relics of
ancestral repeats (Waterston et al. 2002). If the regional varia-
tions of the neutral substitution rate are ignored (Hardison et al.
2003), the sequence identity is approximately 10% higher in the
sites within the blocks. This difference implies that some parts of
the promoters are subjected to selective pressure. Largely uniform
sequence similarities within blocks were observed, maybe be-
cause the positions of the TF-binding sites are different between
genes, allowing degeneracy within them to some extent. It is
also possible that additional sequences as well as direct binding
sites of TFs themselves should also be conserved, considering that
the cognate sequences of the TFs are typically 6-10 bp long
(Wray et al. 2003). Particular subregions of the promoter may
not have been allowed to undergo free sequence divergence be-
cause the overall base composition or relative positions of
TF-binding sites needed to be preserved. This could also explain
the relatively flat patterns of sequence similarities within blocks.
Extensive phylogenetic comparative analyses using forthcom-
ing genomic sequences of other mammals (http://www.genome.
gov/11007951) together with recently developed statistical
methods (Elnitski et al. 2003) should lead to a more precise un-
derstanding of which sequences play a leading part, (serving as
direct binding sites for TFs), and which play a supporting role.
We also observed that the sequence identity dropped just
outside the blocks, It is possible that this is due to a discontinu-
ous rate of random sequence substitution at the corresponding
regions, despite the fact that the sequences themselves were con-
tinuous. However, the sequence identity outside the blocks was
no more than 30%, even if the sequences were forced to be
aligned (data not shown). This rate is somewhat lower than the
conservation rate at neutral sites. It is unlikely that such extreme
hot spots of random mutation are distributed within the regions
1 kb upstream of TSSs at such a frequency. It is more natural to
suppose that totally unrelated sequences exist just outside the
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al. (2003a) observed genomic dele-
tions, ranging from 0.2 to 8 kb in
size, even between humans and
chimpanzees. In particular, they ob-
served integration of repetitive ele-
ments at the 3'-end boundaries of de-
letions in 23 out of 47 cases. In the present study, we showed that
46% of the 5' ends of the blocks were bounded by interspersed
repeats on either the human or mouse side (Table 1). Sometimes,
the repetitive sequences may have acted as nucleation potnts for
homologous recombination. In fact, it has been reported that
this type of retroelement-mediated recombination has occasion-
ally taken place in the human genome and is estimated to be
responsible for at least 0.3% of human genetic disorders (Batzer
and Deininger 2002).

Deletion of TF-binding sites could have accompanied some
of the rearrangements. However, alterations that occurred inside
the transcriptional regulatory modules in the promoters would
mostly have been unfavorable for proper biological functions,
and thus, would have been deleted from the population. The
“block” structure we identified in the present study seemed to
have formed as a consequence of such selective pressure. We
observed that most of the previously characterized TF-binding
sites were located within the blocks (Table 2). For these TF-
binding sites, the cognate sequences as well as the relative posi-
tions of the TF-binding sites and distances to the TSSs were pre-
served.

Alterations that occutred outside blocks may generally have
been tolerated. Some might have led to the acquisition of altered
modes of transcriptional modulation. it has been reported that
polymorphisms that cause an approximately twofold difference
in transcription activation activities frequently occur without
showing organismal phenotypes within human populations
(Rockman and Wray 2002). Repetitive elements at the bound-
aries of the blocks could contribute to such modifications. There
are a number of examples in which retroelements integrated in
the vicinity of TSSs became involved in transcriptional regulation
via changes in their sequences (Norris et al. 1925; Vansant and
Reynolds 1995; Hamdi et al. 2000). It is likely that such variations
have accumulated during evolution and have laid the genetic
background to drive speciation during certain periods of time.
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Intriguingly, we observed that the blocks in the PPRs were
most encroached in the genes encoding transcription factors and
genes whose expression pattemns are brain specific (Fig. 3). This
suggests that alterations within the proximal regions of the TSSs
have been accumulated for these gene populations. It is possible
that evolutionary diversification between humans and mice has
been caused by slight changes in the regulation by TFs, which are
located at the apexes of the regulatory hierarchy of transcrip-
tional networks, rather than changes of the downstream pro-
teins. Moreover, the evolutional changes may be the most sig-
nificant in the genes expressed and functioning in the brain,
which is the most distinctly different organ between humans and
mice, Further characterization of the TF-binding sites that are
similar to or distinctive in mice and humans as well as cross-
validation of expression analyses should help to elucidate the
molecular mechanisms underlying the alterations in transcrip-
tional modulation responsible for the speciation of humans and
mice, To this end, the present work has provided a first glimpse
of how the modulation of transcriptional networks is likely to
have differentially evolved between humans and mice,

MATERIALS AND METHODS

Promoter Data Set

The putative promoter regions were extracted by computational
mapping of the 5 ends of the human and mouse full-length
cDNA sequences onto the corresponding genomic sequences ob-
tained from UCSC Genome Browser (human: hgl3; mouse:
mm2). In total, 400,225 human and 580,209 mouse cDNAs were
used to retrieve 8793 human and 6875 mouse promotets by the
sequential use of BLAT (http://genome.ucsc.edu/cgi-bin/
hgBlat?command=start; BLAT) and SIM4 (http://pbil.univ-lyonl.
fr/sim4.php; SIM4). The identified promoters were located about
4 kb upstream of the 5" ends of the previously registered public
cDNA sequences on average. Among the retrieved promoters,
3324 were correlated with each other as putative mutually or-
thologous genes using the table obtained from ftp://ftp.ncbi.
nih.gov/pub/HomoloGene/. The statistics of the generated pro-
moter data set are provided as Supplemental data Table 1. Details
of the procedures for cDNA mapping and promoter pairing are
described in Suzuki et al. (2004), Further information on the gene
definitions used for the present study is also available in Supple-
mental data Table 1. As described there, at least two-thirds of the
promoters were supported by three independently isolated full-
length ¢DNAs. Considering that the average frequency of the
full-length ¢DNAs (full-length-ness) in each of the libraries is
»70%, there should be little chance that all of them are trun-
cated. Also, we discarded all of the CDS-minus ¢cDNAs, which
increased the full-length-ness even more (for further discussion
of this issue, please refer to Suzuki et al. 2001).

Sequence Alignment of the Promoters

LALIGN was obtained from http://www.ch.embnet.org/software/
LALIGN_form.html and used for aligning sequences of the pro-
moters with the default settings in the main text. The results of
similar analyses using different parameter sets are shown in
Supplemental data Figure 2. When LALIGN results split the se-
quence alignments allowing a large gap(s), most distal positions
were recognized as the boundaries of the blocks. A graphical view
of the sequence alignment and calculated sequence identities are
shown in Supplemental data Figure 1.

For aligning nongenic regions, the putative syntenic regions
were obtained according to the information from the UCSC ge-
nome alignment map {(http://genome.cse.ucsc.edu/goldenPath/
14nov2002/vsMm2/axtTight/). The alignments located within
100 kb for the Ensembl regions Chttp://genome.ucsc.edu/
goldenPath/14nov2002/database/) were excluded and the
183,733 boundary sequences ranging from —1 kb to +200 bp
were tetrieved, Using these sequences, the alignments were gen-
erated using LALIGN.

SSEARCH was obtained from ftp://ftp.virginia.edu/pub/
fasta/ as FASTA package programs. SSEARCH was used with de-
fault parameters for the detailed alignment of the sequences at
the distal regions of the blocks and the proximal regions of the 5
ends of the second exons. The results of a similar analysis using
different parameter sets are shown in Supplemental data Figure 3,

Search for the Repetitive Sequences in the Promoters

The positions of the boundaries of the blocks were compared
with those of annotated repetitive sequences. For positional in-
formation about the repetitive sequences, http://genome.
ucsc.edu/goldenPath/14n0ov2002/bigZips/chromQut.zip and
http://genome.ucsc.edu/goldenPath/mmFeb2002/bigZips/
chromQut.zip were used for the human and mouse genomes,
respectively, Classification of the repetitive sequences was also as
described there.

Computational Prediction of the Putative TF-Binding
Sites in the Promoters

For information about previously experimentally characterized
TF-binding sites, TRANSFAC Professional 74 was used. For the
computational prediction of the putative TF-binding sites, the
promoter sequences were surveyed using MATCH., For the pre-
dictions, the cutoff value set of minFP.prf, which has been dem-
onstrated to minimize “false positives”, were used.

Relating GO Criteria and Expression Profiles
With the Sequence Divergence in the Promoters

The correlation tables between GO terms and RefSeq IDs were
obtained from http://www.geneontology.org/. For each GO
term, the frequencies of the promoters whose block lengths were
greater ot less than 600 bp were determined. As for the expression
profiles, for those genes whose relative expression level was
limited to a particular organ by more than 0.3, a similar ¢alcula-
tion was periormed. Classification of the organs is shown to-
gether with the iAFLP data file (http://cdna.ims.u-tokyo.ac.ip/
IAFLP.xls}. A detailed characterization of the JAFLP data will be
published elsewhere,

Statistical significance of the difference in the frequencies of
the encroached PPRs was evaluated by calculating hypergeomet-
ric distribution using the following equation:

o (.02
2

where N = 3324, n =921, M = 203, k = 79 (“transcriptional regu-
lators”) in the case of GO terms and N = 3324, n =921, M = 156,
k = 53 ("brain specific”) in the case of expression profiles.
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Promoter prediction analysis on the whole

human genome

Vladimir B Bajic!, Sin Lam Tan!, Yutaka Suzuki? & Sumio Sugano?

Promoter prediction programs (PPPs) are important for in silice gene discovery without support from expressed sequence tag
{ESTYcDNA/MRNA sequences, in the analysis of gene regulation and in genome annotation. Contrary to previous expectations,
a comprehensive analysis of PPPs reveals that no program simultaneously achieves sensitivity and a positive predictive value
»65%. PPP performances deduced from a limited number of chromosomes or smailer data sets do not hold when evaluated at
the level of the whole genome, with serious inaccuracy of predictions for non-CpG-island-related promoters, Some PPPs even

perform worse than, or close to, pure random guessing.

Recent availability of the human genome draft™? has enabled analyses
on the whole genome, However, no such large-scale analysis has been
made regarding the performance of PPPs. Promoters are crucial con-
trol regions for transcriptional activation of every gene®t.
Development of PPPs has received a lot of attention®'® (see also
reviews'%-2'}. However, until the appearance of PromoterInspector!?,
PPPs suffered from low accuracy. Following PromoterInspector, sev-
eral efficient PPPs have been developed™12-16:12,

PPPs are built on different concepts. The underlying principle is that
properties of promoter regions ate different from properties of other
genomic DNA. Many concepts ate used, such as the presence of the
CpG islands? #1416 close to transcription start site (TSS) locations, the
presence of specific transcription factor binding sites (TFBSs)-1318,
possible higher density of potential TFBSs!-20, statistical properties
of proximal and core promoters as opposed to other genomic
sequences> !, homology with erthologous promoters'® and restrict-
ing the promoter prediction domain using information from mRNA
transcripts?. Recognition technologies employed in PPPs are based on
neural networks®?!%-12, linear and quadratic discriminant analy-
sest 1618, Relevance Vector Machine®, statistical properties of pro-
moter regions®7-%1214-17, interpolated Markov model'>!, or a
combination of these®'7, In general, PPPs perform better for a partic-
ular category of genomic sequences, such as G+C rich®, whereas
others”81416 are more appropriate for the CpG-island-related pro-
moters. One report® claims efficient recognition of non-CpG-island-
related promoters,

PPPs are important in silice tools for guiding experimental biolo-
gists. Once the approximate putative regions for promoters have been
detected using PPPs, reporter gene assays based on a series of deletion
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mutants can be used to further narrow down the DNA regions that
play the most important rele in the promoter activities. Conventional
5’ random amplification of cDNA ends (RACE) or other contempo-
rary cap-selection methods, such as oligo-capping, on individual
genes can also be used in experimental validation of the exact TSS
positions. Wet-lab biologists have two principal tasks in which they
need the assistance of PPPs: first, in a search for TSSs and alternative
{fluctuating) TSSs in short segments of DNA?3; second, in a search for
unknown genes in targeted chromosomal segments or whole chromo-
somes/genomes. A large number of predictions very distant from real
promoter sites can make laboratory tests infeasible; thus, a rigorous
assessment of PPP performance is needed.

Although several PPPs have been developed, wet-lab biologists do
not have clear information about the benefits and shortcomings of
using a particular PPP, Does masking repeats enhance the perform-
ance of PPPs? The spectrum of promoters that can be detected and
the costs (in terms of false-positive predictions} of making one true-
positive prediction, vary for different PPPs, What is the real perfor-
mance and the best way to use individual PPPs? Can the performance
observed on a few chromosomnes or specific data sets, generally used in
Hlustrating the performance of PPPs, be extrapolated to the whole
human genome? For many PPPs®7-:141524 authors report very good
performance on chromosome 22, but it is the second most G+C-rich
human chromosome and atypical. Taking the whole human genome
as the reference is thus essential to reduce the bias that different
genomic test sets introduce.

There is an urgent need to provide clearer answers to these ques-
tions, to set up standards for assessment of PPPs and to demonstrate
how PPP performance can be enhanced, To address these problems,
we performed a comparative promoter prediction analysis on the
whole human genome.

We selected eight representative PPPs that can analyze large geno-
mic sequences and report strand-specific TSS predictions (Supple-
mentary Methods online and Table 1). Five of the programs compared
(DragonPF, DragonGSE McPromoter, NNPP2.2, Promoter2.0) use
artificial neural networks (ANNs} as part of their design; four pro-
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grams {DragonPF, DragonGSE, Eponine, FirstEF) use G+C contentin  RESULTS
their algorithms. Three programs (Eponine, NNPP2.2, Promoter2.0) A total of 2,861,142,542 base pairs in the human genome sequence
explicitly use the TATA-box matif. Three programs (CpGProD, were examined using the eight selected PPPs. The accuracy of their
DragonGSF, FirstEF) use different versions of the concept of CpG  predictions was assessed relative to the reference TSS set of 7,597 genes
islands. One program {CpGProD} uses rules based on statistics. The  {Supplementary Methods online). The reference TSS locations were
criteria for selecting PPPs for this analysis are given in Supplementary  taken from DBTSS, making a total of 7,597 different TSSs, The selec-
Methods online. tion of parameter settings for all PPPs is explained in Supplementary
For reference, we used a large set of TSS locations based on full-  Methods online. Predictions of individual programs, which were no
length, oligo-capped ¢DNA sequences from the database of transcrip-  more than 1,000 nucleotides apart from the closest neighboring pre-
tion start sites (DBTSS)?%. This is the largest and most diverse diction, have been merged into a cluster. Each such cluster is repre-
human T5S data set based on experimental evidence used to date sented by a new TSS prediction obtained as the average of all
in the assessment of PPP performances. We also provide an analysis  predictions within the cluster. When masking repeats is applied, we
of the effects of masking repeats on promoter predictions in the eliminate the clustered predictions of TSSs from the masked regions.
human genome, establish standards for evaluation of PPPs, demon- Performance on human genome data set. We applied several crite-
strate how to improve the prediction performance of most of ria to assess prediction results of eight PPPs using the whole human
PPPs used with masking repeats and, similarly, how to combine some  genome data set. These criteria included, sensitivity, positive predictive
preexisting PPPs. value (p.p.v.), number of true positives and false positives, average
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‘Box 1 Criteria used to assess PPP petformance quality

When one or more predictions fall in the region {-2000,+2000]
relative to the reference TSS location, then the respective gene
is counted as a true positive. When the known gene is missed by
this count, it represents a false negative, Every prediction that
falls on the annotated part of the gene in the segment [+2001,

EndCfTheGene] is counted as a false positive, although we are awaré :

that some of the predictions in this region could represent real -

promoters (see Supplementary Methods online). We did not consider

other predictions for counting true-positive and false-positive scores.
Counting true-positive predictions is either relaxed or the same as in
the original reports on PPPs used. Counting false-positive predictions

in our study, it is possible to compare performances as the same - =

criteria are used for all PPPs. Results for different distance criteria and” :

distributions of predictions around experimental TSSs are given in
Supplementary Table 3 online and Supplementary Figure 1 online.

The cost of making one true-positive prediction, that is, how
expensive is it to rely on a particular PPP, has a direct impact on
the cost of the fotlow-up laboratory experiments for verifying

. predictions, To quantify these answers and express the prediction .
quality of individual programs we used sensitivity, p.p.v., correlatiqn o

coefficient, average score measure (ASM} and true-positive cost.

to all experimental TSSs:
Sensitivity = true positive/(true positive + talse negative).

 p.p.v. {positive predictive value) is the proportion of correct
“predictions of TSSs out of all counted positive predictions:

p.p.v. = true positive/(true positives + false positives).

score measure, Pearson correlation coefficient and true-positive cost
(for more information, see Box 1).

Table 2 shows that no PPP achieved simultaneously balanced sensi-
tivity and p.p.v. >65%. The highest previously estimated® simultane-
ously achieved sensitivity and p.p.v. were 283%. However, this did not
hold at the whole-genome level. Only one program” achieved simulta-
neously sensitivity and p.p.v. >62%, which means that it can recognize
about two-thirds of all promoters while making something more than
one false-positive prediction for every two true-positive predictions.

The prediction inaccuracy was most serious for non-CpG-island-
related promoters. Essentially, no program could predict non-CpG-
island-related promoters satisfactorily. A previous report® claimed that
FirstEF predicts non-CpG-island-related promoters with p.p.v. = 60%,
but we found that p.p.v. = 5.57% when evaluated using human
genome and DBTSS data. As FirstEF predicts CpG-island-related pro-
moters quite accurately (sensitivity = 77%; p.p.v. = 51%), obviously
the non-CpG-island-related promoters have some distinct features
that pose problems for accurate predictions.

For almost all PPPs, we observed discrepancies between reported
sensitivity/p.p.v. values and those assessed using the whole human
genome. Epenine achieves a sensitivity = 40.07% and p.p.v. = 66.97%
on the human genome, whereas reported values® were sensitiv-
ity = 53.5% and p.p.v. = 72.73%. Likewise, the p.p.v. reported for
FirstEF® on a data set derived from chromosomes 21 and 22 could not
be confirmed when we used it to analyze these whole chromosomes
{Supplementary Table 1 online) nor the human genome. According to

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11
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ANALYSIS

The Pearson correlation coefficient (CC} is definéd as:

= (true positive x true positive - false positive x false negative)/
{{true positive + false positive)true positive + false negative)
{true negative 4 false pos:twe)(true negatwe + false negative)}12

- ASM2 is the averaged rank position of the compared PPPs.
It enables meaningful comparison of PPPs that achieve different
sensitivity and p.p.v. scores. It uses 11 different performance
indicators and calculates the average rank position of each PPP
based on these |nd|cators The performance is better if the ASM

: score is smaller.
is in some cases different (see Supplementary Methods online) but, - -~

True-positive cost is the average amount of false-positive
predictions required to-achieve one {rue-positive prediction. The

smaller its value, the less costly is the use of a particutar PPP.

This may prove useful in planning wet-lab experiments,
True-positive cost = false positive/true positive.

The most balanced behavior of a £ is obtained if sensitivity and

_ p.p.v. are approximately equal (the case of DragonGSF). If these
- two indicators have very different values going in favor of p.p.v. (the

case of Eponine), theén the system will make fewer false-positive

.- predictions at the expense of true-positive predictions. Alternatively. :
Sensitivity is the proportion of correct predictmns of TSSs relative -

if sensitivity is much higher than p.p.v., the program will make more .
frue-positive predictions but will also produce many more false-

 positive predictions (the case of FirstEF). The gain or reduction in

true-positive predictions has to be considered together with the
increased cost of the follow-up experiments (that is, in terms of

- the increased number of false-positive) pred:chons, aswell asthe
- changed coverage of predlcted promoters.. . o

our analysis, the performance of McPromoter has improved compared
with its reported one!? on chromosome 22, from sensitivity = 52.8%
and p.p.v. = 62.6% to sensitivity = 57.92% and p.p.v. = 74.13%, but
our criteria were different. Neural Network Promoter Prediction ver-
sion 2.2 (NNPP2.2)'% and Promoter2.0!! produce predictions close to,
or worse than, random guessing. On three whole chromosomes,
DragonGS¥F’ achieves a p.p.v. = 78%, but on the human genome, it
only achieves a p.p.v. = 62.98%. For other interpretations of PPP per-
formance, see Box 2,

Effect of repeats. Masking repeats in the human genome using
RepeatMasker (Smit, A.F.A. & Green, P. RepeatMasker at http://repeat-
masker.orgf) substantially benefits the performance of several PPPs,
the most evident improvement being demonstrated for DragonPF,
McPromoter, NNPP2.2 and Promoter2.0.

A mild positive effect is observed for FirstEF, whereas essentially
no benefits are achieved for DragonGSF and Eponine using
RepeatMasker. Results are summarized in Table 2.

Combination of predictions. To find if proper combinations of FPPs
can show beneficial effects on the overall prediction performance, we
carried out an additional experiment and found that combining clus-
tered predictions of PPPs can result in improved prediction quality. We
analyzed combinations of two simple rules as applied to PPPs, PPPs
were tagged as: 1, 2, 3, 4, 5, 6, 7, 8 corresponding to DragonGSE,
DragonPF (expected sensitivity 0,65}, Eponine, FirstEE, McPromoter
(threshold —0.005), NNPP2.2 (threshold 0.99), Promoter2.0 and
CpGProD (threshold 0.0), respectively {see Box 3 and Table 3).
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ANALYSIS:

“Box 2_Intefpretation of performance of PPPs

Results shown in Table 2 were generated using the maximum altowed predict only promoters contained within the CpG islands (37% of !
- distance from the real TSS of 2,000 nucleotides. The true-positive cost - promoter population), whereas Eponine will predict about 40% of the .
-column gives very usefuf information about the cost of making one true-- . promoters and only those characterized by the presence of the TATA- box
¢ pasitive prediction, For example. if you uge FirstEF. then for each true- * motif in the G+C-rich’ promoters The next best, with a slight increase in -

© positive prediction you make. you will have to make almost two false . the cost, is DragonGSE where you will have to make approximately 0.6
- positives, If you restrict consideration only to CpG-island-related -7 false-positive predicticns for every true-positive prediction. However, it
promoters, then the use of FirstEF is much more efficient and for every will cover about 65% of all promoters, with the preference to the CpG-
true-positive prediction you will make approximate!y one false-positive island-related ones. We also provide a rough estimate of the number of
prediction. i false-positive predictians in the human genome in the fast column of
However, if you intend to use FirstEF to search for non-CpG-island- .~ - Table 2. This estimate is calculated using the formula:

related promoters, such a search will be very expensive and for each -
« true-positive prediction you make, you will also make almost 17 false-
“positive predictions {if you do not use RepeatMasker), This information ©
:_may prove crucial for wiet-lab biologists planning laboratory experiments. =, . :
" The cheapest in this sense are CpGProD and Eponine, which will allow Note that due to approximate character of this formuta, the number
'you to make one true-positive prediction by making less than 0.5 false- of estimated false positives for FirstEF do not add up when summing
: positive predictions. However, the price is that CpGProD will be able to . estimates for CpG-istand-related and non-CpG-island-related promoters.

. Estimated number of = total clustered x false posifivés?tutal 3 nurmber of clustered
alse positives en - - fealumn 6)' < {calumn 5) 4 predictions used in counting
human genome - ¢ - a ] true and false positives

f_:No. of Mo of - . Avg. distance ‘Esﬁmated o

: Rank by : Coralation . Raskdy ' Triie- Masking -
o true - talse Ld . Score "7 avg. score coefficient  correlalion’ - positive”  repeatsis * in nt between no. of faise
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64 7564 5587 5746 4504 ._59,366 2300
INNPPZZ "79'2255. ' 7.08 286782 2, ‘20l 1,957,415
(0808 L 77,12 5859 137,800 1 . 2,877 1,015,937
UNNPPZZ . BS43 . “3orease T wommsr - iasarni iieoso I Toleos 1542 Yes - 3,267 1.682,267
(095 900 | 441’ 5242 113505 901038 . 114585 137 01745 11 21.6587 3429 - 850,460
CNNPPZE 5?;?5“‘“”45?“”';392 TTesa35 . 3712 110808 12 - 01ssz . 12 . 224452 Yes 5855 . 791815
J099F 4332 611 T 3291 50594, 413907 - 112727 1L - 0627 12 153734 . 7485 . 386246
o B2y Taar eate 126780 - T12s5812 12,0000 “assr. 1208374
Gaoe . 4807 T 4900073348 - 65048 . 603,514 i T 516 570,258

" WcPromoter - 27.13 ..
§+0.0059 1 26.96

o e a2 i

McPromotor | 55.65  70.95 .
+0.005¢ 5496 7920 316

The upper number in a ce!l represents the value obtained without use of RepeatMasker. The lower number in a cell corresponds to the case when RepeatMasker is used, 3 pGProD by design
" requires use of RepeatMasker. ®Predictions do npot seem useful in a genome-wide search, because pure random predictions at every 4,000 nt will produce sensitivity (Se) = 100%, whereas in
" the cose of these systems many more predictions are made and Se < 100% Is achieved, “Predictions are close to the random guessing which will produce Se = 100%, whereas these systerns
. pmduca Se < 58%, makmg the:r use as 5Ingle predlctars hlghly queshonable ‘Results for McPrumuter relate only to chrarm)somes 4, 21 and 22 . o :

1470 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY



@ © 2004 Nature Publishing Group http://iwww.nature.com/natureblotechnology

By examining all possible combinations of
predictions of these programs on chromo-
somes 4, 21 and 22, we demonstrate that such
combinations can improve the overall per-
formance®s, Previous studies?¥-2% in pro-
moter and gene predictions have reported the
benefit of such approaches. Table 3 presents
results for all combinations of PPPs that
achieve a correlation coefficient greater than
the highest correlation coefficient {0.7089)
contained in Supplementary Table 2 online.
Because McPromoter's results were not avail-
able for the whole human genome, the analy-
sis of the whole genome would be deficient
and thus we used only chromosomes 4, 21
and 22 for this analysis.

We have demonstrated that the use of two
simple rules (see Box 3) improves accuracy.
After examining all possible combinations,
the results that outperform those from Supp-
lementary Table 2 are presented in Table 3.
The combination that resulted in the highest
correlation coefficient (0.7250) was obtained
by combining predictions of five programs.

DISCUSSION

Previous comparison analyses of PPPs were
either limited to specifically selected data
sets'1%2! or included only a few programs,
focusing mainly on chromosome 22573141324,

Box3 The combination of PPPs”

To assess the effect on performance of combmmg PPPs, an expenment was performed in
“ the following manner. We first scanned DNA in windows 2,000 nuclectides in length that
. were not overlapping. We considered whether the windows containied predictions of -
d|fferent PPPs and from particular PPP subgroups. When the conditions of the rules were
. satistied for a window, we judged that window to contain predictions of the combination
f considered. Then, we represented the window by a new prediction selected as the
£ midpoint of the window, This new prediction of TSSs was subjected to the same criteria
“'used previously in counting true pos;twes and false posstwes W|th the distance cnterlon
*1-2000,+2000]. The rules uséd were: S

) Rule 1: Window & contains predlctlons of at least $ progra'ms.
Rute 2: Window & contains predictions of at least p programs from the selected
subgroup of programs.

ANALYSIS

Rute 1 considers ali eight PPPs. Rule 2 considers only PPPs from selected subgroups
We analyzed att possible PPP subgroups, ‘while varying s and pfrom 1 to 8, thus covering
£ all possible choices. fa the casa when § < i then Rule 1 can be ignored and the contént of
he window is controlled only by Rule 2, Results are shown in Table 3. We illustrate the * -
nterpretation of Table 3 content with data in'row 7 that corresponds to a combination -
: which has resulted in the highest Pearson correlation coefficient of 0.7250: each window
must contain at least predictions from any three of the eight programs used: two of these
¢ programs have to be from the group {DragonGSF (1), Eponine (3), FirstEF (4), McPromoter
(5)) The actual number of true—posntwe and false-positive predlctions as well as the . Z :

It is interesting to note that CpGProD does ot appear in these combmatlons, probably
due to strong overlap of its predlctlons with those of FirstEF and DragonGSF.

Table 3 Resuits of combined promoter predlctaon on chromosomes 4 21 and 22

One analysis covered human chromosomes 4, Rulel Rula2 No.of true No.offaise Tagsofprogiamsused  Sensdbity ppv.  Corilation True-positive
21and 22, but included only three programs”. ¢ positives. _posltives by Rule2 o coeltclent oowt

’ . [ . . o ._\:-, i N . -
The present study includes eight PPPs, the 3 2 358 8t 1 3.4 0.6226 ' 08155 0.7126 0.2263 .
whole human genome, the largest and most  © 1 2 364 85 13 4 06330 D107 0.7i64 0.2335
diverse experimental reference TSS data set ? :J; 2;; ' ;gg i 2 ) a 5 g':::: : D:i?g g;::: 2'26;:

. g . X 0. ) 27
for PPP comparison,aswellasan . : :

used to date (; F ° fP K ’ . 3 2 382 12 1 48 0.6643 07733 0.7167 0.2932
assessment of efiects of masking repeats In - < 4 "' *5 399 1a 1 3 4.8 06835 07591 07250 . 03003 .
promoter prediction on a large scale. It also o2 129 13 4 07218

ag7
provides a performance assessment of the Ll
current PPP technologies on the human gen-
ome level. We did not analyze recognition of
alternative promoters because, currently, there is no large, sufficiently
accurate and statistically diverse data set to be used as a reference.
However, the present study has made progress in assessing PPPs using
reliable information of a large number of human gene promoters.

The price of making one true-positive prediction directly influences
the cost of the follow-up laboratory experiments when verification of
predictions is required. The present study provides useful clues in this
direction. If a single program were the preference, the most natural
choice would be DragonGSF or Eponine because these two programs
provide good coverage of promoters and are reasonably cheap;
approximately for every two true-positive predictions, they give some-
thing more than one false-positive prediction.

If finding TSS predictions of the greatest accuracy is the preference,
then CpGProD is the choice, with low sensitivity (37%) and restriction
exclusively to CpG-island-related promoters. The secend best in this
regard is Eponine {sensitivity = 40%), which is restricted to G+ C-rich
promoters containing a TATA-box, CpGProD requires the use of
RepeatMasker.

The best general purpose PPPs appear to be DragonGSF (which
has a preference for CpG-island-related promoters) and FirstEE

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11
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DragonPF and FirstEF predict the most diverse sets of promoters, Very
good performance is obtained by McPromoter, but it is very slow,
which prevents its application in large-scale analyses. Neither
Promoter2.0 nor NNPP2.2 seem to be a good choice even for the
analysis of short DNA segments, particularly considering the cost of
obtaining one true-positive prediction.

Our study demonstrates that, based on the current technology, it is
not possible to extrapolate the performance of PPPs to the whole
human genome, even from results from the three complete chromo-
somes’ (Table 2 and Supplementary Table 2 online). A probable rea-
son is that the structure of promoters on different chromosomes varies
and suggests that this variation is not well covered by the algorithms
used. So that users don’t have unrealistic expectations, we therefore
propose that any future performance assessment of PPPs should be
supported by the whole genome and a repository of experimental data
with a large number of promoters of different nature, such as DBTSS.

For most of the PPPs, the clustering of predictions is highly benefi-
cial, We strongly advise users to apply this in the same manner as used
in this study following suggestions given in Table 1. In addition, for
several PPPs, the use of masking repeats is demonstrated as extremely
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beneficial. We strongly recommend PPP users to adopt this practice on
the basis of data presented in Tables I and 2.

Our data also emphasize that the combination of specific PPPs
{Table 3) for the large-scale localization of the 5" end of genes on the
whole genomes is more beneficial than the use of single PPPs,
although we were able to test this only on chromoesomes 4, 21 and 22.
The best use of individual PPPs and additional features provided to
the users, are summarized in Table 1.

On the basis of our study, we have identified several aspects of pro-
moter prediction software that require a great deal of improvement.
First, selection of the right biological signals to be implemented in PPPs
remains an open issue. The most efficient solutions currently available
embark on the use of CpG islands, first exon properties, TATA-box and
several other properties from the core promoter region, but do not
possess sufficient sensitivity or the positional accuracy of TS5 predic-
tions. This suggests that, although these features are important, they
are not sufficient for accurate TSS location by computational means,

Second, the bottleneck of the current technology is detection of
non-CpG-island-related promoters. This is a considerable problem as
this type of promoter represents a high proportion of all promoters
found in the human genome?3,

!artdalone PPPs ‘analyred In this study

e

“Specitications for

Third, current PPPs are not able to precisely determine the TSS and
thus cannot effectively detect alternative TSSs. Many PPPs recognize
certain features of the 5’end of genes in a relatively efficient manner,
but generally lack the ability to pinpoint the exact TSS lacation. To
reach another level in PPP performance, we suggest the use of the dis-
tance criterion of [-20,+20] relative to experimental TSS accompanied
with the average frequency of one prediction in 100,000 nucleotides.

Fourth, current PPPs with high sensitivity still show a high fre-
quency of promoter prediction on the whole human genome. Clearly,
high sensitivity and low frequency of promoter prediction is the goal.

Finally, Liu and States?? have proposed that the combination of predic-
tions of PPPs and transcript data should improve TSS prediction accu-
racy on a genome-wide level, Further work should analyze this in detail,

The present study provides useful hints for using individual PPPs
under different circumstances. It shows how to greatly improve per-
formance of several PPPs through the use of RepeatMasker, and to a
lesser extent by combining predictions of PPPs. These analyses should
expand the potential utility of the preexisting PPPs and provide a firm
foundation for developing better PPPs. Additional technical details
about individual PPPs are provided in Supplementary Notes online
and in Table 4,

txecutable

Cperating systam . Litense Encluded Price Source Max, sequeni:'a . Saﬁuaﬂce Input  Max. na. sequences  Handling of gaps
’ . code  format length format in input file
CpgProD Pentium (Windows, - Open source : Free Yes Binary He fimit - FASTA, the No limit Does not report
{CpG-island- Linux) SPARC {Sotarisi - cownload - " 'sequence should gaps
promotes detection)  SG1. Magintosh - . * " be masked with
s . Co e R _ -RepealMaskar -
J—— SN . - [, P b o v g 4t s b o ebicrisbebere b b R e A o
Dragona_s{:_ oo Pentium (Windows, 0 Gommercia, et Academic No . Bimary Nodimit -~ .. GenBank, EMBL, Nolimit' -~ " .~ !gnores gaps
<(Dragongenestart Linux) SPARC (Sun, .- bundledin .7 . $115 ‘ T U FASTA o
- finder version 1,00  Solaris) . TRANSPLORER - L
’ Professional v.1.2
. (Bicbase, Germany) o
" DragonPF . Pentium {Windows, . C ial, @1, Acad No Binary No Ilmit |- GenBank, EMBL, Nolimit. . .~ Ignoresgaps
- {Dragonpromoter  Linux} SPARC (Sur: bundied in O$115 .. FASTA - . :
finder version 1.5} Solans] : . TRANSPLORER 7ini ST RS
RO ST S Profassional v1.2 -
{Biobasa, Germany)
" Eponine A platforms that Open source -Frea No JAR . 1 Mb per FASTA, plain No limit Does not repart
supponJAVA (I.GPL)  sequence o gaps
McPromoter- Permum (l.mux) Contact author Comacl No Binary No hmnt _FJ_\S?A_ Ore sequenr.e . Lnng stmn:hes )
. {(McPromoter ~"UweOhler - " .- author ’ ‘ : of ambiguous
CNMD (e-mail: . - : symbats (=50 bp} - -
Tl . ohler@mit.edy " sHipped; short
: R stretches replaced
"""" randnm!y
Fl;stEF . Pentium (Linux), Required Free for Nu Parl and Noilrmt FASTA No Ilmit Does nnt reporl
{first exon finder) SPARC (Sun,Solaris) ronprotit Binary - gaps
MIPS (Sllicon Graphics, users ’
1RIS), Alzha (OSFL} : o : e o
CNNPP " Pentlym {Linox}, . . : Ccmtact authnr Freefor . No  Perland Na limit i FASTA No limit, Produces Does not report
{newral netiork " : - SPARC (Sun,Solaris} Martin & Ress nonprofit oo Biey SE R ‘two fites if analyzes  gaps
promater prediction  Alpha [0SF1) 77", "\ - fe-mait: martine - ;- users o both strands,
verslen 2.2) S Sbdgpbl. gov} ‘ :
Promoter2.0 - Pentiom (Limu, MIPS | Contactauthor - Freefor  No  Binary,  Nolfimit FASTA Nolim. Toaniyze  All symbols that
{Silicon Graphics, IRIS) Steen Knudson nonpyofit needs Unix s reverse strands, arenot ACGT -
SPARC (Sun, Solaris), {e-mail: users tools: gawk, users must reverse  converted 10 X : .
Alpha (QSF 1), Power -+ steen@cbs, dlu d!o echo, nawk, complement betora processing.
MIX) saquencéand’ ' Does not report” ..

_uname

reds analysis

gaps

" EMBL, European Molecular Biology Laboratary,
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Abstract

We report the generation and initial characterization of a large-scale collection of sequences of putative
promoter regions (PPRs) of human and mouse genes. Based on our unique collection of 400,225 and
580,209 human and mouse full-length cDNAs, we determined exact transcriptional start sites {TSSs).
Using positional information of the TSSs, we could retrieve adjacent sequences as PPRs for 8,793 and
6,875 human and mouse genes, respectively. The positions of the PPRs were 4 kb upstream to
previously reported 5'-ends of cDNAs on average, demonstrating that full-length cDNA information is
indispensable for this purpose. Among those PPRs supported by experimentally validated TSSs, 3,324
could be paired as mutually homologous genes between human and mouse and were used for the
comprehensive comparative studies. The sequence identities in the proximal regions of the TSSs were
45% on average, and 22,794 putative transcription factor binding sites that are conserved between
human and mouse were identified. The data resource created in the present work and the results of the
sequences' initial characterization should lay the firm foundation for deciphering the transcriptional
modulations of human genes. All the data were deposited and made available through a database for
comparative studies, DBTSS.

Key words: full-length cDNA, promoter, comparative genomics, transcriptional start sites

Introduction

In order to understand the transcriptional network of human genes, it is essential o characterize their

http://www.bicinfo.de/isb/2004/04/0036/main.html 2005/03/22
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regulatory regions, which include regions called promoters. To this end, one of the challenges confronted
by both experimental and bioinformatics researchers has been to decode what kind of functional
sequence elements reside in which parts of the promoters and how they serve as modulators of
transcription. A large number of regulatory proteins, which are collectively called transcription factors
(TFs), have been identified and their sequence-specific binding to promoter elements has been shown to
play the central role in regulation [Mitchell and Tjian, 1989; Novina and Roy, 1986]. As many of the TF
binding sites are short (6-12 bp) and their consensus sequences are often degenerated, it was an
intricate problem to discriminate the genuine TF binding sites, which have biological significance in vivo,
from insignificant sequences, which occur randomly and very frequently in the large volume of human
genomic sequences [Fickett and Wasserman, 2000].

Comparative study of human and other organisms' sequences, namely comparative genomics, is a
powerfu! method to extract biclogically meaningful information as to which pars of the genomic
sequences are likely to have functional relevance. It is expected that the functionally important regicns,
such as exons and promoter elements, are evolutionally conserved and could be discriminated from non-
conserved ones, which are supposed to be subject to fewer functional constraints [Hardison, 2000;
Boguski, 2002]. The almost-complete sequencing of both human and mouse genomes [Lander et af.,
2001; Venter et al., 2001; Waterston ef af., 2002] provided us with the basic material with which to initiate
large-scale comparative studies of the promoters. If the positional information of the transcriptional start
sites of mRNAs (TSSs) were available, the promoter sequences could be identified by computational
mapping of the TSS onto the genomic sequences, since in most cases, the promoters are located just
proximal to or overlapping with the TSS. Once promoter sequences were retrieved, they could be
subjected to further analyses for the presence of particular TF binding sites.

Transcriptional start sites correspond to the 5-ends of the full-length cDNAs. Therefore, obtaining the
TSS information is equivalent to obtaining the 5-end information of the full-length cDNAs. However, it
was often difficult to obtain the 5'-end sequences of the full-length ¢cDNAs from public databases. For
most of the cDNAs registered there, the exact TSSs had not been determined either by S1 mapping,
primer extension or 5RACE and their authentic 5'-ends remain uncharacterized. Since these cDNAs
cannot be regarded as full-length cDNAs in a strict sense, it would be inappropriate to use their 5'-end
information for promoter retrieval. Indeed, even for the cDNAs registered in one of the most reliable cDNA
databases, RefSeq (hitp:/fiwww.ncbi.nim.nih.goviRefSeq/)[Suzuki et al., 2002; Pruitt et al., 2003}, about
half of the 5'-ends of RefSeq sequences should be extended towards the 5-end according to our
previous observation [Suzuki et al., 2002].

We have developed a method of constructing a full-length enriched cDNA library using a cap selection
method, "oligo-capping”, and have been collecting the full-length ¢cDNAs [Suzuki and Sugano, 2003].
Based on the human genomic DNA and full-length ¢cDNA data, we recently reported identification and
computational characterization of human gene promoters on a large-scale [Suzuki et al., 2001). The 5'-
end one-pass sequences of 217,402 of the full-length cDNAs were mapped onto the human genomic
sequences and adjacent promoter sequences were identified [Suzuki et al., 2002].

In the present study, we expanded the human full-length ¢cDNA as well as applying a similar strategy to
mouse data. For mouse cDNA data, we used full-length cDNA sequences, which were derived from
cDNA libraries constructed by another cap selection method, the “cap trapper” method [Carninci and
Hayashizaki, 1999; Kawai et af.,, 2001; Okazaki et al., 2002]. It is estimated that more than 80% of the
¢DNA clones isolated from the ¢DNA libraries constructed either by the oligo-capping method or by the
cap-trapper method should represent full-length ¢DNAs [Carninci and Hayashizaki, 1999; Suzuki and
Sugano, 2003]. Here we report generation and initial characterization of a large-scale dataset of promoter
sequences and construction of a database, DBTSS, for comparative studies of promoters of human and
mouse genes.

http://www.bioinfo.de/isb/2004/04/0036/main.html 2005/03/22
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Materials and methods

Processing of the full-length cDNA sequences and Mapping of the TSSs on the Genomic
Sequences

For human TSSs, each sequence produced by the cligo-capping method was first processed to trim its
vector site and its low quality parts. We also used FANTOM 5'-end sequences from Genbank (acc. No.
BB561685-BB667065, BB838020-BB873800) and our full-length cDNA data to determine mouse TSSs.
They were compared with human or mouse RefSeq using BLASTN. If a sequence alignment displayed
an identity greated than 95% and a e-value less than 1.0e-100, it was regarded as identical to the RefSeq
sequence. Sequences that had multiple hits in RefSeq were discarded. Then, the exact positions of the
TSSs on the human (build 31) or mouse (mm2) genomic sequences were determined
{(http://genome.ucsc.edu/downloads.html), using the sim4 program (http://pbil.univ-tyon1.fr/sim4.html)
[Florea et al., 1998]. In order to identify precise TSS information, we removed all the entries that were not
mapped on the human genome sequence from their first base. Where fluctuating TSSs were observed,
the most frequently used TSSs were defined as representatives. If the "most frequent TSSs" were
multiple, we defined the median of them as a representative.

Generation of the correlation table between human and mouse counterparts

In order to generate the relational table between human and mouse counterparts, human and mouse
representative transcripts were compared with each other using BLAST with a cut-off e-value of 1.0e-100.
For the datasets of representative human and mouse transcripts, RefSeq and RTPS (representative
transcripts and protein sequences from the FANTOM project) were used, respectively. The generated
pairs were further sorted by having at least one Ref-full or RTPS per pair. Where homology searches
gave ambiguous results (with mutually multiple hits), they were excluded from the table, so that the
obtained relational table consisted only of the gene pairs of reciprocal best match homologs.

Sequence comparison between promoter pairs of human and mouse genes

Sequences of the promoters were compared between human and mouse homologues. Sequences of the
-1000 to +200 bp relative to the TSSs were used and sequence identity was calculated. For the sequence
alignment, LALIGN was run with the default parameters. The sequence identities were averaged for the
1200 bp regions. The identity counts of the regions where no alignment was generated using LALIGN
were scored as 0.

Search for putative TF binding sites

Putative TF binding sites were searched by using the position weight matrices (PWMs) from TRANSFAC?
Professional 7.1. Searching was done by Match [Kel ef al., 2003}, a weight matrix-based tool for '
searching putative transcription factor binding sites in DNA sequences. Match is closely interconnected
and distributed together with the TRANSFAC database. Match applies two cut-offs for the score values of
the matrix matches: core cut-off for the 5 core nucleotides and matrix similarity cut-off for the whole
match. Match allows usage of different cut-offs for every matrix. We used several sets of cut-offs (so
called matrix profiles) provided by TRANSFAC: 1) minFP, to minimize the false positive (over-prediction
error) rate, 2) minSUM, to minimize the sum of both errors. For analyzing putative AP-1, NF-xB and NF-
AT sites, the PWMs of VSAP1_01 for AP-1, VENFKAPPAB_01 for NF«B, and VSNFAT_Q6 for NF-AT in
TRANSFAC were used with the core and matrix similarity cut-offs of (0.8, 0.93}, (0.8, 0.92), (0.8, 0.97},
respectively.
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Availability of the Database

From the download site at DBTSS, major resources used for the database construction are available by
FTP, including the flat files of the human/mouse one-pass sequences with Genbank accession numbers,
retrieved promoter sequences and correlation tables of the promoters. The DBTSS and the data it
displays are freely available for academic, nonprofit, and personal use.

Results
Collection and clustering of the human and mouse full-length cDNAs

in total, our database, DBTSS, now records 400,225 full-length cDNA sequences, including an additional
182,823 sequences compared to the previous version (Genbank accession numbers are BP192706-
BP383670). This additional data should have improved not only the coverage of genes represented in
DBTSS but also the overall reliability of the identified TSSs, since the probability should have greatly
increased for a particular TSS being a correctly identified TSS when the redundancy of the supporting
full-length cDNAs increased. These cDNAs are isolated from 137 kinds of full-length cDNA libraries, all of
which are constructed using the “oligo-capping” method (further details on the library information
including the completeness (whether they are full-length) of each of the libraries are presented at
http://dbtss.hge.jp/ in the "Statistics” section).

The "oligo-capped" cDNA sequences were first searched against RefSeqgs (as of November 14, 2002)
using BLAST [Altschul et al., 1890]. When hits were found, the 5'-ends of them were compared with those
of RefSeqs. When the RefSeq was truncated, its 5-end sequence was complemented to obtain a
putative representative full-length ¢cDNA, which we refer to as a Ref-full. As summarized in Table 1, we
could generate 9,270 Ref-fulls based on RefSeqs and our full-fength cDNA sequences (for further details,
see Material and methods). Sequence data obtained by 6,042 Ref-fulls were extended towards the 5'-
ends by 71.6 bp on average (see Table 2 and Figure 1A for the distribution of the differences). Some of
the extended parts overlapped with the open reading frames (ORFs), thus, were also useful to revise the
currently truncated N-terminal sequences of the deduced amino acid sequences in RefSeq. In some of
the sequences, upstream ATGs and ORFs are embedded (for further discussion on this issue, refer to
our recent papers [Suzuki et al., 2000; Yamashita et al,, 2003].

Table 1: Statistics of the collected promoter data.

| Human | Mouse

RefSeq and Ref-full

Ref-full {(promoter retrieval successful) 8,793 (48%) 6,875 (63%)
Ref-full {total) 9,270 (51%) 7,524 (58%)
Ref-full that extended RefSeq 6,042 (33%) 5,018 (38%)
Ref-full that did not extend RefSeq 3,228 (18%) 2,506 (19%)
RefSeq that are not covered by Ref-full 8,944 (49%) 5,557 (42%)
RefSeq (total) 18,214 (100%)]| 13,081 (100%)

One-pass sequences and genome mapping
Hit to RefSeq (genome mapping successful) 180,964 (48%)| 195,446 (34%)
Hit to RefSeq (genome mapping ambiguous) 36,267 (9%) 36,624 (6%)
No hit to RefSeq 172,994 (43%}] 348,139 (60%)
One-pass (total) 400,225 (100%)] 580,209 (100%)
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Statistics of the number of promoters, the redundancies of the supporting full-length cDNAs and the

differences between the public data are shown.

Table 2: Statistics of full-length cDNA sequences used for the retrieval.

Number of Average length Average length
registered genes difference from difference from
{average RefSeq (mRNA RefSeq (genomic
redundancy) level) level)
Human 8,793 (21.7) 71.6 4,396
Mouse 6,875 (28.4) 76.0 4,027
?:i'r’;a“’ MOUSe | 3 324 (25.2/38.0) 63.3/68.8 3,998/3,380

Statistics of the full-length cDNAS used for the database construction is shown.

The remaining 3,228 cDNAs in which the 5'-ends of the Ref-fulls were almost consistent with the RefSeq
9-ends and were used to confirm that the RefSeqs had originally represented the full-length cDNAs. In
the present study, we excluded the cDNAs that did not correspond to RefSegs, as the one-pass
sequences without the RefSeq supports are singletons in many cases. Among them a number of
spurious cDNAs, such as cloning artifacts and other kinds of aberrant transcripts, might be included.
Besides, our recent analyses suggested that sporadic transcription from non-genic region regions are
inherent in human and mouse genomes (Sakakibara ef al., in preparation). Since it was a concern that
incorporating this part of the data could make the dataset confusing, we did not include it to the current
dataset.

As for the mouse genes, full-length cDNAs were obtained from the FANTOM database
(http:/ifantom.gsc.riken.go.jp/) and processed by a similar procedure as that used for the human cDNAs,
Starting from 580,209 one-pass sequences of the 5'-ends of the full-length cDNAs, 7,524 Ref-fulls were
obtained of which 5,018 extended pre-existing RefSeq sequences by 76.0 bp on average (Figure 1A).

Figure 1: Comparison between Ref-fulls and RefSeqgs. The
distributions of the differences between Ref-fulls and RefSeqs are
presented, when compared at the mRNA level {A} and genomic
level (B). Black and gray bars represent the cases for human and
mouse genes, respectively.

o e
o -l e

Retrieval of promoter sequences based on Ref-fulls

The one-pass sequences of 190,964 and 195,446 human and mouse ¢DNAs corresponding to 8,793 and
6,875 Ref-fulls were precisely mapped onto the human and mouse genomes, using strict criteria
described in Materials and Methods. Exact positional information of the TSSs could be determined on
each of the genomes (Table 1). The average redundancy, that is, the number of full-length cDNAs
supporting TSS of each of the genes, was 21.7 and 28.4, respectively. Although 1,980 human TSSs and
691 mouse TSSs were determined by single full-length ¢cDNA data (singletons), the others were
supported by multiple full-length cDNA data (Figure 2). As the average frequency of the full-length cDNAs
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in the cDNA libraries is more than 80%, the probability should be low that the truncated erroneous full-
length cDNAs happened to be mapped closely so as to lead to misidentification of the promoters.

Nerbes ik} AT Kneras e sy Figure 2: Distribution of the numbers of mapped full-length
b Eo cDNAs. The distribution of the numbers of mapped TSSs is shown
o0 Lt for human and mouse genes by black and gray bars, respectively.
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The average distances between the 5'-ends of the RefSeqs and the Ref-fulls calculated at the genomic
level were 4,396 bp and 4,027 bp for human and mouse, respectively (Figure 1B). In this dataset, 62%
and 56% of the mapped TSSs of the human and mouse genes are located in the CpG islands,
respectively. As large introns were observed just downstream of the exact TSSs in many cases, the
distances between the 5'-ends of RefSegs and Ref-fulls were much greater than those calculated at the
mMRNA level. In these cases it was impossible to identify rea! promoters based solely on the RefSegs,
even if the differences calculated at the mRNA level were small.

Relating the promoters of human and mouse gene counterparts

In order to compare the retrieved human and mouse PPR sequences with each other, we wished to
relate the human genes to the mouse gene counterparts. We started from RefSeqs and the RTPS
dataset, which are the representative sets from mouse created in FANTOM mouse full-length cDNA
annotation meetings (for further details see the reference Okazaki ef al., 2002). We compared their
sequences both at the nucleotide and amino acid level so that all of the related gene pairs should be 1:1
reciprocal best hit homologs. In tota!, we could correlate 8,185 human and mouse genes in total.

Using the obtained relational table, we could define 3,324 human and mouse gene pairs among our PPR
dataset, supported by 83,708 (redundancy: 25.2) human and 126,326 (redundancy: 38.0) mouse full-
length cDNA data. Of these, 2,256 promoter pairs were supported by more than three full-length cDNA
sequence data of both human and mouse (in total more than six cDNAs were mapped). The PPR pairs
were aligned with each other using a sequence alignment program, LALIGN [Huang ef af., 1892]. On
average, the overall sequence conservation between the promoter pairs was 45%, when evaluated in the
regions from -1000 to +200 {TSS was designated as 0) of the 2,256 dataset. The average length of the
aligned upstream sequences was 510 bp. However, the size and patterns of the sequence alignment
were quite different between promoters (for further details, refer to Suzuki ef al. in preparation). Figure 3
represents the extent to which the sequences were conserved between PPR pairs.

Figure 3: Distribution of the sequence conservation between
human and mouse promoters Sequence alignments were
performed using LALIGN with the default parameters. The
sequence identity was evaluated as the number of aligned
nucleotides in the regions of -1000 to +200 (TSS: 0).
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Construction of DBTSS for comparative studies

All of the created data is made publicly available through our newly developed database, DBTSS. The
schematic of the user interface is illustrated in Figure 4 and details of the database description are
presented in Supplementary Information.

Figure 4: Schematic of the user interface of DBTSS, The boxes
that are marked with asterisks (A~G*) correspond to the
respective forms illustrated in Supplementary Figures S1 and S2.

It should be noted that this version of DBTSS has implemented the search for the PPRs by putative TF-
binding sites that are conserved between human and mouse genes. For this search, arbitrary
combinations/positions of the putative TF-binding sites can be set. For example, it is possible to search
"TATA-plus PPRs containing NF-xB binding site(s} and either NF-AT site(s) or AP-1 site(s), all of which
are conserved between human and mouse within 500 bp of the TSSs" (this combination of the TFs is
frequently observed in the promoters responsible for inflammatory responses) [Baeuerle and Baitimore,
1996; Ho and Glimcher, 2002; Praz et al., 2002].

Practically, when the PPRs were searched using TRANSFAC [Matys ef al., 2003] with strict parameters
(minFP64.prf, see also Supplementary Information), 183,712 and 170,926 hits were detected from human
and mouse promoters, respectively, in total. However, we were concerned that these matches might
include a lot of false positive hits. To decrease the number of false predictions we used the comparative
PPR data following the assumption that among the detected putative TF binding sites evolutionary
conserved ones may have functionally relevance. Consistently, confidential data elucidated that most
functionally relevant TF binding sites are conserved throughout evolution (between 64-75%; Hannenhalli
and Levy, 2002; Sauer and Wingender, in preparation). Using the promoter alignment data as a filter for
selecting the conserved TF binding sites, DBTSS could pick up 22,794 putative TF binding sites in human
promoters which are conserved between human and mouse. By doing this, it is possible to select the TF
binding sites that should have first priority for experimental validation. Results of the search for
representative TFs are presented in Supplementary Information Table.

We temporarily focused on evolutionarily conserved TF binding sites. Actually, we observed that about
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85% of the predicted conserved-TF binding sites are located in the conserved regions of the promoters.
However, this does not imply that non-conserved predicted TF binding sites always should have no
functional relevance. Some of the TF binding sites which are not conserved between human and mouse
might play roles in a species-specific manner. This always should be kept in mind whenever this kind of
search is attempted.

The so-called "phylogenetic foot printing" approach is the most powerful when the combination(s} of the
TF binding sites is taken into account as well. For example, when promoters containing putative binding
sites of NF-xB were searched using the standard cut-offs (for further details see Material and Methods),
1,491 and 983 sites were detected in the human and mouse promoters, respectively. However, when the
hits were restricted to the conserved ones, the number of hits decreased to 36. When a similar search
was performed for promoters containing putative NF-AT or AP-1 binding sites, the numbers of hits were
7,368, 5,545 and 652 for human, mouse and conserved, respectively. When searching for promoters
containing both of the conserved NF-xB and NF-AT/AP-1, the number of hits was 22. These should be
primary targets for initiating the experimental characterization of promoters as to whether they really
respond to an inflammatory stimulus [Kel ef af., 2003].

Discussion

In this paper, we described the large-scale collection of initial comprehensive comparative analyses of
promoters of human and mouse genes. The dataset generated in this study as well as the newly
developed database are unique, based on the experimentally identified TSSs. Although there are a
number of databases which enable genome-wide comparison between human and mouse genes, such
as HGB at UCSC, Ensembl at EBI, Map Viewer at NCBI [Clamp et al., 2003; Karclchik et al., 2003;
Wheeler et al., 2003), they are mainly focused on the global alignments of the genomes, and are intended
for finding exonic regions rather than for the characterization of promoters. To our knowledge, rVISTA)
and GALA are rare exceptions, mainly focusing on promoter comparison [Loots ef al., 2002; Giardine et
al, 2003, Ureta-Vidal et af., 2003]. However, in all of these pre-existing databases, most of the "5'-
flanking regions" are not defined by experimentally determined TSSs; therefore, it has been difficult to
distinguish which part should correspond to exons and which should be regarded as promoters, even if
conserved regions were identified. Actually previous observations reported that the average sequence
identity of the "upstream regions” of human and mouse genes was approximately 70-75% [Waterston et
al., 2002], which is apparently higher than our calculation (45%; Figure 3). This may have been caused
by the fact that they used upstream 200 bp regions. The degree of the sequence identity might be lower
at more upstream regions. Consistently, a previous report indicated that frequency of the alignable
sequences becomes lower relatively rapidly in the upstream regions [Jareborg et al., 1999]. Since we
used the entire 1000 bp to +200 bp regions in the present study, the calculated sequence identity might
be lower than the previous result. Further extensive analyses of the sequence alignments generated from
various globalflocal alignment pregrams should reveal how the sequences in the upstream regions of the
TSSs are conserved between human and mouse.

Taking advantage of the large-scale collection of the full-length cDNAs, we could focus on the limited
regions of the genomic sequences for the analysis of promoters. Also, we could take into account the
positions of the predicted TF-sites relative o the TSS for the search of the analysis of the putative TF-
binding sites. Recent reports described that the TF-sites predicted kilo bases apart from the TSS should
have less probability of having biolegical consequences [Liu et al, 2003]. In order to expedite the
experimental analyses of the promoters by minimizing the false positives, the target regions that should
be used for the primary searches have to be defined for each of the TFs. Implementing this feature,
DBTSS should be the first database which makes the most use of the promoter data for the practical
requirements of experimental biologists.
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