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Tissue engineering for myocardial regeneration

Abstract Recent progress in stem cell biology has shown
the possibility of implantable human myocardial cell
sources. It has encouraged myocardial tissue engineering
for rescuing damaged hearts. The present strategy is to
repair not all of the myocardial tissue, but part of it. There
are two approaches. The first is direct injection of dissoci-
ated cell suspensions via the pericardium, coronary arteries,
or endocardium. Studies using animal models have found
improved heart function after transplantation of various
types of cells. Myoblasts or bone marrow cells have already
been transplanted into patients suffering from severe
ischemic heart disease. In direct transplantation of dis-
sociated cells, it is difficult to control the shape, size, and
location of the grafts. To solve these problems, further
therapies to transplant tissue-engineered three-dimensional
(3-D) heart grafts have been investigated. The most popular
technique in tissue engineering is to use 3-D biodegradable
scaffolds as alternatives to the extracellular matrix. On the
basis of this concept, poly(glycolic acid}(PGA), gelatin,
alginate, and collagen have been used as scaffolds to fabri-
cate 3-D heart tissues. A new method consisting of layering
cell sheets to construct 3-D tissues without any artificial
scaffolds has also been applied to myocardial tissue engi-
neering. Electrically communicative pulsatile heart tissues
have been achieved both in vitro and in vivo by layering
cardiomyocyte sheets. Although myocardial tissue engi-
neering has rapidly progressed, there are several problems
to be solved with regard to the source of myocardial cells,
tissue reconstruction, neovascularization, and transplanta-
tion technology. Further interdisciplinary research will
solve these problems, and transplantation of cells or engi-
neered heart tissues will become one of the major treat-
ments for severe heart failure in the near future.
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Introduction

Recently, stem cell biology and tissue engineering have
rapidly progressed, encouraging research on cardiovascular
tissue reconstruction from cultured cells to rescue patients
suffering from heart failure. Stem cell biology has revealed
that various types of stem cells exist in the body and that
embryonic stem {ES) cells can differentiate into various cell
lineages in vitro.' Many researchers are now trying to estab-
lish new methods of isolating stem cells and controlling
their differentiation.™ It is also crucial to grow enough cells
for tissue reconstruction. On the other hand, tissue engi-
neering was proposed by Langer and Vacanti in 1993, This
is an interdisciplinary field of research that seeks methods
of bioengineering three-dimensional (3-D) tissues.' The
concept is that preparations of cells, extracellular matrix
(ECM), and growth factors together lead to tissue recon-
struction. Langer and Vacanti used 3-D biodegradable scaf-
folds including poly(glycolic acid) (PGA) and poly(lactic
acid) (PLA) as alternatives to the ECM. Cartitage engi-
neered by their technology is now clinically used. The use of
3-D scaffolds has been applied to the fabrication of almost
all tissues and has promoted research in tissue engineering.

In cardiovascular tissue engineering, vascular grafts and
heart valves have been fabricated by various technologies.*
At first, investigators tried to comstruct hybrid vascular
grafts, which are synthetic grafts seeded with endothelial
cells for antithrombogenesis. Recently, based on Langer
and Vacanti’s concept, natural and synthetic biodegradable
materials have been used as temporary scaffolds. Tissue-
engineered vessel constructs with rupture strength of more
than 2000mmHg have been reported.”™ Bioengineered vas-
cular grafts using PGA scaffolds and autclogous vascular
cells have been clinically implanted into several children
with heart malformations, and their patency has been re-
ported.’ Several types of biodegradable scaffolds formed
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into appropriate shapes have been used to construct heart
valves as same as vascular grafts. Decellularized xenogenic
valves have also been used as 3-D scaffolds. These tissue-
based constructs may overcome the problems of prosthetic
devices, including thromboembolic complications and
reoperaticn due to the inability of the devices to grow.

In contrast to research on blood vessels and heart valves,
research on cardiac muscle tissue engineering has been de-
layed because of the difficulty of establishing myocardial
cell sources. However, recent progress in stem cell biology
has shown the possibility of implantable human myocardial
cell sources and has accelerated myocardial tissue engineer-
ing.** At present most researchers are attempting to repair
not all of the myocardial tissue, but part of it. There are two
approaches to rescue impaired hearts. The first is direct
* transplantation of dissociated cells, which regenerate and
remodel in the surrounding tissue, resulting in restoration
of heart function. The second is to fabricate 3-D heart grafts
by tissue engineering technology and to transplant the
grafts into damaged hearts. These approaches have been
expected to result in new therapeutic strategies for severe
heart failure, replacing conventional treatments. In this
article, we focus on the rapid progress of myocardial
tissue engineering and discuss present problems and future
perspectives.

Cell sources and isolated cell transplantation

Research on direct transplantation of cells for impaired
heart tissuc has been conducted since the early 1990s.
Soonpaa et al. first reported the possibility of isolated
cardiomyocyte transplantation into myocardium.” They
demonstrated that fetal mouse cardiomyocytes grafted
into syngeneic host hearts survived, and they confirmed
that nascent intercalated disks connected the engrafted
cardiomyocytes and the host myocardium. Other studies
demonstrated that engrafted fetal cardiomyocytes formed
new tissues in myocardial infarction medel animals, and
some of them reported improvement in heart function.'?
Desirable effects of transplantation of heart cells into glo-
bally damaged hearts was also reported m a study using a
dilated cardiomyopathic myocardium model."” Several stud-
ies found that transplantation of fetal rat cardiomyocytes
was more effective than transplantation of neonatal or adult
rat cardiomyocytes.'™"? These reports suggest that less dif-
ferentiated cells may have more regenerative power, lead-
ing to more efficient support for heart function."'* From
this point of view, ES cells may be hopeful cell sources. ES
cells have the abilities to proliferate in an undifferentiated
state and to differentiate into various types of cells in re-
sponse to specific stimuli. It has already been reported that
ES cells can differentiate into cardiomyocytes in vitro in
both mice and humans."” Min et al. demonstrated that
implantation of mouse ES cells improved cardiac function
in infarcted rat hearts."” Recent progress in nuclear transfer
technology raises the possibility of nonimmunoreactive ES
cell production; therefore, ES cell-derived cardiomyocyte

217

transplantation may be available in the near future. Al-
though many researchers expect a great potential for ES
cells, clinical application of human ES cells faces the same
ethical problems as that of human fetal cardiomyocytes.

On the other hand, stem cells originating from bone
marrow have been investigated as desirable cell sources in
terms of ethical problems and immuncreactions. Makino et
al. established a cardiomyogenic cell line front murine bone
marrow stromazl cells by using 5-azacytidine, which regu-
lates the genes related to transdifferentiation.”” Tomita et
al. reported that rat bone marrow cells cultured with 5-
azacytidine differentiated into cardiac-like muscle cells, and
transplantation of these cells improved myocardial function
in cryoinjured rat hearts.” Recently, Orlic et al. demon-
strated that sorted bone marrow cells, which are lineape-
negative and c-kit-positive cells, formed new myocardial
tissue in infarcted hearts, restoring their function.” Surpris-
ingly, these totipotent bone marrow cells differentiated into
myocytes, endothelial cells, and smooth muscle cells with-
out any specific agents. It has also been reported that hu-
man mesenchymal stem cells from bone marrow engrafted
in the adult murine myocardium appear to differentiate into
cardiomyocytes?' These reports indicate that multipotent
bone marrow cells can differentiate and regenerate de novo
tissues in response to the surrounding tissues. Thus, bone
marrow may be the best source of cells for myocardial tissue
engineering.

Myoblasts have also been investigated as potential cell
sources instead of cardiomyocytes. They exist between skel-
etal myocytes and differentiate into muscle when tissues are
damaged. They can be isolated from autologous muscle
biopsies and can be expanded in vitro. One of their favor-
able features is that they are more resistant to ischemia than
cardiomyocytes. Differentiated myotube formation and
long-term survival of myoblast grafts in murine hearts were
demonstrated by Koh et al.”? Murry et al. reported that
skeletal myoblasts regenerated new muscle tissue when
grafted into injured hearts, and that this tissue contracted
when stimulated electrically.” Taylor et al. found improve-
ment of cardiac function after autologous skeletal myoblast
transplantation into cryeinfarcted rabbit hearts.* Menasche
et al. first reported the clinical application of myoblast
transplantation for heart failure.* They implanted autolo-
gous myoblasts into the postinfarction scar during coronary
artery bypass procedures and confirmed their contraction
and viability in the grafted scar. A clinical trial of skeletal
myoblast transplantation is now ongoing. In addition to
skeletal myoblasts, transplantation of autologous smooth
muscle cells prevented cardiac dilatation and improved ven-
tricular function in hamsters with dilated cardiomyopathy.?®
These positive effects of transplanted cells have been con-
sidered to result from the inhibition of heart tissue remod-
eling, including wall thinning and heart dilatation, and also
from neovascularization by growth factors secreted from
the transplanted cells.

Dissociated cell transplantation has been performed by
direct myocardial injection, coronary artery injection, or an
intraventricular approach. The NOGA system (Biosense
Webster) is used for the intraventricular approach. The
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system incorporates a miniature location sensor and elec-
trodes into a catheter that is inserted into the ventricle,
recording intracardiac electrical activation and ventricular
motion in real time. These data provide realistic 3-D dy-
namic heart images and serve as guidance for cell injection.
Because methods of cell injection influence the efficacy of
cell transplantation, improvements in these methods are
indispensable in myocardial tissue engineering.

Construction of 3-D myocardial tissue

In direct transplantation of dissociated cells, it is difficult
to control the shape, size, and location of the transplanted
grafts. Therefore, research on methods of transplanting
tissue-engineered functional heart grafts has begun.** As
described above, the most popular approach of tissue engi-
neering is to use 3-D biodegradable scaffolds as alternatives
to ECM. The concept has also been applied to myocardial
tissue engineering; two techniques are used to seed cells
into scaffolds. One is to pour cells onto prefabricated,
highly porous scaffolds (Fig. 1A). The other is to polymer-
ize biodegradable molecules after mixing them with iso-
lated cells (Fig. 1B). In the first technique, PGA, gelatin, or
alginate has been used as a prefabricated scaffold. Freed's

A

cell sheet

Fig. 1. Tissue engineering methodelogies. A Isolated cells are poured
onto prefabricated, highly porous scaffolds. The scaffolds are biode-
graded, and extracellutar matrix (ECM) oceupies the space within the
cells, leading to 3-D tissues. B A mixture of isolated cells and biode-
gradable molecules is poured into an appropriate mold, and then the

group reported that cultivation of neonatal rat cardiac
myocytes on PGA scaffolds processed into 97% porous
meshes resulted in contractile 3-D tissues.”™ Rotating
bioreactors were used for seeding the cells; mixed cultiva-
tion had several advantages over static conditions, including
higher cellularity of the construct, more aerobic cell me-
tabolism, and more differentiated cells. Freed confirmed
that the electrical conduction velocities in native heart tis-
sues and the engineered constructs were comparable and
showed the feasibility of using the constructs as in vitro
models for electrophysiological studies. Li et al. developed
tissue-engineered cardiac grafts using gelatin sponges.®'
The gelatin grafts, which had been seeded with fetal rat
cardiomyocytes for 7 days, were sutured to cryoinjured rat
hearts. The cells within the grafts survived and formed junc-
tions with host hearts 5 weeks after operation, A gelatin
patch was used to replace a right ventricular outflow tract.
After 12 weeks, the reconstructed tissue complemented the
wall, even after the gelatin scaffold had been completely
dissolved. Leor et al. also reported bioengineered heart
grafts using porous alginate scaffolds with an average pore
diameter of 100pm.” Fetal rat cardiac cells were seeded
into the dry alginate scafiolds by dropping the cell suspen-
sion and were cultured for 4 days. The constructs were
transplanted onto the scars of coronary-ligated rat hearts 7
days after operation. Histological studies showed almost

molecules are polymerized. The construct is regenerated into tissues.
C Intact cell sheets released from temperature-responsive culiure
surfaces are layered. Cell sheets adhere to each other via biological
ECM, restlting in 3-D tissues containing no biodegradable scaffolds
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complete disappearance of the scaffolds and the presence of
transplanted myocytes 9 weeks after implantation. The
grafts attenuated left ventricular dilatation and deteriora-
tion of heart function.

For the second technique of premixing cells and ECM
alternatives, Eschenhagen’s group used collagen gel as a
scaffold.™* Cardiac myocytes were mixed with ice-cold col-
lagen solution and cast into silicone molds. By gelling at
37°C and culturing for 4 days, 3-D contractile heart tissues
were fabricated. Eschenhagen established a system of mea-
suring the force of the constructs isometrically and demon-
strated typical features of native hearts, including a positive
force-length relation (Frank-Starling mechanism), a high
sensitivity to calcium, and a positive inotropic effect of iso-
prenaline. It has also been reported that chronic mechanical
stretch guides cardiac myocytes into unidirectionally elon-
gated cells and induces hypertrophy, resulting in improve-
ment of contractile function.’

New approach in tissue engineering

In contrast to the technology using 3-D biodegradable
scaffolds as alternatives for ECM, we have exploited
a new method of tissue engineering that layers cell sheets
for the construction of 3-D tissues (Fig. 1C). Cell sheets
are obtained by using novel cell culture surfaces graf-
ted with a temperature-responsive polymer, poly(N-
isopropylacrylamide}(PIPAAm)."* These culture surfaces
are slightly hydrophobic and cell adhesive under culture
conditions at 37°C and change reversibly to a hydrophilic
and non-cell-adhesive state below 32°C due to rapid hydra-
tion and swelling of grafted PIPAAm. In contrast to
cells that have undergone enzymatic digestion, including
trypsinization, both cell-to-cell junctions and adhesive
proteins within confluent cultured cells are completely
preserved, leading to production of intact cell sheets by
detachment from PIPA Am-grafted surfaces. Various types
of cell sheets have been successfully obtained and trans-

Fig. 2. Skin surface electrogram
of transplanted cardiomyocyte
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ferred onto other surfaces.®* 3.D tissues can be fabricated

by layering cell sheets without any artificial scaffolds.

This technology has also been applied to myocardial tis-
sue engineering.”™ Neonatal rat cardiomyocyte sheets de-
tached from PIPAAm-grafted surfaces were overlaid to
construct cardiac grafts. Layered cell sheets began to pulse
simultaneously, and morphological communication via
connexin 43 was verified between the sheets. Four-layer
constructs were macroscopically observed to pulse sponta-
neously. In vivo, surface electrograms originating from the
grafts transplanted into subcutaneous tissues of nude rats
were detected (Fig. 2), and their spontaneous beating was
macroscopically observed. Histological studies showed
characteristic structures of heart tissue, including elongated
cells, sarcomeres, desmosomes, and gap junctions (Figs. 3
and 4). Multiple neovascularization was also observed
within contractile tissues. These results demonstrate that
electrically communicative pulsatile 3-D cardiac constructs
are achieved both in vitro and in vive by layering cardio-
myocyte sheets. In collaboration with Matsuda and Sawa’s
group at Osaka University, improvement of cardiac func-
tion in ischemic heart models by transplantation of layered
cardiac grafts has been demonstrated.*

Problems and future perspectives

Although myocardial tissue engineering has rapidly pro-
gressed and has the possibility of repairing damaged hearts,
there are several problems to be solved. As previously
mentioned, the source of myocardial cells is one of the
most critical problems. From the point of view of immuno-
rejection and ethical problems, cardiomyocytes derived
from bone marrow cells may be most desirable. But some
breakthrough technologies in isolation, differentiation,
and expansion of stem cells will be needed for clinical
application. Recently, multipotent cells have been re-
ported to differentiate into cardiomyocytes in specific
environments in cardiac muscle tissue or in co-culture with
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Fig. 3. Histology of transplanted cardiomyocyte sheets (three layers).
Azan staining shows a striated cardiac tissue graft including elongated
cardiomyocytes and multiple neovascularization (arrows)

Fig. 4. Transmission electron microscopic image of transplanted car-
diac graft. Well-differentiated sarcomeres and characteristic cell-to-cell
connections, including desmosomes (arrows), are shown

cardiomyocytes.™"* Although they may be candidates for
myocardial cell sources, some researchers point out the
possibility that stem cells may fuse only with native cardio-
myocytes. Further studies will be needed to clarify this
controversial point.

As also mentioned previously, it is difficult to control the
shape, size, and location of injected cells in isolated cell
transplantation. Moreover, spilling out of transplanted cells
into microvessels has occurred. Bioengineered cardiac
grafts using 3-D scaffolds may solve these problems. How-
ever, several difficulties have also been raised in engineer-
ing 3-D heart tissue grafts. One is heterogeneity of the
tissues due to insufficient migration of the cells into biode-
gradable scaffolds. Another is the inflammatory reaction
accompanying scaffold biodegradation. To prevent these
problems, newly designed biodegradable scaffolds and cul-
ture systems will be needed. Elasticity of the scaffolds is also
important to allow following of the pulsatile native heart. In
light of these concerns, layering cardiomyocyte sheets with-

out any artificial scaffolds may be a feasible technology for
myocardial tissue engineering,

Vascular reconstruction is also one of the most critical
issues in myocardial tissue engineering. Although multiple
sites of neovascularization originating from host tissues into
implanted cardiac grafts have been demonstrated, primary
insufficient oxygen and nutrition permeation limit the size
of transplanted myocardial tissues. Zhang et al. reported
that many injected cells die in rat infarction models.* It has
also been noted in tissue-engineered heart grafts that cells
are dense in the graft periphery, but sparse in the interior
part due to insufficient oxygen perfusion.®® New techniques
to accelerate blood vessel formation are needed to engineer
larger or thicker constructs for repair of heart tissues.
Gene-modified cell transplantation is one possible way of
improving neovasculogenesis. ™ In vitro microvascular en-
gineering may be cne approach to the construction of larger
tissues. Recently, Kaihara et al. reported an attempt to
fabricate branched microvascular structures on silicon and
pyrex surfaces by micromachining technology.” Further re-
search and development will be needed to engineer pre-
formed vascular networks for clinically applicable heart
tissues.

Several bioreactors have been used to strengthen heart
tissue grafts, as described above. Akins et al. originally used
a rotating bioreactor for culturing cardiomyocytes.” The
flow condition significantly affects cell migration and differ-
entiation. Improved bioreactors and appropriate culture
conditions may augment engineered heart function. It is
well known that mechanical stretch causes cardiomyocyte
hypertrophy. Eschenhagen et al. clearly demonstrated that
application of stretch devices to engineering heart tissues
strengthened the tissues and oriented the cells.* Mechani-
cal stretch seems to be very useful in myocardial tissue
engineering. Further development of these devices will be
accomplished by participation of mechanical engineers in
myocardial tissue engineering research.

In native hearts, cardiomyocytes are elongated and
aligned, resulting in unidirectional contraction. Imitating
this cell alignment may improve the contraction power of
engineered tissues. One method of orienting randomly cul-
tured cells is to stretch the constructs unidirectionally, as
Escenhagen et al. demonstrated. Another approach is to
align cardiomyocytes primarily by controlling cell adhesion.
Stuart et al. demonstrated that cardiomyocytes attached to
stripe-patterned cell-adhesive culture surfaces fabricated by
a photolithographic technique, resulting in cell elongation
and unidirectional contraction.” They found a faster electri-
cal conduction velocity in aligned cells than in randemly
cultured cells. Application of microfabrication technology
has become popular in tissue engineering research. Aligned
3-D scaffolds for heart tissue reconstruction may be realized
in the near future.

In the clinical setting, patients may wait for several days
until autologous cells are expanded and engineered into 3-
D heart tissues. In addition, it may take a long time until
graft cells reconstruct and perform functionally after the
transplantation. In such cases, combined therapy with
mechanical support may be beneficial. A combination of
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several therapeutic strategies should be pursued to rescue
patients suffering from severe heart failure.

This review has focused on heart tissue repair, but engi-
neered 3-D heart tissues should be applicable ta various
types of studies as in vitro heart models. Bursac et al. dem-
onstrated the feasibility of engineered heart constructs as in
vitro impulse propagation study models.® Eschenhagen et
al. first directly measured the isometric contractile force of
engineered 3-D heart tissues.” These bioengineered heart
tissues should contribute to biological, physiological, and
pharmacological studies.

Myocardial tissue engineering has rapidly progressed by
the development of stem cell biology and tissue engineer-
ing. Further interdisciplinary research will be needed to
solve several problems. We expect that transplantation of
cells or engineered heart tissue grafts will become a major
therapeutic strategy for severe heart failure in the near
future,
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Abstract

The objective of this study is to investigate the efficiency of a non-viral gene carrier with RGD sequences, Pronectin F™*
for gene transfection. The Pronectin F™ was cationized by introducing ethylenediamine (Ed), spermidine (Sd), and spermine
(Sm) to the hydroxyl groups while the corresponding gelatin derivative was prepared similarly because gelatin also has one
RGD sequence per molecule. The ¢ potential and molecular size of Pronectin F* and gelatin derivatives were examined
before and after polyion complexation with a plasmid DNA of luciferase. When complexed with the plasmid DNA at the
Pronectin F* /plasmid DNA mixing ratio of 50, the complex exhibited a ¢ potential of about 10 mV, which is similar to that
of the gelatin derivative-plasmid DNA complex. Irrespective of the type of Pronectin F* and gelatin derivatives, their
complexation enabled the apparent molecular size of plasmid DNA to reduce to about 200 nm, the size decreasing with the
increased derivative/plasmid DNA weight mixing ratio. The rat gastric mucosal (RGM)-1 cells treated with both complexes
exhibited significantly stronger luciferase activities than free plasmid DNA although the enhanced extent was significant for
the Sm derivative compared with the corresponding Ed and Sd derivatives. Cell attachment was enhanced by the Pronectin
F™ derivative to a significant high extent compared with the gelatin derivative. The amount of plasmid DNA internalized
into the cells was enhanced by the complexation with every Pronectin F* derivative compared with the gelatin derivative,
For both of Pronectin F* and gelatin carriers, the buffering capacity of Sm derivatives was higher than that of Ed and Sd
derivatives and comparable to that of polyethylencimine. Tt is likely that the high efficiency of gene transfection for the Sm
derivative is due to the superior buffering effect. We conclude that the Sm derivative of Pronectin F* is promising as a
non-viral vector of gene transfection.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Pronectin; RGD sequences; Cationization; In vitro transfection; Buffering capacity

1. Introduction technique that involves the in vitro or in vivo
introduction of exogenous genes into cells for ex-
Gene transfection is a powerful and promising perimental and therapeutic purposes. Whichever is

the final goal for experimental biology and gene
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short time period. Recently, a number of DNA
delivery systems have been investigated targeting the
improved the efficacy of pene transfection [1-3].
There have been two major approaches proposed for
gene delivery: the viral-mediated and non-viral-me-
diated gene transfection [4]. However, considering
the immunological and safety issues of viral vectors,
necessity in the development of non-viral vector
systems has been increasingly magnified. There are
several advantages of chemically based, non-viral
vectors. Besides their lower toxicity and inducivity
of immune responses than the viral vector, no
integration into the genome is indicated.

The basic research approach of non-viral vectors is
to neutralize the negative charge of plasmid DNA
and to condense the DNA size by polyion com-
plexation with various polymers and liposomes of
positive charge [5—8]. It is likely that the condensed
plasmid DNA complex with a positive charge effec-
tively interacts with cells to internalize, enhancing
the efficiency of gene transfection. However, since
this complex-cell interaction is based on the simple
and non-specific ¢lectrostatic force, the more en-
hanced and cell-specific cell transfection cannot be
always expected. One of practically possible ways to
improve this situation is to take advantage of cell
receptor systems which play an important role in the
cellular uptake of several substances. In this study,
we selected and use a ligand specific to the cell
receptor as the non-viral vector of plasmid DNA.
The sequences of RGD (arginine—glycine—aspartic
acid) has been discovered as a cell attachment
sequence in various adhesive proteins present in the
extracellular matrix (ECM), and found in many
proteins, such as fibronectin, collagen type 1, vit-
ronectin, fibrin, and Von Willebrand Factor [9]. It has
been well recognized that the sequence interacts with
various types of integrin receptors. There are several
receptors on the synthesis of polymers incorporating
the RGD sequence [10]. Some polymers comprised
of repeated blocks of RGD sequence have been
genetically synthetized to assess their therapeutic
effects [11,12]. Pronectin® is an artificially syn-
thesized protein which has a silk-like protein (SLP)
backbone into which the amino acid sequence with
an inherent ability for biological recognition are
introduced. Among them, Pronectin F consists of two

types of oligopeptide blocks, a SLP sequence of six
amino acids and a human fibronectin (FN) sequence
of 17 amino acids including RGD [13,14]. The SLP
sequence gives Pronectin F structural stability, ther-
mal and chemical resistance, and the nature suscep-
tible to the adsorption to hydrophobic surfaces, while
the FN sequence contributes to the activity of
biologically specific cell adhesion [15]. One RGD
sequence is configured into nine times of repeating
SLP sequence and localized on the surface of
Pronectin F molecules. This is because the Pronectin
F possesses the nature to enhance the cell attachment
through interaction of the repeated RGD sequence
with the integrin receptor of cells. Pronectin F has
been widely used as a coating reagent of cell
cultureware. The Pronectin F coating is found to
promote the adhesion of more than 50 types of
animal cells onto the surface of polymer substrates,
like polystyrene, polyester, and Teflon because of the
RGD sequence [12]. Tt is possible that Pronectin F
readily adsorbs onto the polymer surfaces through
the hydrophobic interaction. Pronectin F is not
water-soluble since the SLP sequence forms strong
hydrogen bonds intermolecularly. To break the
bonds, the hydroxyl groups of Pronectin F serine
residues are chemically modified by introducing
dimethylaminoethyl groups to prepare a water-solu-
ble form of Pronectin F (Pronectin F ). This Pronec-
tin F* is water-soluble and has 13 of RGD se-
quences in one molecule which contribute to the
strong cell adhesion via the integrin receptors.

This study is undertaken to investigate feasibility
of the Pronectin F' with RGD sequences as the
non-viral vector of plasmid DNA. To give the
Pronectin F" cationized charges necessary for the
formation of polyion complexation with the plasmid
DNA, ethylenediamine (Ed), spermidine (Sd), and
spermine {Sm) were introduced into the hydroxyl
group of serine residucs in Pronectin F'. The
Pronectin F* derivatives with different extents of
aminization were prepared by changing the con-
ditions of amine introduction, while for comparison,
the similar cationized derivatives of gelatin which
has one RGD sequence per molecule were prepared.
The two cationized derivatives were mixed with a
plasmid DNA encoding luciferase in aqueous solu-
tion to assess the { potential and molecular size of
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Pronectin F* derivatives—plasmid DNA and gelatin
derivatives—plasmid DNA complexes. After rat gas-
tric mucosal cells were incubated with the complex-
es, their gene expression was compared between the
types of Pronectin F* derivatives or Pronectin F*
and gelatin derivatives. We also examine the inter-
nalization of the derivatives—plasmid DNA complex-
es into the cells as well as the buffering effect of
every derivative.

2. Materials and methods

2.1. Materials

Pronectin F* (molecular weight (M_)=110 000)
was kindly supplied by Sanyo Chemical Industries
(Kyoto, Japan). Gelatin, prepared through an acid
process of type I collagen (pig skin) was kindly
supplied by Nitta Gelatin (Osaka, Japan). Ethyl-
enediamine (Ed), 2,4,6-trinitrobezencsulfonic acid
(TNBS), B-alanine, and protein assay kit (Lot No.
L8900) were purchased from WNacalai Tesque
(Kyoto, Japan) and was used as obtained. As a
coupling agents, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride salt (EDC) and N,N'-
carbonyldiimidazole (CDI), and DNA MW Standard
Marker (I-kb DNA Ladder) were obtained from
Dojindo Laboratories, (Kumamoto, Japan) and Ta-
kara Shuzo (Shiga, Japan), respectively. Spermidine
(8d) and spermine (Sm) were purchased from Wako
Pure Chemical Industries (Osaka, Japan) and was
used as obtained. Rhodamine B isothiocyanate
(RITC) was obtained from Sigma-—Aldrich (Tokyo,
Japan).

2.2. Preparation of plasmid DNA

The plasmid DNA used is the DNA construct
(12.5-kb DNA) which contains a cytomegalovirus
(CMV) promoter inserted at the upstream region of
sequence coding the firefly (Photinus pyralis) lucifer-
ase. The plasmid DNA was amplified in an E. coli
bacteria transformant and isolated from the bacteria
by Qiagen Maxi kit-25 (Qiagen, Tokyo, Japan). The
absorbance ratio at the wavelength of 260-280 nm

for purity assessment of plasmid DNA obtained was
measured to be between 1.8 and 2.0.

2.3, Preparation of Pronectin F” and gelatin
derivatives of Ed, Sd, and Sm and their
complexation with plasmid DNA

Pronectin F* derivatives with different extents of
aminization were prepared by introduction of Ed, Sd,
and Sm into the hydroxyl group of serine residues in
Pronectin F* based on the conventional CDI method
[16]). Briefly, varied amounts of Ed, Sd, and Sm
together with varied amounts of CDI were added to 5
ml of dehydrated dimethyl sulfoxide containing 5 mg
of Pronectin F*. The reaction solution was agitated
at 25°C for 20 h to introduce Ed, Sd, and Sm
residues to the hydroxyl groups of Pronectin F*,
followed by dialysis against double-distilled water
(DDW) for 2 days and freeze—dry to obtain Ed-, Sd-
and Sm-derivatives of Pronectin F*, respectively.
The molar percentage of Ed, Sd, and Sm introduced
into the hydroxyl groups was quantitated by the
conventional TNBS method [17] based on the cali-
bration curve prepared by using B-alanine.

Gelatin derivatives with different extents of amini-
zation were prepared by introduction of Ed, Sd, and
Sm into the carboxyl groups of gelatin based on the
conventional EDC method [16]. Briefly, Ed, Sd, and
Sm together with 21.39 mg of EDC were added into
2200 ml of DDW containing 44 mg of gelatin at
different molar ratios of the amine compounds to the
catboxyl groups of gelatin, followed by immediate
adjustment of the solution pH at 5.0 by HCI addition.
The reaction mixture was agitated at 37 °C for 18 h
and then dialyzed against DDW for 48 h at 25 °C.
The dialyzed solutions were freeze-dried to obtain
powdered different gelatin derivatives. The percent-
age of amino groups introduced into the carboxyl
groups of gelatin (the aminization of gelatin) was
determined by the TNBS method similarly. Com-
plexation of Pronectin F* and gelatin derivatives
with the plasmid DNA was performed by simple
mixing the two materials at various mixing weight
ratios in aqueous solution. Briefly, 150 pl of 0.1 M
phosphate-buffered saline solution (PBS, pH 7.4)
containing 10, 50, 100, 200, 300, and 500 pg of
Pronectin F* derivatives and 2.5, 5, 10, 25, 50, and
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100 g of gelatin derivatives was added to the same
volume of PBS containing 10 pg of plasmid DNA.
The solution was gently agitated at 37 °C for 30 min
to form Pronectin F* derivatives—plasmid DNA and
gelatin derivatives—plasmid DNA complexes.

2.4. Electrophoresis of Pronectin F™* derivatives—
plasmid DNA and gelatin derivatives—plasmid
DNA complexes

Several Pronectin F* derivatives—plasmid DNA
and gelatin derivatives—plasmid DNA complexes
were prepared at various mixing weight ratios of
Pronectin F' and gelatin derivatives to plasmid
DNA (0.1 pg) according to the same procedure as
described above. The complex samples were elec-
trophoresed for 40 min at 100 V in 0.75 wi% of
agarose gel by 45 mM Tris—Borate and 1| mM EDTA
buffer (pH 8.0). The gel was stained with 0.5 mg/ml
cthidium bromide solution for 30 min to visualize the
localization of plasmid DNA with a Gel Doc 2000
(Bio-Rad Laboratories, Tokyo, Japan).

2.5. Measurement of dynamic light scattering
(DLS) and electrophoretic light scattering (ELS)

The complexes of Pronectin F* derivatives and
plasmid DNA were prepared by the similar pro-
cedure described above. Briefly, 2.5 m! of PBS
containing 5 mg of Pronectin F' derivatives was
mixed with 2.5 ml of PBS containing 0.1, 0.17, 0.25,
0.5, 1, and 5 mg of plasmid DNA, The complexes of
gelatin derivatives and plasmid DNA was prepared
by mixing of 2.5 ml of PBS containing 1.25, 2.5, 5,
12.5, 25, and 50 mg cationized gelatin with 2.5 ml of
PBS containing 5 mg of plasmid DNA. Every
solution was filtered through a 0.45-um filter (Mil-
lex-HV, Millipore) prior to mixing. The mixed
plasmid DNA and Pronectin F* derivatives and
plasmid DNA and gelatin derivatives solution were
placed in a DLS ¢ell and DLS measurement was
carried out using a DLS-DPA-60HD instrument
(Otsuka Electronic, Osaka, Japan) equipped with an
Ar” laser at a detection angle of 90° at 37 °C for 30
min and performed three times for every sample. The
corresponding hydrodynamic radius, R,, can be
calculated from Einstein-Stokes’ equation: R, =T/
3mmD, where k is the Boltzman constant, T is the

absolute temperature, 7 is the solvent viscosity, and
D is translational diffusion coefficient obtained from
the DLS measurements. In the present study, the
autocorrelation function of samples was analyzed
based on the cumulants method and the R_ value was
automatically calculated by the equipped computer
software and expressed as the apparent molecular
size of samples. ELS measurement was carried on an
ELS-7000AS instrument (Otsuka Electronic Co.,
Ltd., Osaka, Japan) for mixed plasmid DNA and
Proncctin F* and plasmid DNA and gelatin detiva-
tives aqueous solution at 37 °C and an electric field
strength of 100 V/em. The ELS measurement was
done three times for every sample.

The zeta potential () was automatically calcu-
lated using the Smoluchouski equation based on the
elecrirophoretic mobility measured u: {=4mnu/e,
where 1 and £ are the viscosity and the dielectric
constant of the solvent, respectively.

2.6. Transfection experiment by Pronectin F~
derivatives—plasmid DNA and gelatin derivatives—
plasmid DNA complexes

Rat gastric mucosal (RGM)-1 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM,
Lot No. 1073750, Gibco-BRL, Life Technology, NY,
USA) supplemented with 10 wt% fetal calf serum,
0.12 wt% sodium bicarbonate, and 100 units/ml
mixed penicillin—streptomycin  solution. The cell
suspension (1X10° cells/2 ml) was plated into each
well of six-well multi-well culture plates (Code
3800-6100, Iwaki brand, Scitech Div. Asahi Techno
Glass, Chiba, Japan) and cultured at 37°C for 1 day
in a 95% air-5% CO, atmosphere to reach the cell
confluency of about 70%. After the Pronectin F*
derivatives—plasmid DNA and gelatin-derivatives—
plasmid DNA complexes were added to each well,
followed by incubation for 4 h, the culture medivm
was cxchanged to exclude the complexes added.
Then, the cells were incubated for additional 48 h,
washed twice with 1 ml of PBS, and Iysed by 100 pl
of a lysis buffer (Luciferase Assay System, Cat# E
1500, Promega, WI, USA). The cell lysate was
centrifuged at 12 000 rpm for 5 s at 4°C, and the
supernatant was carefully collected and kept in ice.
The supernatant sample (16 pl} was mixed with 80
pl of a reconstituted luciferase assay solution
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{Luciferase Assay System, Cat# E 1500) and the
relative light unit (RLU) of the solution mixture was
determined by a luminometer (Lumat Lb 9507,
Wallac-Berthold, Germany). Each experimental
group was carried out for three wells. As controls,
the cells were incubated with the cultured medium
alone or that containing free plasmid DNA or the
original Pronectin F* and gelatin—plasmid DNA
complexes. The protein concentration of the lysate
was also assayed by the Lowry kit (Lot. No. L8300,
Nacalai Tesque, Kyoto, Japan). Briefly, 50 ul of
lysate were mixed with the 1 m! of the copper
solution, followed by leaving for 10 min at 25 °C.
After addition 0.1 ml of 1 N phenol aqueous
solution, the solution mixture was incubated for 30
min at 25 °C and the absorbance was determined at
the wavelength of 750 nm. The protein concentration
was calculated based on the calibration curve pre-
pared by use of a standard albumin solution.

2.7, Cell attachment

The original Pronectin F* and gelatin, Pronectin
F" and gelatin derivatives were dissolved in PBS to
obtain the coating solution. The concentration of
Pronectin F* and Pronectin F* derivatives used was
10 pg/ml {18] while for the gelatin and gelatin
derivatives used was 0.1 mg/ml [19]. The solution
(1 ml) was poured into each well of six-well multi-
well culture plates (Code 3800-6100, Iwaki brand,
Scitech Div. Asahi Techno Glass), followed by

leaving for 5 min at 25 °C. After the excess solution’

was removed, the plate was left for air drying for 2 h
at 25 °C and then rinsed twice with PBS.

RGM-1 cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM, Lot No. 1073750,
Gibco-BRL) supplemented with 10 wi% fetal calf
serum, 0.12 wit% sodium bicarbonate, and 100 units/
ml mixed penicillin—streptomycin solution, The
RGM-1 cell suspension (1X10° cells/2 ml) was
added info non-coated or the coated wells and
cultured at 37°C for 6 h in a 95% air-5% CO,
atmosphere. Non-adherent cells were thoroughly
washed twice with PBS,

The number of cells attached was determined by
the fluorometric assay of cell DNA [20]. Briefly, the
adherent cells were lysed by 1 ml of a lysis buffer
(2% trypsin—EDTA in PBS). The cell lysate was

digested in a buffer solution (pH 7.4) containing 0.5
mg/ml proteinase K, 0.2 mg/ml sodium dodecylsul-
fate (8DS), and 30 mM saline—sodium citrate (SSC)
at 55°C for 12 h with occasional mixing. The
enzyme-digested samples (100 wl) was mixed with
SSC buffer (400 pl) in a glass tube. After mixing
with a dye solution (500 wl; composition: 30 mM
SSC, 1 ng/ml Hoechst 33258 dye) the fluorescent
intensity of mixed solution was read in a fluores-
cence spectrometer (F-2000 Fluorescent Spec-
trophotometer, Hitachi, Tokyo, Fapan, Ex 355 nm/
Em 460 nm). The calibration curve between the
DNA and cell number was prepared by use of cell
suspensions with different cell densities. The DNA
assay was done three times independently for every
experimental sample unless otherwise mentioned.

2.8. Internalization assay of Pronectin
F " derivatives—plasmid DNA and gelatin
derivatives—plasmid DNA complexes into cells

For the fluorescent labeling of plasmid DNA, the
pCMV-Luciferase and RITC were mixed in 0.2 M
sodium carbonate-buffered solution (pH 9.7) at 4 °C
for 12 h at both the concentrations of 1 mg/ml. The
residual RITC was separated by gel filtration of a PD
10 column (Amersham—-Pharmacia Biotech, Tokyo,
Japan) and the RITC-labeled pCMV-luciferase was
cbtained by ecthanol precipitation. Then, different
Pronectin F* and gelatin derivatives were mixed
with the RITC-labeled pCMV-luciferase in PBS at
the Pronectin F*—plasmid DNA and gelatin—plasmid
DNA weight mixing ratio of 50 and 5 to prepare
respective complexes. The Pronectin F* derivative—
RITC-labeled plasmid DNA and gelatin derivative—
RITC-labeled plasmid DNA complexes were added
to each well with RGM-1 cells grown at the 70%
confluency. As controls, the cells incubated with the
RITC-labeled-plasmid DNA alone or that containing
the original Pronectin F’—RITC-labeled-plasmid
DNA complexes and the original gelatin—RITC-
labeled-plasmid DNA complexes. Following incuba-
tion further for 48 h, the cells were washed carefully
three times with 1 m! of PBS to exclude the
fluorescent agents added, and lysed by 500 pl of a
lysis buffer (Luciferase Assay System, Cat# E 1500,
Promega). The fluorescent intensity of cell lysates
was measured by a fluorescent spectrophotometer
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Table 1

Preparation and characterization of Pronectin F* derivatives with different extents of aminization

Pronectin F' CDI Ed Sd Sm Introduction
concentration {mg/ml) (mg/mi) (mg/ml) (mg/ml) percentage®
(mg/ml)

1 0.87 2.84 1.23+0.23°
1 175 6.94 14.1x0.17
1 9.74 19.2 26.0x0.27
1 0.49 407 5.13x0.17
1 1.63 8.24 13.1+0.42
1 4.89 29.8 260x1.18
1 1.63 6.54 1.86+0.78
1 4.89 139 129038
1 9.78 377 26.0x0.45

The number of amino groups introduced

* Calculated according to the formula:

® Mean+S.D,

(F-2000 Fluorescent Spectrophotometer, Hitachi,
Tokyo, Japan, Ex 570 nm/Em 595 nm) and divided
by that initially added to obtain the percent internal-
ized. Each experiment was carried out independently
for six wells.

2.9. Evaluation of buffering capacity of Pronectin
F7 and gelatin derivatives

An aqueous solution containing Pronectin F* and
gelatin  derivatives or branched polyethylenimine
(PEL) with the molecular weight of 25000 as a
control sample was prepared and the solution pH was
adjusted around 8.0 by 0.1 M NaOH, The amount of
each materials used for buffering experiments was
the concentration of amine groups of 1 mM. The
resulting solution was titrated by stepwise addition of
0.01 N HC] solution (0.2 ml). The solution pH was
measured by Horiba D-22 pH meter (Horiba, Kyoto,

The number of OH groups

X 100(%).

Japan). The experiment was performed independent-
ly three times to obtain the average pH value.

2.10. Statistical analysis

All the data were statistically analyzed to express
the mean=the standard deviation (5.D.) of the mean,
Student’s t-test was performed and P<0.05 was
accepted to be significance.

3. Results

3.1. Preparation and characterization of FPronectin
F” and gelatin derivatives

Tables 1 and 2 show the aminization of Pronectin
F' and gelatin prepared under different reaction
conditions. It is apparent that the percentage of

Table 2

Preparation and characterization of gelatin derivatives with different extents of aminization

Gelatin Concentration of amino compounds {mg/ml) Molar Amino residues introduced” {mol/mal%)
concentration ratio®

(mg/ml) Ed Sd Sm Ed Sd Sm
%107 1.1%1077 2.7%x107° 3.8x1077 10 33.0 426 44.0
2%1072 2.8X1077 6.7x107° 9.5%107" 25 42.6 416 47.0
2x1077 56x107? 13x107! 1L9x107" 50 47.8 48.1 49

* The ratio of ethylenediamine, spermidine, and spermine to the carboxyl groups of gelatin,
® The percentage of amino residues introduced to the carboxyl groups of gelatin,
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