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Figure 1. Multistep model of MDS pathogenesis

and pathophysiologic imptications, that significant resid-
ual normal hematopoiesis could be still detected in many
MDS bone marrows"”.

Multistep model of development and progression of
MDS

A multistep model of genetic alterations has been fre-
quently employed to explain the pathogenesis and devel-

opment of many neoplastic disorders, including MDS. It

is mainly based on temporal profiles of cytogenetic as
well as other genetic abnormalities during courses of
MDS, which often show emergence of new subclones
having additional chromosomal abnormalities and later
expansion of these subclones (Figure 1). However, it is
not clear how many and what kind of genetic changes are
required for development or transformation of MDS.
There is no definitive evidence that multiple genetic in-
sults are really required for development of MDS, In ad-
dition, although a number of genetic alterations have
been reported in MDS patients as described below, the
majority of the currently identified genctic abnormalities
are found both in MDS and AML or preferentially ob-
served in advanced or transformed cases of MDS. Thus it
should be stressed that the early genetic alterations in
MDS are mostly unknown.

Genctic abnormalities in MDS

A wide variety of genetic alterations have been described
in MDS, including point mutations and generation of ab-
errant fusion genes associated with recurrent balanced
translocations. A list of these abnormalities, not complete
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through is given in Table 1.

Mutations of RAS, p53, and other genes in MDS
Among these genetic alterations, the first identified are
mutations of the N-R4S proto-oncogene’’, RAS is a key
molecule for the MAP kinase cascade to transduce prolif-
eration signals to nucleus. Mutations exclusively occur at
codon 12, 13 or 61, which converts RAS to a constitutive
active molecule (Figure 2). In contrast to early reports
showing mutation rates of 30 to 40%, more recent studies
reported much lower frequencies of ~10% on average'.
P33 is another target for mutations in MDSY. p53 is the
most frequently inactivated tumor suppressor gene (TSG)
in human cancers and its diverse functions have been ex-
tensively studied, although the frequencies of its muta-
tions are generally lower in hematopoietic tumors.
Referring to the TP53 database, 82 of 646 (~12%) MDS
cases are reported te have mutated p33  genes
(http://www iarc. fr/p53/), but this figure may provide too
high an estimation, probably suffering from a publication
bias. Both R4S and p33 mutations are rare in early stages
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Table 1. Genetic abnormalities in MDS$S

Mutation, Deletion, Duplication

N-RAS ~10% mufation
NF! childhood MDS, IMML  mutation
FTPNI} childhood MDS, JIMML  mutation
pi3 <10% mutation, deletion
FLT3 ~§% tandem duplication
FMS rare mutation
KT fare mutztion
AMLI ~10% mutation
ATRY rare AT-MDS mutation
TERC rare mutation
Crtochrome ¢ rare mutation
Wi rarg mutation

Gene Rearrangements
EVIi(3g26) and MELK(Ip36)

1(3:3){q21:q26) EVID overexpression
invi3)qig26) EVIl overexpression
1i3;214q26:922) AMLLEVI}
(3;E2)q26;p13), TEL/EVIT
WL3p36;q20 MEL! overexpression
TELETV6(12p13)

5;12)q33;p13) TELPDGFR-b

9, 12)(q22;p12) TELSYK
t};12)(36.1;p13) TEL/MDS2
15;E2){q31;p13) ASCITEL
1(12,224p1 3911 MNITEL
MLL(11423)

f11;16)(q23;p13) MLL/CBP
t11;19)q23;p13.1) MLL/IMEN
1(5;11)(q31;923) MLL/GRAF

NUP98 and CAN

{71)pl5:pl5) NUPOS/HOXAY
inv(11)p15¢22) NUPSS/DDX10
HZ;11)931p15) NUP9S/HOXDI3
{I;17)pl5:q21) NUPIS/HOXB
L1p15q13) NUPOSIHOXCI3
f(11:20)p15;g11) NUP9STOP!
§6;9)(p23:934) DER/CAN

Other

13;5)(925;934) NPM/MLF-1

of MDS (RA/RARS) and typically found in more ad-
vanced stages (RAEB/RAEBU) or during transformation
to AML".

Activated mutations of receptor tyrosine kinases have
been also reported in MDS, including mutations of the ¢-
FMS gene encoding M-CSF receptor and of the FLT3
gene'”"”. Mutations of the c-FMS gene were reported to
be more common in CMMoL but have not tepeatedly
confirmed, while the FLT3 mutations are considered
more important for the pathogenesis of AML or progres-
sion form MDS to AML rather than development of

MDS itself. Mutations of the Chk2 gene, and human
telomerase RNA gene (TERCY® and deletion of « -
globin gene clusters® are also found in isolated reports.
Inactivation mutations of the 4TRY gene are found in rare
cases of AT-MDS characterized by myelodysplasia with
severe microcytic anemia due to ¢ -thalathmia™ ATRX
is a SWI/SNF like protein and involved in transcriptional
regulation of genes including the ¢ -globing gene.
Constitutional inactivation of the ATRY gene causes
ATRX syndrome, a rare X-linked disorder showing a-
thalathmia, mental retardation, facial dysmorphism, and
urogenital abnormalities™, Since patients with ATRX
syndrome do not develop MDS, acquired ATRX muta-
tions in AT-MDS cases are not considered to play a role
in initiation of MDS, but to modify its phenotype.
Mutations in mitochondrial respiratory genes such as the
cylochrome ¢ oxidase (CXO) gene have been also re-
ported in MDS patients in high frequencies®. Since de-
fects in CXO will compromise sufficient oxidative
energy production in mitochondria required for the driv-
ing force of mitotic spindles, it raises an attractive hy-

-pothesis that inactivation of the CXO gene will lead to

genetic instability due to mitotic dysfunction®, but the
observation has not been firmly confirmed®,

AML1/Runxl gene

AMLI or Runxl is a well-known target of 1(8;21)
(922;922) translocation found in AML, in which AML] is
rearranged with ETO to generate the AML {/ETO fusion
gene”. AML] is also involved in (12;21)(p13;q22) and
1(3;21){q26,q22) to form TEL/AML1 and AML1/Evil fu-

. =2
sion pl'oteln'8’2°

» respectively. It encodes a transcription
factor that regulates transcription of a wide variety of
genes expressed in hematopoietic compartments and is

indispensable  for  establishment of
30-32

definitive
hematopoiesis™ . Importantly, a germ line mutation of
AML1 causes a rare hereditary disorder known as the fa-
milial platelet disorder with a predisposition to AML
(FPD/AML)*. Tt typically has several years of a
preleukemic period showing dysmegakaryopoiesis with
reduced platelet counts and may be considered as a kind
of congenital form of MDS, in which an AMLI mutation
is clearly the first and possibly sufficient genetic hit that
contributes to its MDS-like phenotype. Of particular note
is that acquired mutations of AML/ are commenly found
in sporadic cases of AML (53/619; 8.6%) especially of
MO phenotype (39/185; 21%), and also in MDS cases
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(33/362; 9.1%) (Figure 3)34'33. An excellent review is
available covering both sporadic and familial mutations
of AMLI®. AMLI mutations may be hemi- or biallelic
with a substantially higher biallelic mutation rate in the
AML MO subtype®***% In MDS AMLI mutations seems
to be detected in more advanced stages (RAEB/RAEBt
and MDS derived from AML) and in therapy related
MDS (tMDS)*. Recently a strong association of AML!
mutations with monosomy 7 has been reported in ad-
vanced stage MDS, suggesting cooperative roles between
both abnormalities®”. AMZLJ mutations can be rarely de-
tected in apparently healthy persons and frequently found
in atomic bomb-related MDS cases. Thus AAL] locus

0423 Some mutations

may be more prone to mutations
lead to simple loss-of-function proteins, while others
clearly generate mutants having dominant-negative ac-
tivities against the normal AMLI protein. Propensity to

AML also differs among FPD/AML pedigrees and possi-

ISR ITT 19/185

M1 B (] 4/7T4

CMML
RA/RARS
RAEB/RAEBt
MOS/AML

[ER] 22/138

L] 5 1 15 20 5

Figure 3. Frequencies of AMLI mutations
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Figure 4, Loss of AML1 blocks normal hematopoiesis at
multiple stages
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bly among sporadic cases with different AML/ mutations,
depending on types of the mutations®™ *,

Several mouse models carrying abnormal AML! genes
have been generated. AMLI-null mice are embryonic le-
thal on E12.5 and AML I/ETO-knockin mice also show a
similar phenotype, indicating that AML]-fusion protein
act in a dominant negative manner***>*, Unexpectedly,
however, when AMLI is disrupted in adult bone marrow,
hematopoietic stem cells are still maintained or rather in-
creased in number, while severe dysmegakaryopoiesis
prevails showing defects in polyploidation and reduced
platelet counts. Intriguingly, production of both mature T
cells and B cells is also severely impaired in the 4MLI-
null mice (Figure 4)”, which may give rise to a plausible
explanation for frequent sparing of lymphoid lineages in
MDS.

NF1 gene

The NFI gene was originally identified as the causative
gene for neurofibromatosis type I (NFI!) and encode
neurofibromin, a GTPase-activation protein {GAP) for
p2IRAS*™ NFI is one of the prototypes of a tumor
suppressor gene, inactivation of which leads to constitu-
tive activation of p21RAS (Figure 2)*. NF1 patients has
a strong predisposition to developing Juvenile
Myelomonocytic Leukemia (JMML) (~200 to 500 fold
increase in relative risk to the normal population), an ag-
gressive form of childhood MDS characterized by
monocytosis, thrombocytopenia, splenomegaly, and ma-
lignant infiltration of the skin, lymph nodes, lungs, liver,
and other organs. In a large series of JIMML, 14% were
found to have NF1*'. In mouse models somatic inactiva-
tion of NFI in hematopoietic cells results in a progressive
myeloproliferative  disorder resembling JMML™. It
should be noted that NF7 is mutated and inactivated in
sporadic cases of childhood MDS or IMML, especially in
combination with monosomy 7, although NFJ muta-
tions is rare in adult cases. Oncogenic RAS mutations
were also found in JMML in high frequency and re-
stricted to cases without NF1, underscoring pathogenic
importance of the RAS-activating pathway for the patho-
genesis of IMML™,

PTPNII gene

PTPN11 encodes SHP-2 protein tyrosine phospatase and
is congenitally mutated in Noonan syndrome™, a devel-
opmental disorder with short stature, facial dysmorphia,



skeletal anomalies, and occasional development of
JMML. Intriguingly, somatic mutations of the PTPNI{
gene were found in 10 of 62(16%) sporadic cases of
JMML, 5 of 50 (10%) other childhood MDS cases, and 1
of 26 (3%) AML*". SHP-2 seems to act in the
RAS/MAPK cascade, because mutant SHP-2-introduced
cells showed sustained activation of ERK2 in response to
EGF stimulation (Figure 2)*®, Also supporting this is that
mutations were not detected in JMML associated with
NF1 cases and in those who had RAS mutations.
Mutations occurred exclusively in childhood MDS with
advanced diseases as well as JMML®". No PTPN!] muta-
tions have been reported in adult MDS®,

Cytogenetic abnormalities in MDS

A huge number of cytogenetic abnormalities have been
described in MDS and provide important clues to deline-
ate molecular bases for MDS pathogenesis®’. Frequent
cytogenetic abnormalities found in MDS are listed in
Table 2. Although many of these abnormalities are com-
mon to both MDS and AML, rarity of disease-specific
balanced translocations and high frequencies of unbal-
anced abnormalities compared to de nove AML, are
among prominent cytogenetic features of MDS. tMDS
tends to have more complex chromosomal anomalies,
higher rates of hypodiploid, 5g-/-5, and 7g-/-7, and lower
frequencies of trisomy 8 and hyperdiploid than de novo
MDS®.

Among recurrent unbalanced abnormalities in MDS are
trisomy 8, 7q-/-7, 5q-/-5, 20q-, 13q-, 12p-, and 17p-%. A
predominance of loss of, rather than gain of genetic mate-
rials may indicate importance of inactivation of TSGs for
the pathogenesis of MDS®. However, in spite of a great
deal of effort in the field of molecular genetics, no rele-
vant TSGs has been successfully identified within the re-
currently deleted chromosomal segments, while a number

Table 2. Common cytogenetic abnormalities in MDS/
tMDS

30-50% of primary and ~80% of secondary MDS
have chromosomal abnormalities.

Numerical Translocations Deletions
+8 (~20%) inv3 & t(3;3) (4%) del 5q (~25%)
-7 (~15%) t(137) (2%) del 11q (~3%)
-5 (~7%) t(1:3) (1%) del 12q (~5%)
-Y (~8%) t(6;9) (<1%) del 20q (~6%)
«17 (~4%) t(5;12) (<1%) del 7q (~5%)

del 17p (~4%)
del 13q (2%)

14

- 18-

of target genes were identified from the breakpoints
analysis of recurent reciprocal translocations found in
MDS/AML. In addition to technical difficulties arising
from a large size of involved chromosomal segments to
be analyzed, possibilities of haploinsufficiency and multi-
ple target genes with regard to MDS pathogenesis may
complicate molecular analysis of putative TSGs from
chromosomal deletions.

Translocations

As mentioned above, balanced translocations are more
characteristic features of de novo AML than of primary
MDS. However, they clearly play important roles in pro-
gression of MDS into AML. Evil and MEL], MLL, and
TEL/ETV6 are among genes most frequently involved in
these translocations.

3q21q26 syndrome and t(1;3)(p36.1;q21)
t(3;3)(q21;926) and inv(3)(g21q26) are observed in ~2%
and ~4% of MDS, respectively, and also found in a simi-
lar proportion of AML cases. Many of these cases have
common features of multilineage dysplasia, a normal to
elevated platelet
megakaryocytes, minimal or no response to chemother-

count with increased dysplastic
apy, and poor prognosis®. The former two abnormalities
in AML are known as 3q21q26 syndrome, in which
overexpression of Evi/ seems to be a common finding al-
though there is a conflicting report™. In 321926 syn-
drome, it is postulated that juxtaposition of the Evil gene
to the ribophorin I (RPNI) locus on 3g21 leads to aber-
rant Evil expression (Figure 5)%, Evi-l was originally
identified at the common retrovirus integration site in
myeloid leukemia from AKXD inbred mice, and encodes
a transcription factor having two zinc finger motifs®,
Later an alternative splicing form of Evil with an addi-
tional N-terminal sequence, referred to as MDSI/Evil,
was revealed to have a PR domain similar to RIZ and
RPDM1 proteins, which also have an alternative isoform
that lacks a PR domain (Figure 5)*. In 3921926 syn-
drome, a shorter Evil isoform is exclusively expressed
from the rearranged allele, in which the MDS/ promoter
is lost or located too distant (~500kb) from the putative
enhancer element of RPNI by gene rearrangements
(Figure 5)®.

Evil is also
transcriptionally activated as found in #(2;3)(p15;q26),
1(3:7)(a26:922), and (3;13)((26:q13-14)*"". In addition,
aberrant fusion genes involving Evil have been reported

involved in other translocations and
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in other myeloid neoplasms especially tMDS, tAML, and
myeloid crisis of CML carrying %(3;21)(q26;q22) and
(3;12)(q26;p13), in  which AMLI/Evil  and
TEL(ETVG)/Evil  are  generated, respectively™ ™,
Moreover, increased Evil expression is also observed in
~9% of other AML and MDS cases as well as CML BC
cases without 3q26-involving translocations or inversions
and related to poor prognosis, suggesting critical roles of
Evil in human myeloid leukemogenesis™ ™.

Evil is presumed to bind specific DNA sequences and act
as a strong repressor, for example, of GATA-1. In other
contexts, it enhances APl activity77 and can transform
Rat-1 fibroblast in vitre. It also binds to Smad3 and in-
hibit TGF 8 signaling™, which may be mediated by a
transcriptional corepressor, CtBP”. Evil was also shown
to interact with HDAC-1%, which could mediate the re-
pressor function of Evil. Differential functions of
MDS1/Evil and Evil
leukemogenesis®', but their leukemogenic roles seem to
be still controversial.

t(1;3)(p36;q21) is another translocations found in rare
(~1%) cases of MDS and AML with
clinicopathologic to  3q2lg26
Interestingly, MEL-1 on 1p36 that is highly homologous
to Evil is translocated to the RPN/ locus on 3g2! and
transcriptinally activated®. MEL1 also has two alterna-
tive splicing forms that are closely related to Evil and
MDSI/Evil, and a smaller MEL/ product lacking a PR
domain (MELI1S) is preferentially expressed in
t(1;3)(p36;q21) (Figure 5)*. Similarity in disease pheno-

isoforms are implicated in

similar

features syndrome.

types and involved genes seems to strongly support the
idea that these 'Evif family genes' are the bona fide tar-
gets of 3q21¢26 syndrome and t(1;3)(p36:q921).

TEL/ETV'6 translocations

TEL or ETV6 is an ETS-like transcription factor first
identified at the 12pl3 breakpoint of #(5;12)(q33;p13),
and reported to be essential for development and mainte-
nance of hematopoiesis as well as for megakaryopoiesis
(Blood 102:131a, 2003). In this translocation, TEL is
fused to PDGFR- 8 (platelet-derived growth factor §),
resulting in TEL/PDGFR- S  fusion protein,
t(5;12)(q33;p13) is associated with a rare form of
CMMoL showing myelomonocytic proliferations with
frequent cosinophilia®, and may be more properly
grouped together with #(1;4)(q44;q12) in hypereo-
sinophilic syndrome, and t(4;22)(q22;q11) and t(9;12)
(q34;p13) in PAI negative CML variants, in which
FIPIL1/ PDGFR- @, and BCR/ PDGFR- ¢ and
TEL/ABL are generated, respectively®®., TEL assumes a
promiscuous feature to generate various fusion genes
with different partner genes in a wide variety of
hematopoietic neoplasms including MDS and AML de-
rived from MDS®, Syk, MDS2, Evil, ASC2, and MN] are
among fusion partners of TEL gene in t(9;12}(q22;p12),
t(l;l2)(36.'l;pl3), t(3;12)(q26;p13), 1(5;12)(q31;p13), and
t(12;22)(p13;q11), respectively™**,

TEL seems to provide an interface for dimerization via its
HLH domain and to activate fused kinases in some
translocations, while in others, apparently functionless,

1(3;3)(q21;q26), inv3(q21q26)

EvIl .
EVI1
MDST/EVIT [ B ol
L 11
3926 —t 1 11
* > A
K3:3), t3:6), (7, 1(3;12), 1(3;13}, ete inv3
t(1;3)(p36;q21)
MEL'I MELTS NI A R Lk PR 25 00 T s B L B DA Ak
MELTL L o e e I T p ]
Blimp-1
RIZ-1

Figure 5. 1p36/3q26 Syndrome
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small fusion products are translated. The TEL locus is in-
volved in 12p deletions in MDS/AML, and the non-
rearranged TEL allele seem to be inactivated in TEL-
involving translocations”. These findings seem to
support an idea that TEL acts as a tumor suppressor and
that inactivation of TEL functions may lead to deregu-
lated hematopoiesis and lenkemogenesis.

MLL translocations

MLL or ATRX, a human homologue of the Drosophila
trithorax  gene, is another target of balanced
translocations. It was originally identified as a fusion
partner of AF4 from the 11923 breakpoint of
t(4;11)(q21;q23) translocation, which is closely associ-
ated with infantile biphenotypic leukemia™. Now an in-
creasing number of fusion genes involving MLL have
been identified from leukemia-associated translocations,
including t(9;11)(q21;q23) and #(11;19)(q23;p13.3)*. In
view of MDS pathogenesis, t(11;16)(q23;p13) and
t(11;19)(q23;p13.1), as well as t(5;11)(q31;q23), have
been reported in tMDS/tAML and molecularly deline-
ated, in which CBP and MEN, as well as GRAF are fused
with MLL, respecctively’®®. Tandem duplication of MLL
has been also identified in some cases of MDS™.

MLL is presumed to participate in epigenetic gene regula-
tion that is relevant to development and differentiation of
hematopoietic cells'”. Tt interacts with SNF5, a compo-
nent of a SWI/SNF complex'® and contains a SET do-
main showing histone methyltransferase activity, which
is lost in aberrant fusion proteins®. Thus MLL seems to
regulate gene expression by chromatin modifications, and
loss of its functions may be responsible for the patho-

genesis of leukemia and MDS.

Translocations involving NUP93 gene

11pl5 is also a recurrent breakpoint found in
tMDS/tAML, in which the NUP98 gene is located.
NUP938 is a nucleoporin involved in nuclear transport of
protein and RNAs'. A number of chimeric proteins in-
cluding NUP9IS/HOXAY, NUP98/DDX10,
NUP98/HOXD13, NUP98/HOXB, NUP98/HOXCI3,
NUP98/TOP! bave been reported in t(7;11){pl15;p15),
inv(11)(p15q22), t(2;11)(g31;p15), t(11;17)(p15;q21),
t(11;12)pl5;q13), and ®(11;20)(pl5;qll), respec-
tively'™ %, The other nucleoporin gene that participates
in pathogenesis of AML/MDS is CAN or Nup214, which
is fused with DEK to generate the DEK/CAN chimeric

16 -20-

gene m t(6;9%p23;q34), a translocation predicting a poor

clinical outcome!'®,

Unbalanced chromosomal abnormalities
7q-~/-7 and der(1;7)(q10;p10) translocation
Monosomy 7 and a complete or partial loss of the long
arm of chromosome 7 are of particular importance be-
cause these are among the most frequent cytogenetic le-
sions in MDS and associated with very poor progno-
sis""™", In adults 7q-/-7 is usually seen in association
with other cytogenetic abnormalities such as 5q-/-5',
while it tends to be the sole abnormality in childhood. Tt
may be found in de novo MDS (~20%), but more typi-
cally related to tMDS/AAML (~45%).
Monosomy 7 syndrome refers to a combination of
monosomy 7 as the sole cytogenetic abnormality and de-
velopment of myeloid neoplasms in childhood especially
infections,
defective

less than 4 years of age. Recurrent

hepatosplenomegaly,  lymphadenopathy,
neutrophil chemotaxis, a male predominance, and poor
prognosis are among features that characterize this syn-
drome. Since monosomy 7 syndrome is prevalent in
JMMLI. cases, and since both monosomy 7 and JMML
share many clinico-pathologic features in common, in-
chuding frequent activation of the RAS pathway, there
seems to be a significant overlapping between both enti-

ties'??

. Familial cases of monosomy?7 and myeloid
neoplasms are known, but in such cases monosomy 7 is
not germline in origin, arguing that menosomy 7 is a con-
sequence of some mutator effects from other genetic
loci'™'". Based on chromosome banding analysis, two
critical regions of 7q deletions have been delineated: one
in 7q22 and the other in 7q32-q35'*'%, and detailed
FISH-based analysis of 7q- has disclosed more heteroge-
neous groups of deletions. No TSGs have been success-
fully identified as a target of 7q-.

der(1;7)(q10;p10) is an unbalanced translocations found
in ~2% of MDS and AML®, especially of tMDS/tAML
in association with use of alkylating agents'”'*. Other
clinical features of der(1;7)(ql0;p10) include refractory
cytopenia, trilineage displasia, a high propensity to leuke-
mia, and a poor clinical outcome. Breakpoint analysis of
der(1;7)(q10;p10) disclosed that the breakpoints are ran-
domly distributed within the large clusters of centromere
alphoid sequences {(~0.5~3Mb), D1Z7 on chromosome 1
and D7Z1 on chromosome 7'%. Thus no specific genes
are involved in the breakpoints but loss of 7q and/or gain
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Figure 6. Partial karyotype of der(1;7)(g10;p10) and
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of 1q materials resulting from the translocation should be
important for the pathogenesis of MDS/AML. having this
translocation (Figure 6). Although it may represent a
variant of 7q-, differences still exist in cytogenetic pro-
files between der(1;7)(ql0;pl0)
der(1;7)(q10;p10) frequently occurs as the sole chronio-
somal abnormalities or in combination with one or two

and typical 7g-.

characteristic additional abnormalities, usually trisomy 8
and 20g-, while typical 7q- in adults usually appears as
one of complex anomalies and in association with 5g-/-3,
indicating der(1;7){q10;p10} positive MDS/AML is likely
to represent a distinct pathologic entity. In this regard, it
is of note that 1q trisomy results from a number of similar
'centromeric unbalanced translocations' reported in MDS,
including 1(1;12)(q10;p10), t(1;15)(q10;p10), t(1;16)(q10
;010), t(1;18)(q10;p10), and t(1;21)(q10;pl0), indicating
roles of 1q+ in the pathogenesis of myeloid tumors'.

5q-/-5
Abnormalities of chromosome 5 in MDS

monosomy 5, interstitial deletion of 5q and unbalanced

include

translocations, among which interstitial deletion of 5q is
most frequently observed. Especially, a combination of
MDS and 5g- as the sole abnormality is referred to as 5q-
syndrome and typically found in primary MDS cases'™.
It has a female predominance with a female to male ratio
of 3:1 and generally shows rare leukemic transformation,
very good prognosis, refractory anemia, high or normat
platelet counts, and small hypolobulated megakaryocyts,
which add up to a distinctive entity as found in the new
WHO classification. On the other hand, 5q loss is also
combination with other

observed in cytogenetic

Ann. Meeting, JSH/JSCH, 2004

abnormalities, such as 7q-/-7. Familial cases with 5q- and
MDS have been also described'”.

Extent of 5q deletions is highly variable among different
cases, but the critical region of 5q deletion seems to con-
tain 5q31-q33. Of interest is that a number of cytokine-
related genes, including genes for IL-3, IL-4, IL-5, M-
CSF, GM-CSF, and M-CSF receptor, are clustered
together and implicated in the pathogenesis of 3q-
syndetome”™'*'. Other candidates of target genes for 5q
deletion are JRF-1, EGR-I, and PURA{-. IRF-1. a
transactivator of interferon genes, is deleted in 90% of
5q- cases and thought to be a candidate for a relevant
TSG for 5g-"*"**, No tumor specific mutations, however,
have thus far described for JRF-I'*. In molecular
cytogenetic approach, the smallest commonly deleted re-
gion has been currently narrowed to 1 to 1.5 Mb between
D58479 and D5S500'%,

Finally, with regard to the pathogenesis of 5g- syndrom,
a recent report on a possible effectiveness of CC-5013
(REVIMID), a thalidomide analogue, may be intriguing,
in which ten of eleven patients with 5g- syndrome
achieved a complete transfusion independent response
with REVIMID treatment and, very significantly, also re-
sulted in disappearance of the chromosomal abnormality
(5g~) in each of these patients (http://www.celgene.com/).

20q-

Deletion of 20q is most commenly found in MPD, par-
ticularly in polycythemia vera (~10%), but also described
in ~5% of MDS and ~2% of AML®'. 20g- appears solely
or accompanied by other abnommalities such as 7q- and
5q-. It predicts generally favorable prognosis and, to-
gether with -Y and 35q-, is defined as a favorable

cytogenetic abnormality in IPSS"*

. A previous repoit
demonstrated that 20g- could not be detected in purified
peripheral granulocytes in patients having 20g- in bone
marrow cells despite that HUMARA assays unequivo-
cally showed clonal granulopoiesis'™. Thus it seems
likely that 20q- may arise as a secondary event within the
preexisting MDS clones, while 20q- positive clones may
not contribute to mature granulopoiesis. The critical dele-
tion spans from 20q11.2 to 20q13.2, which is now re-
duced to the regions between S20817 and D20S174.
Candidates of relevant TS8Gs TOP} and

phospholipase C & ',

include

Other loss of chromosome materials
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12p13 is another target of deletion not only for MDS and
AML but also for lymphoid neplasms. The critical dele-
tion was reportedly demarcated by TEL on the telomeric
end and by K/PI on the centromeric end, and both genes
are presumed to be candidates for the relevant TSGs of
12p deletion, as partly mentioned above'™, KIP1 is a po-
tent inhibitor of ¢cyclin dependent kinases and takes a cru-
cial role in cell cycle regulation™. No mutations have
been detected in both TEL and KIP!, although TEL seems
to be frequently inactivated by translocations. The short
arm of chromosome 17 is also the target of deletion in
MDS/AML and most frequently seen in tMDS/AAML
cases (~6-10%). A presumptive target of this deletion is
the p53 gene, a well-established TSG. 13q deletion has
been also recurrently described in MDS and involves re-
gions between 13q14 and 13q21'*, Within this interval,
loss of the region covered by YAC 937C7, LSI/RBI1, and
YAC 745E3 appears to be a critical event in malignant
myeloid cells'". This large region includes the smallest
13q segment lost in CLL, which is limited by RBI and
the D13S25 marker. Loss of Y chromosome is found in
MDS and AML (~8~10%) as the sole abnormality®'. It
occasionally occurs in healthy old men probably due to
errors in cell division'. It may be postulated that loss of
chromosome Y confers growth advantage and Y-missing
progenitor cells acquire clonality during a long period of
life, although most studies have denied invelvement of
Y-missing to leukemia development.

Trisomy 8

Trisomy 8 is the most frequent (~20-25%) numerical ab-
normality in AML and MDS, and more common in pri-
mary MDS as the sole abnormality®"'*, It belongs to the
intermediate-risk cytogenetic abnormality, while a recent
report indicated a higher risk for leukemic transforma-

tion'*?

. Although the relevant genes in +8 are mostly un-
known, its role in leukemogenesis or MDS pathogenesis
is inferred from rare cases with constitutional trisomy 8
mosaicism {CT8M), who present a high rate of develop-
ing different types of neoplasms especially of myeloid
origins as well as other congenital abnormalities'®®. In
some cases with MDS/AML, trisomy 8 may be derived
from CT8M and possible manifestations of CT8M such
as mental retardation should be carefully evaluated'’
Acquired trisomy 8 seems to involve the CFU-GEMM
population but to spare a pluripotent stem cell compart-
ment and lymphoid lineages, suggesting a myeloid
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precursor origin of MDS or, alternatively, failure of +8-

positive (sub)clones to contribute to lymphoid

lineages™.

Epigenetic abnormalities

In addition to genetic abnormalities, epigenctic altera-
tions have been also implicated in the pathogenesis of
MDS. A phenomenon that properties of cells are inher-
ited to daughter cells by way of mechanisms other than
primary sequences of genomic DNA is called epigenesis.
Three mechanisms are known to mediate epigenetic proc-
esses in mammalian cells, DNA methylation, chromatin
modifications, and genetic imprinting, among which
DNA methylation has been most extensively studied in
relation to human cancers'.

Several TSGs, including the pl6INK44, pi5SINK4B,
VHL, and FHIT genes, are frequently inactivated through
hypermethylation of promoter sequences in many types
of human cancers, and in this context, hypermethylation
of p/5INK4B has been best characterized in MDS.
pi3INK4B is an inhibitor of cyclin-dependent kinase
(CDKs) strongly induced by TGF £ stimulation and
highly homologous to p/6INK4A, which is one of the
most frequently inactivated TSGs in human can-
cers” ™!, In contrast to inactivation of p/6INK4A, which
is mostly caused by homozygous deletion in lymphoid
malignancies'”, pISINK4B is inactivated in myeloid
through promoter
. Hypermethylation and inactiva-

exclusively
153-155

neoplasms
hypermethylation
tion of piSINK4B is much more frequent in high risk
MDS (RAEB and RAEBt) (~50~80%) and AML derived
from MDS (~100%) than low risk MDS(RA/RARS)'™,
suggesting a possible importance of TGF £ signaling in
the pathogenesis of MDS in advanced stages.

Abnormal DNA methylation has been also implicated in
MDS pathogenesis by its

frequent response to

demethylating agents, 5-aza-cytidine (Azacytidine) and

5-aza-2'-deoxycitidine (Decitabine)'**'*

. S-aza-cytidine
has been shown to ameliorate cytopenias and to prolong
overall survival of high-risk MDS patients in a prospec-
tive randomized trial™. While demethylation of
PI3INK4B is observed after treatment with 5-aza-cytidine
or 3-aza-2-deoxycitidine, other targets of abnormal

methylation in MDS are currently unknown.

Conclusions
During the past two decades, a great deal of advance has
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taken place in understandings of the molecular patho-
genesis of MDS. A number of genetic abnormalities have
been identified from analyses of characteristic balanced
translocations in MDS/AML and of genes already shown
to be mutated in other neoplastic diseases. On the other
hand, however, many of these abnormalities are not spe-
cific to MDS or associated more with transformation to
advanced stages than with de nove development of MDS,
and we have little knowledge about genetic insults that
initiaté MDS. In view of clarifying the pathogenesis of
early stages MDS, it is of crucial importance to identify
molecular targets of chromosome deletions including 5g-
/-5, 7q-/-7, and 20q-. In this regard, novel technologies
have now become avaitable that could facilitate identifi-
cation of these targets, including high-density array-based
comparative genomic hybridization (CGH) and high-
throughput resequencing arrays"™'®’. Comprehensive
analysis of gene expression profiling in MDS may also
provide a valuable clue to this aim as well as to develop-
ing molecular diagnostics for MDS'¢"'%,

Furthermore, there exist other important aspects of MDS
pathogenesis than genetic abnormalities, including im-
mune-mediated mechanisms, stromal dysfunction, and
abnormalities in angiogenesis (Figure 1). Immune-
mediated mechanisms have been implicated in develop-
in low-risk MDS.
Oligoclonal T cell populations are frequently detected in

ment of cytopenia especially
the bone marrow from low risk MDS patients, which
could disappear after treatment with immunosuppressive
agents such as antithymocyte globulin'*'*  and
cyclosporine A '®. Possible involvement of
autoimmunity is also inferred from the fact that the re-
sponse of low-risk MDS to immunosuppressive therapy
is closely related to a specific HLA subtype, HLA
DRBI1*1501 '®, Although this review cannot afford to
mention more details of these aspects, comprehensive un-
derstandings of MDS pathogenesis will clearly require
full compilation of knowledge from the extending fields
of research on this inexorable disorder.
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The biological activity of the soluble form of the Notch
ligand (sNL) and reguirement of the intracellular
domain (ICD) of the Notch ligand have been debated.
Here we show that soluble Deltal (sD1) activates
Notch2 (N2), but much more weakly than full-length
Deltal (fD1). Furthermore, tracing the N2 molecule
after sD1 stimulation revealed that sD1 has a defect in
the cleavage releasing ICD of N2 (intracellular cleav-
age), although it triggers cleavage in the extracellular
domain of N2. This represents the molecular basis of
the lower activity of sD1 and suggests the presence of
an unknown mechanism regulating activation of the
intracellular cleavage. The fact that Deltal lacking its
ICD (D1AMCD) exhibits the phenotype similar to that
exhibited by sD1 indicates that the ICD of D1 (D1D)
is involved in such an as yet unknown mechanism.
Furthermore, the findings that DIAICD acts in a dom-
inant-negative fashion against fD1 and that the
signal-transducing activity of sD1 is enhanced by
antibody-mediated cross-linking suggest that the multi-
merization of Deltal mediated by DI? may be
required for activation of the N2 intracellular cleavage.
Keywords: extracellular cleavagefintracellular cleavage/
multimerization/Notch/Notch ligand

Introduction

The Notch family of genes encodes transmembrane
receptors that are involved in the cell fate decision in
vertebrates and invertebrates (Weinmaster, 1997;
Greenwald, 1998; Artavanis-Tsakonas, 1999). In mam-
mals, multiple Notch homologs have been identified,
including Notchl to Notch4 (Ellisen er al, 1991;
Weinmaster ef al., 1991, 1992; Kopan and Weitraud,
1993; Lardelli ef al., 1994; Uyttendaele ef al., 1996). The
extracellular region comprises 29-36 epidermal growth
factor (EGF)-like repeats and three copies of a Lin-12/
Notch/Glp motif. The intracellular region contains cde10/
Ankyrin repeats and a PEST-containing domain. The
Notch receptors are initially synthesized as ~300 kDa

294

proteins, which are then proteolytically processed in the
Golgi apparatus into an extracellular subunit (NEC)
containing multiple EGF repeats and lin-12/Notch repeats
(Blaumueller et al., 1997; Logeat et al.,, 1998), and a
single-pass transmembrane subunit (N™) containing a
short extracellular tail and an intracellular domain (ICD;
NIED)_ These subunits are reassembled in the trans-Golgi
network and are presented as a heterodimeric, mature
receptor at the cell surface (Blaumueller et al., 1997). The
lin-12/Notch repeats and Ca?* ion are involved in main-
taining the heterodimeric complex of NEC and N™ (Rand
et al., 2000).

Binding of a Notch ligand (NL) to NEC triggers cleavage
of Notch, releasing NI© from the cell membrane, which is
then translocated into the nucleus to activate transcription
of target genes in cooperation with RBP-Jx (Kopan et al.,
1996; Chan and Jan, 1998; Jarriault et al., 1998; Schroeter
et al., 1998; Struhl and Adachi, 1998; Shimizu et al.,
2000). This cleavage is mediated by a presenilin-contain-
ing complex and occurs within the transmembrane domain
of Notch (intracellular cleavage) (De Strooper et al., 1999,
Struhl and Greenwald, 1999; Ye et al., 1999). It has
recently been proposed that prior to this cleavage, an
additional cleavage at the extracellular domain of N™
occurs in a ligand-dependent manner (Brou et al., 2000;
Mumm et al., 2000) and that the extracellular cleavage
autonomously promotes intracellular cleavage (Mumm
et al., 2000). However, these proposals were based on
experiments using Notchl (N1) proteins with most of the
extracellular domain truncated, or experiments using a
partial peptide of N1. Therefore, the relationships between
ligand stimulation and cleavage of the extracellular region
of the native Notch protein, and between ligand-induced
extracellular cleavage and subsequent intracellular cleav-
age, have not been fully addressed.

Delta and Serrate (Yagged), comprising a Delta/Serrate/
Lag-2 motif, tandem EGF repeats and a short ICD, are
known to be ligands for the Notch receptor. As a natural
protein in vive, Drosophila Delta exists in both the
transmembrane and soluble forms (Klueg et al., 1998). It
has recently been proposed that the soluble form of Delta
is generated by Kuzbanian, a metalloprotease of the
ADAM family (QL et al., 1999). Results of examinations
of the biological activity of the soluble Notch ligands have
been controversial. Whereas all experiments using cell-
culture systems have shown that they behave as agonists
(Li et al., 1998; Qi et al., 1999, Han e? al., 2000; Karanu
et al., 2000; Morrison et al., 2000), in vivo experiments
have demonstrated that soluble Delta and Serrate act
as antagonists (Hukriede et al, 1997; Sun and
Artavanis-Tsakonas, 1997). It remains to be elucidated
why such contradictory conclusions are drawn. To explain
the discrepancy, the difference in the activity between the
soluble and full-length forms should be clarified.
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Mechanism of Notch2 activation by Notch ligand
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Fig. 1. Lower signal-transducing activity of soluble Deltal protein. (A) Comparison of signal-transducing activity of sDt-Fc, sD1-Flag(His)g and {D1.
A transient reporter assay with a TP1-luciferase reporter plasmid, pGa981-6, was performed using fN2-CHO cells. Following transfection of pGa981-6
into fN2-CHO, sD1-Fe, sD1-Flag(His)s or fD1-CHO was added to the transfected cells. Fold induction of the luciferase activity for each sample
(mean of triplet measurements with standard deviation) was calculated against the control. The values are also shown in the graph. (B) N2-mediated
transcriptional activation by sD1-Fc at fncreasing concentrations. Various concentrations of sD1-Fc were added to fN2-CHO cells transfected with
pGad81-6. (C) The inhibitory effect of sD21-Fe on fD1-induced N2 signaling. fD1-CHO ceils and sD1-Fc proteins at various concentrations were
added simultanecusly to the pGa981-6-wransfected fN2-CHO cells. The same concentration of hIgG was added as a control.

In the present study, we show that the signal-transdu-
cing activity of the soluble form of Delta(-like-)1 (sD1)} for
Notch2 (N2) is obviously lower than that of full-length
Deltal (fD1), and that in coexistence with fD1 it inhibits
the fD1-triggered N2 signal. This implies that sD1 is a
partial agonist, while fD1 is a full agonist. Furthermore,
we demonstrate the molecular basis of the impaired signal-
transducing activity of sD1; it triggers cleavage of the
extracellular domain of N2™, but promotes the cleavage
step that releases N2'P only very little. This indicates that,
although the extracellular domain of NL alone is sufficient
for extracellular cleavage, intracellular cleavage requires
some other domain of NL, and that extracellular cleavage
does not antonomously promote intracellular cleavage,
suggesting the existence of an unknown mechanism that
regulates the activation of the intracellular cleavage.
Experiments using Deltal without the ICD (D1ACD)
demonstrate that NLIP is important for the intracellular
cleavage. Furthermore, the findings that D1AXD acts as
a dominant-negative molecule against fD1 when they
coexist and that the signal-transducing activity of sD1-Fc
(sD1 fused to hlgG Fc portion) is enhanced by the addition
of anti-Fc antibody suggest that oligomerization of NL is
involved in Notch signaling.

Results

Lower signal-transducing activity of sD1
To define a biological activity of a soluble form of Notch
ligand (sNL), we assessed the signal-transducing activity
of mouse sD1 encompassing the entire extracellular region
by comparing it with that of the full-length form in a
transient reporter assay with CHO(r} cells overexpressing
mouse full-length N2 (fN2-CHO), which is a highly
sensitive assessment system for N2 signaling. Results
showed that both Fe-fused and Flag(His)s-tagged sD1
proteins [sD1-Fc and sD1-Flag(His)g] activated the tran-
scription of a reporter gene driven by the RBP-Jx-
responsive promoter, TP-1 (Figure 1A and B), but the
transcriptional activity was obviously lower than that of
D1 [represented by the stimulation with CHO(r) express-
ing fD1 (fD1-CHO)] (Figure 1A). On the other hand, in
coexistence with fD1, sD1 inhibited the fD1-mediated N2
activation compared with control hIgG (Figure 1C). These
data indicate that sNL is a partial agonist, while full-length
NL (fNL) is a full agonist.

We further evaluated the difference in the signal-
transducing activity between the two molecules from
another viewpoint, i.e. the nuclear accumulation of N2KD,
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Fig. 2. N2 molecule traced after sD1-Fc and fD1 stimulations. BaF3
was stimulated for 1.5 h under the conditions indicated in the figure
and then separated into membrane/cytosol-rich and nucleus-rich
fractions. In each fraction, N2 fragments containing an ICD were
analyzed by western blot analysis using the bhNG antibody after
immunoprecipitation with an anti-N2 polyclonal antibody.

It is generally accepted that the nuclear accumulation of
NP generated by cleavage within the transmembrane
domain of the Notch receptor after fNL stimulation is
associated with activation of the transcription of down-
stream genes in Notch signaling. To evaluate the cleavage
and nuclear accumulation in a serial manner, we used
BaF3 cells capable of displaying these two events
following stimulation with fD1. As previously reported,
stimulation with fD1 decreased the amount of N2™ in the
membrane/cytosol fraction [designated N2™(a); Figure 2]
and, instead, N2-derived fragments representing N2ICP
were accumulated in the nuclear-rich fraction (Shimizu
et al., 2000). In contrast, the stimulation with sD1-Fe did
not result in detectable N2ICP in the nuclear-rich fraction,
although it also reduced the amount of N2™(a) in the
membrane/cytosol fraction. Instead, a new band repre-
senting a protein smaller than N2™(a) emerged in the
membrane/cytosol fraction [designated N2™(b); Figure
2]. The fact that hardly any N2ID was gencrated after
stimulation with sD1-Fc was compatible with the results
of reporter assays (Figure 1).

sD1 has a defect in the cleavage required for
release of N2'C°, although it can trigger the
extracellular cleavage of N2

To understand better the lower signal-transducing activity
of sD1, we then characterized N2™(b) generated by sD1
stimulation, which was scarcely seen after fD1 stimulation
(Figure 2). The decrease in the amount of N2™(a} and the
appearance of N2™(b) in the membrane/cytosol fraction
after stimulation with sD1-Fe (Figure 2) indicated that
N2™b) represented a molecule derived from N2™(a). A
further fractionation of the membrane/cytosol fraction
demonstrated that N2™(b) and N2™(a) were present in
the membrane but not in the cytosol fraction (Figure 3A),
suggesting that N2™(b) was a membrane-associated
molecule lacking either the N- or the C-terminal tail of
N2™(a). To determine which side of N2™(a) was cleaved
to generate the N2™(b) fragment, we performed the two
experiments. In the first, we used fN2-CHO(r), [CHO(1)
with exogenous fN2 tagged with a Flag sequence at the
C-terminus] to investigate whether the Flag tag remained
in N2™(b) generated after sD1-Fc stimulation. The result
was that the anti-Flag antibody detected N2™(h)
(Figure 3B), indicating that N2™(b) lacks the N-terminus
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Fig, 3. Characterization of the N2™(b) fragment induced by sD1-Fc-
stimulation. (A) To determine whether N2™(b) is a transmembrane
protein, membrane/cytosol-rich fraction prepared from BaF3 after the
sD1-Fe stimulation was then separzted into membrane and cytosol
fractions. N2 proteins in each fraction was subjected to western blot
after immunoprecipitation with an anti-N2 polyclonal antibody. As a
control for correct fractionation of membrane and cytosol franctions, an
antibody against MKK3, MAP kinase, was used for each fraction in
western blot analysis. (B) Generation of N2™(b) fragment containing a
Flag(His)s tag at the C-terminus. fN2-CHO [CHO(r) with eX0genous
N2 with a Flag(His)s tag at the C-terminus) was incubated in the
presence of either sD1-F¢ or hlgG at 6.7 nM. After 1.5 h, the
stimulated cells were collected and solubijlized in a TNE buffer. The
cell lysates were precipitated with an anti-Flag monoclonal (M2) or
an anti-N2 polyclonal antibody. The precipitates were analyzed

by western blot with the M2 antibody. IP, immunoprecipitation.

(C) Co-precipitation analysis. BaF3 was incubated in RPMI medium
containing sD1-Fe or hIgG at 6.7 oM for 1.5 h, then subjected to a
cross-linking reaction to form the binding complex of sD1-Fe and N2.
Following the reaction, the BaF3 lysates were divided into two
aliquots. One was precipitated with an anti-N2 polyclonal antibedy to
identify N2 protein fragments. To precipitate sD1-Fc-containing
complex, protein G beads were added directly to the other. These
precipitates were analyzed by western blot with the bhN6 antibody.

but not the C-terminus of N2™(a). In the second
experiment, we assessed whether N2™(b) was coprecipi-
tated with sD1-Fc. In a previous report, we described that
N2™(a) is precipitated with sD1-Fc (Shimizu et al.,
2000). If the cleavage after sD1 stimulation occurs within
the short extracellular domain of N2™(a), sD1—Fc-bound
N2FC probably loses the association with N2™b), and
thus N2™(b) is not coprecipitated with sD1-Fc. As
expected, sD1-Fe coprecipitated only N2™(a) and not
N2™(b) (Figure 3C). This result also suggests that
N2™(b) was gencrated from N2™(a) by the cleavage in
the juxtamembrane portion of the extracellular region (see
Figure 7).

We then investigated whether the same cleavage
occurred during the process of fD1-mediated N2 signaling,
to verify that N2™(b) generated by sD1 was not an
artifact. The amount of sDI-F¢ binding to BaF3 was
significantly reduced when the binding assay was per-
formed after the co-culture of BaF3 with fD1-CHO, as
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Fig. 4. lovolvement of extracellular cleavage in fD1-mediated N2 activation. {A) Reduction in the amount of sD1-Fc binding to BaF3 after co-culture
with fD1-CHO. BaF3 cells were collected at 1.5 h after co-culture with either CHO(r) or fD1-CHO. Cell-binding assay using sD1-Fc at 6.7 oM was
performed for BaF3 cells recovered from the ca-culture. (B) Titme-course analysis of binding of sD1-F¢ to BaF3 after co-culture with fD1-CHO. BaF
cells co-cultured for the times indicated in the figure were subjected to cell-binding assays. The extent of flucrescence brightness giving the highest
frequency (y-axis) was plotied against time (x-axis). (C) Time-dependent detachment of BaF3 from fD1-CHO. The time-course of the number of
detached BaF3 cells was recorded in a cell-cell association assay. ad-BaF3, BaF3 that adhered to CHO cells; non-ad-BaF3, BaF3 that did not adhere
to CHO cells. (D) Relationship between extracellular cleavage and nuclear transport of N21°P. MG-132, an inhibitor of cleavage for release of NICD,
was added 1o a co-culture system of BaF3 and fD1-CHO at a final concentration of 25 pM. After 1.5 h of co-culture, the BaF3 cells were collectad
and separated into membrane/cytosol-rich and nucleus-rich fractions. In each fraction, N2 fragiments containing an ICD» were analyzed by western blot

using the bhN6 antibody after immuncprecipitation.

compared with the co-culture with control CHO(r)
(Figure 4A). A time-course analysis showed that the
reduction in sD1-Fc binding started within 15 min and
reached a plateau 1.5 h from the initiation of the co-culture
(Figure 4B). During the co-culture, we observed that BaF3
cells, which previously adhered to fD1-CHO within
10 min, were detached from it in a time-dependent fashion
(Figure 4C). One possible explanation for these phenom-
ena is that the fDl-induced N2 extracellular cleavage
results in the dissociation of N2EC together with the bound
fD1 molecule from N2™, which then results in the
reduction in fD1-bindable N2 receptors on BaF3 cell
surface (see Figure 7).

To obtain more direct evidence of the extracellular
cleavage of N2™{(a) by fDl and to determine the
relationship between this extracellular cleavage and the
cleavage following it, we added MG-132, a known
inhibitor of the intracellular cleavage that results in the
release of NI°P (De Strooper ef al., 1999; Mumm et al.,
2000}, into the co-culture system of BaF3 and fD1-CHO.
The addition of MG-132 in fact reduced the amount of
fDl-induced N2P in the pucleus-rich fraction
(Figure 4D), implying that it prevented fD1-induced
intracellular cleavage. In addition, N2™(b) was detected

in the membrane/cytosol fraction when MG-132 was
added (Figure 4D). This indicated that extracellular
cleavage also occurred during the process of fD1-mediated
N2 signaling, as in the case of sD1, and that stimulation
with fD1 induced cleavage of N2™M(a) in the extracellular
region, prior to cleavage in the transmembrane region. The
above findings lead to the conclusions that the extra-
cellular cleavage does not autonomously trigger the N2
intracellular cleavage and that sD1 has a defect in the
cleavage required for release of N2I°P, although it can
trigger extracellular cleavage of N2 (see IFigure 7).

Requirement of NL'CC for full activation of N2

To determine which region of Deltal is involved in
progression of the intracellular cleavage, we generated a
CHO(r) cell line expressing D1AXP (D1AKP-CHO) and
investigated its signal-transducing activity. Using cell-
binding assays with sN1, we first confirmed that sN1
bound to fD1-CHO and DIACP-CHO in an indistinguish-
able manner (Figure SA), indicating that fD1 and D1AKP
were approximately equally expressed on the cell surface.
We also observed that the amount of sD1-Fc binding to
BaF3 after co-culture with D1ACP-CHO was reduced to a
degree similar to that after the co-culture with fD1-CHO

297

-33.-



K.Shimizu et al.

>

B

target celle: fN2-CHO

0] 400
D12KP.CHO

39

i
1
.
+
'
'
'
'
1
3

N

Cownts

8 W M a0 A 30 o0 70 M

Caurnn

20 30 4y 30 &3 70 8D

A
'
H 0
H
. 200

CHD
B0
C

stimulsters () _CHO 01 D122 () CHO D1 pyalco

B = @ "
Membrane/Cytonsl Huclear
2T (g}
< N?-nib}
Ihz®ee

Fig. 5. Requirernent of the intracellular domain of Deltal for full
activation of N2. (A) Geaeration of DIAYP.CHO [CHO(r) cells
expressing the truncated Deltal lacking its intracellular domain]. To
investigate the expression of fD1 and D1A™P, a cell-binding assay
using sN1-Fec (6,7 nM) was performed against the fDI-CHO and
D1A™P-CHO cells. (B) Comparison of signal-transducing activity of
fD1 and D1A'P, To examine activity of the two melecules, a transient
reporter assay with a TP1-luciferase reporter plasmid was performed
using fN2-CHO cells. Fold-induction of luciferase activity for fD11-
CHO and D1ACP.CHO (mean of triplicate measurements with standard
deviation) was calculated against luciferase activity when parental
CHO(r) was used as stimulator. (C) N2 fragments after f1}1 and
DIA'P stimulations. BaF3 was stimulated for 1.5 h under the
conditions indicated in the figure and then separated into two fractions,
membrane/cylosol-rich and nucleus-rich. In each fraction, N2
fragments containing an intracellular domain were analyzed by
western blot using the bhNG antibody after immumoprecipitation.

(data not shown), and that once DI1ACP-CHO-adhered
BaF3 cells were detached from it exactly like BaF3 cells
co-cultured with fD1-CHQ (data not shown). In contrast,
the reporter assays using these cell lines showed that the
signal-transducing activity of DIACP was obviously lower
than that of fD1 (Figure 5B). Correspondingly, N2ICD wag
hardly detected in the nucleus-rich fraction after stimula-
tion with D1ACP, unlike after stimulation with fD1, while
DI1A™DP reduced the amount of N2™(a) in the membrane/
cytosol fraction (Figure 5C). These observations indicate
that D1A'P can bind to N2 and induce its extracellular
cleavage, but cannot facilitate the ensuing intracellular
cleavage, being similar to the phenotype exhibited by sD1,
although emergence of N2™(h} was less clear when
stimulated with DIACP than that with sD1. Therefore, it
was concluded that the ICD of D1 (D1P) is essential for
Dl-induced N2 intracellular cleavage and full activation
of N2, and that the lower signal-transducing activity of
sD1 s a consequence of the lack of the ICD rather than the
Tack of the membrane anchorage.

Importance of multimerization of NL for full
activation of N2

To see an effect of D1AIP on fD ! -triggered N2 activation
in the coexistence of the two molecules, we generated the
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Fig. 6. Involvement of multimerization of Deltal in the N2 activation.
(A) Generation of fD1-CHO cells expressing Mye-tagged DIAICP (fD 1/
DIA'™P.CHO). (a) Expression of Myc-tagged D1AID and Flag-tagged
{D1 proteins in fD1/D1AP-CHO cells were examined by western blot
analysis with an anti-Flag or an anti-Myc antibody. (b) To compare the
expression levels of mRNA of fD1 with DIA™P jn the fD1/D1ACE.
CHO cells, total RNA (10 pg) extracted from the cells was subjected to
northern blot using the 5-end fragment of mouse Deltal cDNA as a
probe. The lower panel shows ethidium bromide-stained 28S ribosomal
RNA (r288) in each lane. {B) Enhancement of the signal-transducing
activity of sD1-Fc by addition of an anti-F¢ antibody. A transient
reporter assay was performed using pGa981-6 plasmid-transfected
fN2-CHO cells in the presence of sD1-Fc and the anti-Fe antibedy at
various concentrations. hIgG was added as a control for sD1-Fe.

The relative induction of luciferase zctivity in each sample (mean of
triplicate measurements with standard deviation} was calculated against
luciferase activity in the presence of hIgG alone. (C) A dominant-
negative effect of D1AKD on fD1-triggered N2 activation. fl31/I1AICD.
CHO [CHO() cells co-expressing fD1 and D1AXT] was generated and
its signal-transducing activity was examined by a transient reporter
agsay with pGa981-6 plasmid-transfected fN2-CHO cells.

fD1-CHO cell line expressing D1AP (fD1/D1AKP-CHO)
(Figure 6A) and investigated its signal-transducing activ-
ity. The result showed that the intensity of the N2 signal
transduction by fD1/DIACP-CHO was about one-tenth of
that by fD1-CHO, indicating that the activity of fD1 was
reduced to about one-tenth in the presence of D1AKD
(Figure 6B). This suggests that D1AD acts in a dominant-
negative fashion against fD1, in agreement with previous
report indicating that the Delta proteins lacking the
ICD act as dominant-negative proteins in Drosophila
and vertebrates (Chitnis et al, 1995; Sun and
Artavanis-Tsakonas, 1996; JYen et al., 1997). Since the
expression level of D1AICD was less than that of fD1 in the
fD1/ DIAXP.CHO cells [Figure 6A, (b)), the strong
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