12p13 is another target of deletion not only for MDS and
AML but also for lymphoid neplasms. The critical dele-
tion was reportedly demarcated by TEL on the telomeric
end and by KIP! on the centromeric end, and both genes
are presumed to be candidates for the relevant TSGs of
12p deletion, as partly mentioned above'™, KIP1 is a po-
tent inhibitor of cyclin dependent kinases and takes a cru-
cial role in cell cycle regulation''. No mutations have
been detected in both TEL and K{P1, although TEL seems
to be frequently inactivated by translocations. The short
arm of chromosome 17 is also the target of deletion in
MDS/AML and most frequently seen in tMDSAAMIL
cases (~6-10%). A presumptive target of this deletion is
the pJ3 gene, a well-established TSG. 13q deletion has
been also recurrently described in MDS and involves re-
gions between 13q14 and 13g21'*%. Within this interval,
less of the region covered by YAC 937C7, LSI/RBI, and
YAC 745E3 appears to be a critical event in malignant
myeloid cells'*
13q segment lost in CLL, which is limited by RB/ and
the D13525 marker. Loss of Y chromosome is found in
MDS and AML (~8~10%) as the sole abnormality®. It
occasionally occurs in healthy old men probably due to
errors in cell division'”. It may be postulated that loss of
chromosome Y confers growth advantage and Y-missing

. This large region includes the smallest

progenitor cells acquire clonality during a long period of
life, although most studies have denied involvement of
Y-missing to leukemia development.

Trisomy 8

Trisomy & is the most frequent (~20-25%) numerical ab-
normality in AML and MDS, and more commen in pri-
mary MDS as the sole abnormality®**, It belongs to the
intermediate-risk cytogenetic abnonmality, while a recent
report indicated a higher risk for leukemic transforma-
tion™. Although the refevant genes in +8 are mostly un-
known, its role in leukemogenesis or MDS pathogenesis
is inferred from rare cases with constitutional trisomy 8
mosaicism (CT8M), who present a high rate of develop-
ing different types of neoplasms especially of myeloid
origins as well as other congenital abnormalities'®. In
some cases with MDS/AML, trisomy 8 may be derived
from CTEM and possible manifestations of CT8M such
as mental retardation should be carefully evaluated'”’,
Acquired trisomy 8 seems to involve the CFU-GEMM
population but to spare a pluripotent stem cell compart-

ment and lymphoid lineages, suggesting a myeloid
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precurser origin of MDS or, alternatively, failure of +8-

positive  (sublclones to contribute to

lineages'.

lymphoid

Epigenetic abnormalities

In addition to genetic abnormalities, epigenctic altera-
tions have been also implicated in the pathogenesis of
MDS. A phenomenon that properties of cells are inher-
ited to daughter cells by way of mechanisms other than
primary sequences of genomic DNA is called epigenesis.
Three mechanisms are known to mediate epigenetic proc-
esses in mammalian cells, DNA methylation, chromatin
modifications, and genetic imprinting, among which
DNA methylation has been most extensively studied in
relation to human cancers'”,

Several TSGs, including the pl6INK4A, pl3INK4B,
VHL, and FHIT genes, are frequently inactivated through
hypermethylation of promoter sequences in many types
of human cancers, and in this context, hypermethylation
of pl5INK4B has been best characterized in MDS.
pI5INK4B is an inhibitor of cyclin-dependent kinase
(CDKs) strongly induced by TGF 8 stimulation and
highly homologous to pl6INK4A4, which is one of the
most frequently inactivated TSGs in human can-
cers”*'"*", In contrast to inactivation of pl6INK4A, which
is mostly caused by homozygous deletion in lymphoid

malignancies'”, plSINK4B is inactivated in myeloid
neoplasms exclusively through promoter
hypermethylation'>"'**, Hypermethylation and inactiva-

tion of plSINK4B s much more frequent in high risk
MDS (RAEB and RAEBt) (~50~80%) and AML derived
from MDS (~100%) than low risk MDS(RA/RARS)"™,
suggesting a possible importance of TGF 8 signaling in
the pathogenesis of MDS in advanced stages.

Abnormal DNA methylation has been also implicated in
MDS pathogenesis by its frequent response to
demethylating agents, 5-aza-cytidine (Azacytidine) and
136138 5_aza-cytidine

has been shown to ameliorate cytopenias and to prolong

5-aza-2'-deoxycitidine (Decitabine)

overall survival of high-risk MDS patients in a prospec-
tive randomized trial®®. While demethylation of
pi3INK4B is observed after treatment with 5-aza-cytidine
or 5-aza-2-deoxycitidine, other targets of abnormal

methylation in MDS are currently unknown.

Conclusions
During the past two decades, a great deal of advance has
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taken place in understandings of the molecular patho-
genesis of MDS. A number of genetic abnormalities have
been identified from analyses of characteristic balanced
translocations in MDS/AML and of genes already shown
to be mutated in other neoplastic diseases. On the other
hand, however, many of these abnormalities are not spe-
cific to MDS or associated more with transformation to
advanced stages than with de novo development of MDS,
and we have little knowledge about genetic insults that
initiate MDS. In view of clarifying the pathogenesis of
early stages MDS, it is of crucial importance to identify
molecular targets of chromosome deletions including 5qg-
/-5, 7q~/-7, and 20q-. In this regard, novel technologies
have now become available that could facilitate identifi-
cation of these targets, including high-density array-based
comparative genomic hybridization (CGH) and high-
throughput tesequencing  arrays'™™%.  Comprehensive
analysis of gene expression profiling in MDS may also
provide a valuable clue to this aim as well as to develop-
ing molecular diagnostics for MDS'*H'%,

Furthermore, there exist other important aspects of MDS
pathogenesis than genetic abnormalities, including im-
mune-mediated mechanisms, stromal dysfunction, and
abnormalities in angiogenesis (Figure 1). Immune-
mediated mechanisms have been implicated in develop-
low-risk MDS.
Oligoclonal T cell populations are frequently detected in

ment of cytopenia especially in
the bone marrow from low risk MDS patients, which
could disappear after treatment with immunosuppressive
as antithymocyte globulin'®™'®  and
cyclosporine A ', Possible involvement of
autoimmunity is also inferred from the fact that the re-
sponse of low-risk MDS to immunosuppressive therapy
is closely related to a specific HLA subtype, HLA
DRB1*1501 "5, Although this review cannot afford to

mention more details of these aspects, comprehensive un-

agents such

derstandings of MDS pathogenesis will clearly require
full compilation of knowledge from the extending fields
of research on this inexorable disorder.
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Identification of a SRC-Like Tyrosine Kinase Gene,
FRK, Fused with ETVé6 in a Patient with Acute
Myelogenous Leukemia Carrying a t(6;12)(q21;p13)
Translocation

Noriko Hosoya,' Ying Qiao,’ Akira Hangaishi,' Lili Wang,' Yasuhito Nannya.' Masashi Sanada,' Mineo Kurokawa,'
Shigeru Chiba,"? Hisamaru Hirai,'” and Seishi Ogawa'™*

'Department of Hematclogy and Oncelogy, Graduate School of Medicine, University of Tokya, Tokyo, Japan

’Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, University of Tokyo, Tokyo, Japan
*Department of Regeneration Medicine for Hematopoiesis, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

The SRC family of kinases is rarely mutated in primary human tumors. We report the identification of a SRC-like tyrosine kin-
ase gene, FRK (Fyn-related kinase), fused with ETV6 in a patient with acute myelogenous leukemia carrying t(6;12)(q2);p13).
Both reciprocal fusion transcripts, ETV6/FRK and FRK/ETVé, were expressed. In ETVS/FRK, exon 4 of ETV6 was fused in-frame
to exon 3 of FRK, producing a chimeric protein consisting of the entire oligomerization domain of ETV6 and the kinase domain
of FRK. The ETV6/FRK protein was shown to be constitutively autophosphorylated on its tyrosine residues. ETV6/FRK phos-
phorylated histones H2B and H4 in vitro to a greater extent than did FRK, suggesting it had elevated kinase activity. ETVé/
FRK could transform both Ba/F3 cells and NIH3T3 cells, which depended on its kinase activity. Moreover, ETV6/FRK inhibited
ETVé-mediated transcriptional repression in 2 dominant-negative manner. This report provides the first evidence that a SRC-
like kinase gene, FRK fused with ETVé, could directly contribute to leukemogenesis by producing an oncoprotein, ETV6/FRK,
with dual functions: constitutive activation of the ETV6/FRK tyrosine kinase and dominant-negative modulation of ETV6-medi-

ated transcriptional repression.  © 2004 Wiley-Liss, Inc.
INTRODUCTION

The SRC gene was the first protooncogene iso-
lated as the cellular homologue of v-SRE, the ret-
roviral transforming oncogene of avian Rous
sarcoma virus (Brown and Cooper, 1996). Since
then, it has become clear that SRC is the prototype
for a family of genes that encode nonreceptor tyro-
sine kinases implicated in a variety of cellular proc-
esses, including cell growth, differentiation, and
carcinogenesis. The SRC family of kinases shares
common structures consisting of an N-terminal
unique domain, SRC homology 3 (SH3) and SRC
homology 2 (SH2) domains, a kinase domain, and
a short C-terminal regulatory tail (Brown and
Cooper, 1996). They are normally maintained in
an inactive state through phosphorylation of a crit-
ical C-terminal tyrosine residue (Tyr 530 in human
SRC, Tyr 527 in chicken SRC) by the C-terminal
SRC kinase (Csk) (Brown and Cooper, 1996). The
SH3 and SHZ domains also participate in this neg-
ative regulation through intramolecular interac-
tions {Brown and Cooper, 1996; Schindler et al,,
1999; Xu et al., 1999; Young et al., 2001),

The SRC and its family member kinases have
long been postulated to participate in oncogenic

¢ 2004 Wiley-Liss, Inc.

processes. Activated variants of SRC family kin-
ases, including the viral oncoprotein v-SRC, are
capable of inducing malignant transformation in a
variety of cell types (Parker et al., 1984; Cartwright
er al, 1987). Activation of SRC-like kinases
recently was described in BCR-ABLI-expressing
acute lymphoblastic leukemia in mice (Hu et al,,
2004). Elevated expression and/for activity of SRC
have been documented in several types of primary
human tumors {Bolen et al., 1987; Ottenhoff-Kalff
et al,, 1992; Talamont et al., 1993). However, for
many years, structural abnormalities of the SRC
family of kinases have been detected rarely in
primary human tumors. Although Itby et al. (1999)
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reported that 12% of advanced human colon cancers
had a truncating mutation at codon 531 of the SRC
gene, determining the importance of this mutation
in the generation of colorectal cancers remained
elusive according to the negative results in subse-
quent reports (Daigo et al, 1999, Wang et al,
2000; Laghi et al, 2001). In primary hematopoicetic
malignancies, no studies have demonstrated struc-
tural abnormalities of the SRC family of kinases.

In this study, we performed molecular analysis
of a t(6;12)(q21;p13) observed as the sole chromo-
somal abnormality in a case of acute myelogenous
leukemia (AML) and identified a SRC-like tyro-
sine kinase gene, FRK (Fyn-related kinase or
Rak), on 621 (Cance et al,, 1994; Lee et al,, 1994)
that is fused with ETV6 (also called TEL), a gene
frequently involved in chromosomal translocations
in a varety of human leukemias (Golub et al,
1997). We found that the resultant chimeric pro-
tein, E'TVG/FRK, is a transforming oncoprotein
with elevated kinase activity,. We also demon-
strated that ETV6/FRK inhibits ETV6-mediated
transcriptional repression in a dominant-negative
manner, indicating that ETV6/IFRK is a unique
oncoprotein with dual functions. This is the first
report showing the involvement of a SRC-like
kinase gene (FRKA) in primary human cancers.

MATERIALS AND METHODS

Case History

The patient was a 69-year-old Japanese woman
with AML-M4, carrying the translocation t(6;12)
{q21;p13) as the sole chromosomal abnormality in
8 of 20 examined bone marrow metaphase cells.
After obtaining informed consent, a sample of her
bene marrow was taken for use in this study. The
patient did not respond to chemotherapy and died
5 months later.

Fluorescence In Situ Hybridization Analysis

Fluorescence in situ hybridization (FISH) analy-
sis was performed as previously described (Pinkel
et al., 1986) with a panel of biotin- and digoxige-
nin-labeled cosmid probes that contained different
exons of ETV6, kindly provided by Dr. Peter
Marynen (University of Leuven, Leuven, Belgium).
The order and the relative locations of cosmids are
depicted in Figure 1A,

3’-Rapid Amplification of cDNA End

To do the ¥-rapid amplification of cINA end
{RACE), total RNA was isolated from the leuke-
mic sample as described previously (Ogawa et al.,

1996). First-strand cDNA was synthesized from
2.5 pg of total RNA using the primer RZN6 as
described previously by Pecters et al. (1997). The
first polymerase chain reaction (PCR) was per-
formed with primers T4l'1 and R2ZN6R1 (Peeters
ec al,, 1997). Then, a diluted product of the first
PCR, along with primers T4F2 and RZN6R2, was
used for the second, nested PCR (Peeters er al,,
1997}, The nucleotide sequences of the primers
used in this study and the conditions for PCR are
listed in Table 1. The PCR products were sub-
cloned into the pCR" 2.1-TOPO™ vector using a
TOPO TA Cloning® kit (Invitrogen, Tokyo,
Japan) and subjected to DNA sequencing by
use of a 3100 Applied Biosystems automated
sequencer (Applied Biosystems, Chiba, Japan).

Reverse Transcriptase-PCR

For the reverse transcriptase-PCR (RT-PCR),
5 pg of the total RNA was transcribed to cDNA with
2 units of Moloney murine leukemia virus reverse-
transcriptase (MMLV-RT, Stratagene, La Jolla, CA)
using a random hexamer. One-tenth of the synthe-
sized cIDNA was directed to PCR analysis. Primers
T4F2 and FRK1198R were used to confirm the
ETV6/FRK transcripts. The primers for detecting
the reciprocal FRK/ETV6 transcripts were FRK451F
and TEL723R. For amplification of the wild-type
ETV6 and FRK transcripts, primers T4F2 and
TEL723R and primers FRK808F and FRK1198R,
respectively, were used. All the sequences of
the RT:PCR products were verified by direct
sequencing,

Plasmid Construction

Full-length ETVS ¢DNA tagged with a FLAG
sequence at the 5 end, a gift from Dr. Kinuko
Mitani (Dokkyo University School of Medicine,
‘Tochigi, Japan), was subcloned into the expression
plasmid pMEI18S-nco (Invitrogen, San Diego,
CA). A FLLAG-tagged full-length FRK ¢DNA was
isolated by RT-PCR from total RNA obrained from
human placenta using primers EcoRI-FLAG-FRK
and FRK-NesI-2058R and was cloned into
pME185-neo. The pMEI185-neo-IFLAG-ETVé/
FRK vector was generated by replacement of the
Clal-Nosl fragment of the pME18S-neo-FLAG-
ETV6 vector with the C/al-Nofl fragment of
ETV6/FRK, which was obtained by RT-PCR from
the patient’s bone marrow using primers TEL-
Clal-F and FREK-Norl-2058R, with subsequent
digestion with C/el and Nerl. 'To construct a kin-
ase-inactive mutant of ETV6/I'RK, designated
ETV6/FRK(K262R), a point mutation corresponding
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Figure 1. Analysis of breakpoirt on chromo-
some |2, (A) A genomic map of ETVé and locatien
of the cosmid probes used for FISH analysis. (B)
FISH analysis of the patent’s leukemic cells. The
signals of the 2GB probe (red} containing ETYS
exons 1B, 3, and 4 are hybridized on the der(6) and
on the normal |2p, whereas those of the 184C4
probe (green) containing ETVS exons 3-5 are found
on the der(5), the der(12), and the normal 12p.

to a kinase-inactivating mutarion in the ATP-binding
site lysine residue (Lys262) of FRK was introduced
into ETV6/FFRK ¢cDNA. A mutated fragment gener-
ated by PCR using the mutagenic primer FRK-
K262R-BamH] and the primer TEL-E@RI-FLAG
was spliced rogether with a C-terminal partial frag-
ment of FRA into pMEI18S-neo. A FLAG-tagged
fulldength FRA/ETVE cDNA was constructed into
the pME185-neo vector by assembling partial frag-
ments from £716 and FRK and a fragment spanning
the FRR/ETVS junction generated by RT-PCR using
primers FRK451F and TEL723R. All the constructs
were sequenced tw confirm the fidelity of the
sequence and conservation of the reading frame at
the site of fusion.

Cell Lines, Transfection, and Cell Transformation
Studies

For transient expression studies, 4 x 10* HeLa
cells were seeded in each 60-mm dish and trans-
fected with expression plasmid or plasmids 24 hr
later by a lipofection method using Effectine™

-
-

y

normal 12

Transfection Reagent (Qiagen, Hilden, Germany).
Cells were incubated for 48 hr and harvested for
analysis. NIH3T3 cells were transfected with
expression plasmids, also using Effectine™, and
sclected in 400 pg/ml of G418 for 2 weeks. Ba/F3
clones stably expressing ETV6/IFRK or other pro-
teins were obtained by electroporation of each
expression plasmid into Ba/IF3 cells as previously
described (Carroll et al., 1996) and subsequent iso-
lation of individual G418-resistant subclones by
limiting dilution. Expression of the transfected
genes was evaluated by immunoblotting as previ-
ously described (Maki et al,, 1999} using anti-
FLAG-M2 monoclonal antibody (Sigma-Aldrich,
St. Louis, MO). The soft-agar colony assay was
performed as previously described (Kurokawa
etal., 1996). After 21 days, all macroscopic colonies
larger than 0.25 mm in diameter were counted. For
growth curves, 2 X 10* G418-resistant Ba/F3 cells
were washed 3 times with PBS and plated in IL-3-
free medium on day 0, and viable cells were
counted each day by trypan blue exclusion.
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TABLE |. Primers Used For 3'-RACE and (RT)-PCR Amplifications

Name Sequence

R2N& 5'=CCAGTGAGCAGAGTGACGAGGACTCGAGCTCAAGC (N)6-3
T4FI 5'-CATATTCTGAAGCAGAGGAAA-Y

R2N6RI 5'=-CCAGTGAGCAGAGTGACG—3'

T4F2 5'-ACACAGCCGGAGGTCATACT-3'

R2N6R2 5'-GAGGACTCGAGCTCAAGC-3'

FRK1198R 5'-CTTCCCATACTTCGCAAAC-3'

FRK4SIF 5'~AGCAACATCTGTCAGAGGCT-3

TEL723R 5'=GTAGGACTCCTGGTGGTTGTT-3

FRK808F i 5'=ATCGGAAGATCAGATGCAGAG=3'

EcoRI-FLAG-FRK 5'=-GCGAATTCGTTGTGATGGGGGACTACAAGGACGAC

FRK-Notl-2058R
TEL-Cal-F
TEL-EcoRI-FLAG

FRK-K262R-BamH!

GATGACAAGTCCGGGAGCAACATCTGTCAGAGGC T3’

5 =ATTGCGGCCGCACTGATTGTGCAGTTGGTTGA— 3/
5'=CTTTCGCTATCGATCTCCTCA-3
5'-GCGAATTCGTTGTGATGGGGGACTACAAGGACGAC
GATGACAAGTCCGGGTCTGAGACTCCTGCTCAGTG- 3
5'=-TTGGATCCATTGAACCTGGTTTTAATGTTCTCACTG- 3’

Thermal cycling profile was: $4°C for 2 min, followed by 35 cycles of 94°C for | min, 60°C for | min and 72°C for 2 min, with a final extension at 72°C

for 10 min.

Immunoprecipitation, Immunoblotting, and
Immune Complex Kinase Assay

Lysates were prepared by washing cells (1 x 10°—
1 x 107) with phosphate-buffered saline and then
adding lysis buffer [10 mM Tris-HCI (pH 7.4), 150
mM NaCl, 1.0% NP-40, 1 mM EDTA, and 1 mM
Na3VO4] containing 5 mM phenylmethyl-sulfo-
nylfluoride and 1 pg/ml of aprotinin. After 10 min
on ice, the samples were centrifuged at 12,000 g to
remove insoluble particles. For immunoprecipita-
tion, 1 mg of total cell lysate was incubated
with anti-FLAG-M2 antibody for 1 hr at 4°C,
after which 50 pl of Protein G-Sepharose beads
{Amersham Biosciences, Uppsala, Sweden) was
added. After rotating for 1 hr at 4°C, immunopreci-
pitates were washed 3 times and boiled in loading
buffer for 5 min. Protein samples were separated
on 6.5%-15% gradient SDS-polyacrylamide gels
and transferred onto PVDF membranes (Millipore,
Bedford, MA). Immunoblotting was performed as
previously described (Maki et al., 1999) using
either anti-FLAG-M2 antibody or antiphosphotyr-
osine monoclonal antibody 4G10 (Upstate Bio-
technology Incorporated, Lake Placid, NY) as a
primary antibody.

For the immune complex kinase assay, immuno-
precipitates were washed 3 times and suspended
in kinase buffer [40 mM HEPES (pH 7.4), 10 mM
MgCl,, 5 mM MnCl;]. For determination of kinase
activity, 2.5 pg of either histone H2B or histone H4
(Roche Diagnostics K. K., Tokyo, Japan) was
added to each reaction. Kinase reactions were initi-
ated by the addition of 10 pCi of [y-**P] ATP

(3,000 Ci/mmol; Amersham Biosciences Corp.,
Piscataway, NJ) and incubated at 30°C for 15 min.
Reactions were stopped by the addition of loading
buffer and analyzed by SDS-PAGE and exposure
to a film.

Luciferase Assay

For the luciferase assay, 4 x 10* HeLa cells were
transfected with 1 pg of the reporter plasmid
(EBS)3tkLuc (Waga et al,, 2003), a kind gift of
Dr. Kinuko Mitani, along with the indicated
amounts of the expression vectors. The total
amount of DNA in weight was adjusted w be
equal by adding pME18S-neo plasmid. Luciferase
activities were determined as described previously
(Maki et al,, 1999). All transfection experiments
were performed in duplicate at least 3 times.

RESULTS

Identification of the Breakpoint on
Chromosome 12

We performed FISH experiments using several
probes from the E7V6 locus, on 12p13 (Fig. 1A).
The signals from the cosmids containing exons 1-4
{179A6, 504, and 2G8) were found on the der(6)
(Fig. 1B), whereas the signals from the cosmid
containing exons 3-5 (184C4) were split to the
der(6) and the der(12) (Fig. 1B), suggesting that
the breakpoint on 12p13 was localized to ETVS
exons 4-5. The signals on the normal 12p were
always observed with all the indicated cosmid
probes of the £T14 locus, suggesting that the non-
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Figure 2. Identification of ETV4/FRK and FRK/f
ETV4 fusion transcripts, (A) Schematic representa-
tion of wild-type ETVS, FRK, and the fusion tran-
scripts. The breakpoints are indicated by vertical
arrows. Horizontal arrows indicate the positions of
RT-PCR primers (described in the Materials and
Methods section). (B} Detection of ETVS/FRK as
well as FRK/IETV6 fusion transcripts by RT-PCR in
the patient’s leukemic sample. (C) Expression of
ETVS and FRK in the patient’s leukemic sample by
RT-PCR.

translocated allele of E7V6 was grossly intact with
no large deletions.

ldentification of the Fusion Partner of ETVS

To identify the unknown fusion partner of
ETV6, ¥-RACE-PCR was performed. After two
rounds of PCR, ¥-RACE-PCR products were suc-
cessfully obtained. Sequencing analysis of the
PCR products showed that exon 4 of ETV6 was
fused to exon 3 of FRA on 6q21, creating an ETVe/
FRK fusion genc. The FRK gene encodes a SRC-
like nonreceptor tyrosine kinase, consisting of the
N-terminal SH3 and SH2 domains, the C-terminal
kinase domain, and a short regulatory rail (Fig.
2A). The ETV6/FRK fusion gene produced a chi-
meric protein in which the entire pointed (PNT)

4
marker
K612
Sarmpie
positive
conlror
nogative
conirol
¥E12
postwo
contro}
negative
control

-3 bp
-«—276bp

ETVS

FRK

oligomerization domain {(also called helix-loop-
helix demain) of ETV6 and the kinase domain of
FRK were fused in-frame (Fig. 2A).

Detection of the ETV6/FRK and FRK/IETVS
Fusion Transcripts

RT-PCR analysis was performed to confirm the
fusion transcripts of the E7V6 and FRK penes.
Both reciprocal fusion transcripts, £E7V6/FRK and
FREJETV6, were specifically amplified from the
leukemic sample but not from control bone mar-
row (Fig. 2B). Expression of wild-type ETV6 and
FRK also was detected in the leukemic sample
(Fig. 2C). There were no mutations in the entire
coding sequences of ETVE, FRK, ETV6/FRK, and
FRK/ETVE (data not shown).
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Constitutive Activation of the ETV6/FRK
Tyrosine Kinase

Because the ETV6/FRK fusion protein retained
the kinase domain but lacked the SH3 domain and
most of the SH2 domain, we examined its kinase
activity. First, we compared the autophosphoryla-
tion status of ETV6/FRK and wild-type FRK.
Either the ETV&/FRK fusion protein, wild-type
FRK, or wild-type ETV6 FLAG-tagped at
the N-terminus was introduced into Hela
cells, immunoprecipitated with an anti-IFLAG-M2
moenoclonal antibody, and then analyzed by the
kinase assay or immunoblotting with an antiphos-
photyrosine antibody 4G10 (Fig. 3A, top and mid-
dle). To compare expression levels, the same
amounts of immunoprecipitate were also subjected
to anti-FLAG blot (Fig. 3A, bottom). A high level
of tyrosine phosphorylation occurred only in the
ETV6/FRK protein (Fig. 3A, top and middle). A
basal level of autophosphorylation also was detect-
able in the wild-type FRK (Fig, 3A, top), a finding
in agreement with the previous data (Cance et al.,

Figure 3, The ETV&/FRK tyrosine kinase is con-
stitutively activated in Hela cells. (A) Lysates of
Hela cells transfected with the indicated expres-
sion vectors were immunoprecipitated with an anti-
FLAG-M2 monoclonal antibody and then analyzed
by immune complex kinase assay {top) of immuno-
blotting with an antiphosphotyrosine antibody
4G 10 {middle). The tomal amount of each protein
was also assessed by immunoblotting with anti-

{substrate)
-4 histone H2B

4 histona H4

FLAG-M2 antibody (bottom). Arrowheads show
the proteins expressed or phosphorylated at an

expected size. {B) Results of kinase assay performed
with histones H2B {top) and H4 (middle).

1994), However, the leve!l of autophosphorylation
was significantly lower than that of ETV6/FRK
{Fig. 3A, top and middle}. Next, we compared the
ability of ETV6/FRK and wild-type FRK to phos-
phorylate ¢xogenous substrates. When histone
HZB or H4 was added to the kinase reaction, they
were found to be phosphorylated to a greater
extent in ETV6&/FRK-expressing cells than in
FRK-expressing cells (Fig. 3B), suggesting that
the ETV6/FRK protein had elevated tyrosine kin-
ase activity.

Cell Transformation by ETV6/FRK in a
Kinase-Dependent Manner

To assay the transforming activities of ETV6/
FRK, we stably expressed the cDDNA-encoding
ETV6/FRK or other proteins inte the fibroblast
cell line NIH3T3, We established 3 NIH3T3
clones expressing ETV6/FFRK, 2 clones express-
ing FRK/ETV6, 2 clones expressing FRK, 2
clones expressing ETV6, and 2 clones expressing
ETVe/FRK(K262R) (Fig. 4A), the Kinase-inactive
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Figure 4. ETVS/FRK transforms NIH3T3 cells and Ba/F3 cells in a
kinase-dependent manner. (A) Schematic representation of the kin-
ase-inactive ETVS/FRK(K562R) mutant with a lysine-to-arginine muta-
tion at the ATP binding site. {B) Soft-agar assay demonstrating
macroscopic colony formation in ETV6/FRK-expressing NIH3T3 cells.
{C) 2 % 10" Ba/F3 cells stably transfected with the indicated expres-
sion vectors were washed free of IL-3 and plated on day Q in growth

mutant of ETV6/FRK, confirmed by immunoblot-
ting analysis (data not shown). The soft-agar assay
was performed on each clone. Comparable results
were obtained for the clones expressing the same
proteins, and the representative data are pre-
sented. Only the NIH3T3 cells expressing intact
ETV6/FRK were able to produce macroscopic
colonies, whereas the NIH3T3 cells transfected
with the empty vector or cells expressing the kin-
ase-inactive mutant ETV6/FRK(K262R), the
reciprocal FRK/ETV6 fusion protein, wild-type
I'RK, or wild-type ETV6 failed to grow colonies
(Fig. 4B, ‘Table 2). These results suggest that
ETV6/FRK but not FRK/ETVé contributes to
ncoplastic transformation in a kinase-dependent
manner,

Next, we also examined the abilicy of ETVE/
IFRK to transform the murine hematopoictic cell
line Ba/IF3, which is strictly dependent on 1L-3 for
survival and proliferation. Following stable trans-
duction by clectroporation, we obtained 6 Ba/IF3
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medium without IL-3. Viable cells were counted each day. Data of
the representative clone(s) for each protein are presented. (D} Cell
lysates of the indicated Ba/F3 clones were immunoprecipitated with
an anti-FLAG-M2 antibody and then subjected to kinase assay (top)
and immunoblotting with anti-FLAG-M2 antibody (bottom). Arrow-
heads show the proteins expressed at an expected size.

clones expressing ETVH/FRK, 2 clones expressing
FRK, 2 clones expressing ETV6, and 3 clones
expressing ETV6/IFRK(K262R), confirmed by
immunoblotting analysis (data not shown). To
assay the ability to confer independent prolifera-
tion of IL-3, each Ba/F3 clone was switched to
growth medium without IL-3. Comparable results
were obtained for the clones expressing the same
proteins, and the representative data are presented.
The Ba/F3 clones expressing ETV6/FRK showed
sustained proliferation in the absence of IL-3
(Fig. 4C). In contrast, Ba/F3 cells transfected with
the empty vector or cells expressing kinase-inac-
tive mutant ETVG/FRK(K262R), wild-type FRK,
and wild-type ETV6 were all unable to proliferate
in the absence of 1L-3 (Fig. 4C). Although the
ETV6/FRK proteins expressed in the stable clones
were constitutively  autophosphorylated,  the
ETV6/FRK(K262R) mutants were not (Fig, 41).
These observations indicate that ETV6/FRK is a
dominant oncoprotein and that constitutive activa-
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TABLE 2. Transformation of NIH3T3 Cells By ETV&/FRK

Transfected DNA No. of colonies®

pME85-neo (vector)
pME|85-nec-ETV6
pME18S-neo-FRK
pME!85-neoc-ETV6/FRK
pME8S-neo-ETV6/FRK(K262R)
pME|85-neo-FRK/ETV6

cConmooo

NIH3T3 cells were transfected with the indicated constructs, and sta-
ble transfectants were selected in G418, Cells were plated in soft agar.
Macroscopic colonies were counted at day 21.

*Average of four experiments,

tion of the ETV6/FRK tyrosine kinase is necessary
for ETV6/FRK-induced transformation.

Inhibition of ETVé-Mediated Transcription
Repression by ETV4/FRK

Because ETV6 is an ETS transcription factor
that acts as a transcriptional repressor {Lopez
et al,, 1999), we also investigated the transcrip-
tional regulatory property of ETV6/FRK and its
abilitcy to modulate the function of wild-type
ETV6. We transfected a previously described
(EBS)3tkLuc reporter, in which the luciferase
gene is placed under the control of an ETS
responsive promoter (Waga et al,, 2003), along
with either wild-type ETV6, ETV6/FRK, or
FREK/ETV6 into HeLa cells and evaluated lucifer-
ase activity., The results showed, in agreement
with the previous finding (Waga et al., 2003), that
there was decreased luciferase activity after
cotransfection of (EBS)3tkLuc with the wild-type
ETV6 expression plasmid (Fig, 5A). In contrast,
no repression was observed when ETVG6/FRK or
FRK/ETV6 was expressed with the (EBS)3tkLuc
reporter (Fig. 5A).

Because the oncoprotein ETV6/FRK lacks the
ETS DNA binding site but still retains the PNT
oligomerization domain, it is possible that it might
affect E'T'V6-mediated rtranscriptional repression
by heterodimerizing with ETV6. Notably, coex-
pression of ETV6/FRK abolished the transcrip-
tional repression by ETV6 in a dose-dependent
manner {Fig. 5B), suggesting that ETV6/FRK has
a dominant-negative effect on ETV6-mediated
transcriptional repression, In contrast, coexpression
of the reciprocal FRK/ETV6 protein did not
affect ETV6-mediated transcriptional repression
{Fig. 5B). In control experiments, dose-dependent
expression of the ETV6, ETV6/FRK, or FRK/
ETVé protein was confirmed by immunoblotting
analysis (data not shown).

DISCUSSION

The «6;12)q21;p13) is a rare but recurrent
reciprocal chromosome translocation in human
leukemia {(Hayashi et al,, 1990; Katz et al., 1991;
Raimondt et al.,, 1997). In this article, we report
our finding that it generated novel fusion genes
ETVS/FRK and FRK/ETV6 in a case of AML. FRK
belongs to a family of SRC kinases, as at the amino
acid level, it has the highest homology, 50%, with
FYN (Cance et al, 1994; Lee et al, 1994)
Although several tyrosine kinase (TK) genes have
been identified as fusion partners of ETV6 (Golub
et al., 1994; Papadopoulous et al., 1995; Lacronique
et al., 1997; Peeters et al., 1997; Cazzaniga et al,,
1999; Eguchi ct al., 1999; lijima et al., 2000; Kuno
et al., 2001), this is the first report of a SRC-family
tyrosine kinase gene being fused with E7V§
and structurally altered in human cancers. In the
resultant ETV6/FRK fusion protein, the entire
PNT oligomerization domain of ETV6 and the
kinase domain of FRK are fused in frame. We
demonstrated that this ETV6/FRK fusion protein
constitutively underwent autophospherylation on
its tyrosine residues. ETV6/FRK had elevated kin-
ase activity compared to that in wild-type FRK.
ETV6/I'RK showed transforming activities in two
cell lines, Ba/F3 and NIH3T3, indicating that
ETV6/FRK is a dominant transforming oncopro-
tein. The Kinase-inactive mutant ETVé/
IFRK(K262R} transformed neither of these two cell
lines, indicating that the kinase activity of ETVé6/
FRK was essential for transformation. The recipro-
cal fusion protein FRK/ETV6, whose mRNA also
was transcribed in the patient sample, did not have
transforming activity. These data strongly suggest
that the elevated kinase activity of the ETV6/FRK
fusion protein directly contributes to the patho-
genesis of leukemia with a t(6;12}(q21;p13).

Although activated variants of the SRC family
kinases show transforming activities (Parker et al,,
1984; Cartwright et al., 1987), the SR and its fam-
ily of genes rarely have been reported as being
mutated or structurally altered in primary human
tumors. Irtby et al. (1999) reported that 12% of
advanced human colon cancers in the United
States had a truncating muration at codon 531 of
the SR gene and that the mutation clevated kin-
ase activity and promoted the potential for malig-
nancy. However, three subsequent large-scale
studies on advanced colorectal cancers in Japanese,
northern European, Chinese, and ltalian patients
failed to detect the mucation (Daigo et al., 1999,
Wang et al,, 2000; Laghi et al,, 2001), making the

-30-



NOVEL CHIMERIC ONCOPROTEIN ETVS/FRK

A

217

2
R 1
T £ * :
3] !
Q Y f— +——v
v i
[l : i
1
$ —
(¥ ] 1
2 1
T A et
o i
> !
s e |
Ry . !
? . | - 'I i
L3 3
o . : ;
vector ETV6 ETV6FRX FRIK/ETVE
1 1 1 LA Y-
14 .
|
1.2 I :
> d: i
: I |
4 ;
s [t I ;
@« T ‘
o8 | —
& 1 1
o] ‘
Figure 5. ETV6/FRK is a dominant-negative reg- = oe L g i
ulator of ETV6-mediated transcriptional repression g :
in Hela cells, {A) HelLa cells were transfected with | o :
yg of (EBS)3tkluc reporter plasmid along with | pg > 0s M 1 ¢ )
of the indicated expression vector. Bars show rela- ﬁ i
tive luciferase activities to the level when a control o i
plasmid pMEI8S-neo was cotransfected with the - 02 M iy ;
corresponding reporter plasmid, and they present
average results of duplicate experiments, (B) Hela :
cells were transfected with | pg of (EBS)3Itkluc 0 n M L " i " " " " A " i
reporter plasmid along with | pg of pME-185-neo-
FLAG-ETV6 expression vector together with indi- vector 2 1 086 095 090050 0 060 Q95 0.90 050 O
cated amounts of pMEI8S-neo-FLAG-ETVS/FRK or ETVe ¢ 1 1 1 1 1 1 1 1 1 r 1
pME185-neo-FLAG-FRK/ETV6 expression vecton ETV&FRK 0 © 001 005 010080 1 © ©0 o © 0
:;?Vi;::ults are presented as relative luciferase FAKETV @ 0 0 O © 0 ©0 0010085 010050 1 {ug)

importance of this mutation controversial. In hem-
atopoictic malignancies, twe human Tecell acute
lymphoblastic leukemia cell lines have been
shown to have rearrangement of LCK, a SRC-
family kinase gene (Tycko ct al, 1991; Wright
et al., 1994). In these two cell lines, HSB-2 and
SUP-T12, the upstream promoter of the L.CK gene
was juxtaposed to the TCRA locus without any
accompanying large structural abnormality of the
LCK protein. LOK mRNA was elevated in the two
cell lines (Tycko et al., 1991), and the HSB-2 cell
line was later shown to carry several activaring
point mutations in the LOCK gene (Wright et al.,
1994), indicating that overexpression and/for activa-
tion of the LCK kinase would lead to cell transfor-
mation. On the other hand, the involvement of
SRC family members in primary leukemia has not
been reported previously. In this study, we showed

that the structural abnormality of an SRC-like
kinase gene, FRK, through translocation with
ETVU6 can directly contribute to leukemogenesis
through activation of the altered tyrosine kinase.
In addition to the analysis of the current case with
a t(6;12), we also performed a mutation analysis of
the FRK gene in 20 hematopoietic cell lines but
failed to detect activating mutations or structural
abnormalitics (data not shown). Thus, it is cur-
rently unclear whether FRK could be activated
through other mechanisms such as activating
mutations or translocations with other partner
gene(s), although more intensive analyses may be
required.

Two mechanisms could contribute to the con-
stitutive activation of the ETV6/FRK kinase. First,
in the ETV6/FRK fusion protein, the SH3 and
SH2 domains of FRK are lost or disrupted, respec-
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tively. Both the SH2 and SH3 domains are
required to maintain the SRC family kinases in
an inactive state: the SH2 domain binds to the
C-terminal tyrosine residue in a phosphorylation-
dependent manner, and the SH3 domain interacts
with a short polyproline type II helix located
between the SH2 domain and the kinase domain
(Schindler et al., 1999; Xu et al., 1999; Young et al.,
2001). These intramolecular interactions are
believed to lock the molecule in a closed, inactive
state, resulting in repression of kinase activity. In
this regard, disruption of this closed conformation
would activate the SRC family kinases and lead to
cell transformation. In fact, some deletions or
mutations in either the SH2 or the SH3 domain of
SRC have been shown to activate its catalytic and/
or transforming activities (Hirai and Varmus, 1990).
Thus, the disruption of the SH3 and SH2 domains
in ETV6/FRK may contribute to deregulation of
kinase activity. Secondly, in the ETV6/FRK fusion
protein, the entire PINT domain of ETV6 is fused
to the kinase domain of FRK. As is the case with
other ETV6/TK fusion proteins (Carroll et al,,
1996; Golub et al,, 1996; Jousset et al., 1997), the
PNT domain would force dimerization of the
ETVe6/FRK protein and lead to constitutive tyro-
sine autophosphorylation and activation of the
ETV6/FRK kinase.

The downstream signaling pathway mediated
by ETV6&/FFRK still remains to be elucidated. The
wild type FRK is expressed primarily in epithelial
tissues (Cance et al,, 1994), but also weakly in
various hematopoietic cell line (data not shown).
However, its functions or downstream signaling
pathways remain largely unknown, especially in
hematopoietic systems. The only known candidate
endogenous downstream component of FRK is the
SH2-domain adaptor protein SHB. According to
recent reports, GTK, a rodent homologue of FRK,
induces neurite outgrowth in PC12 cells and insu-
lin stimulated signaling pathways in pancreatic
insulin-producing cells via SHB (Anneren et al,
2000; Anneren and Welsh, 2002). In the present
study, however, immunoblotting analysis failed to
detect expression of the SHB protein in ETV6/
FRK-expressing cells (data not shown). Thus,
involvement of SHB in transformation by ETVé/
FRK remains unclear. We also tested the phos-
phorylation status of several signaling molecules,
including signal transducer and activator of tran-
scription (STAT1, STAT3, STATS, STATe,
extracellular signal-regulated kinase 1/2 (ERK1/2),
P38 mitogen-activated protein  kinase {P38
MAPK), phosphatidylinositol 3-kinase (P13K), and
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phosphalipase C (PLC)-gamma, in ETV6/FRK-
expressing cells, However, we failed to detect any
aberrant phosphorylation of these molecules in
ETV6/FRK-expressing cells in comparison to
FRK-expressing cells (data not shown). Future
identification of the target substrate of ETV6/FRK
might provide a novel insight into the mechanism
of ETV6/FRK-induced transformation as well as
of wild-type FRK-mediated signal transduction.

Finally, we demonstrated that ETV6/FRK had a
dominant-negative effect over ETVé6-mediated
transcriptional repression. Because ETV6/FRK
retains the PNT oligomerization domain of ETV6,
ETV6/FRK may interfere with the transcriptional
repression activity of E'TV6 by heterodimerizing
with wild-type ETV6. Our results indicate that
ETV6/FRK is a novel oncoprotein with dual func-
tions: deregulated tyrosine kinase activity and a
dominant-negative modulation of transcriptional
repression by ETV6. Because wild-type ETV6
appears to have tumor-suppressive activity
{Romparey et al., 2000}, its suppression by ETV6/
IFRK also could contribute to oncogenesis. It may
be possible that ETV6/FRK can contribute to
oncogenesis through two independent mecha-
nisms; activation of the ETV6/FRK tyrosine kin-
ase, which would lead to aberrant stimulation of
the downstream signaling pathway, and inhibition
of the tumor-suppressive functions of ETV6. This
model suggests potential strategies for reversion of
transformation by ETV6/FRK. Because the kin-
ase-inactive mutant of ETV6/FRK is nontrans-
forming, a specific inhibitor of the SRC family
kinases may inhibit transformation by ETV6/FRK.
Alternatively, overexpression of wild-type ETV6
also would interfere with the ability of ETV6/FRK
to transform cells. Further experiments will
explore these possibilities.
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To the editor:

SCL/Tal1 and lymphoid versus myeloid lineage assignment

In their recent paper, Kunisato et al' describe the role of stem cell
leukemia gene (SCL) in regulating lineage fate in hematopoietic
stem cells. Their experiments involve retroviral expression of SCL
and a “dominant-negative” mutant of SCL (DN-SCL}in hematopoi-
etic stem cells and their progeny. They propose that levels of SCL
regulate lineage commitment: enforced expression of SCL favored
myeloid differentiation, while expression of the DN-SCL favored
lympheid differentiation, We query the interpretation of the results
obtained with the DN-SCL mutant, as its design and effects are not
suggestive of a specific dominant-negative function. The anthors
cite Aplan et al’ and Krosl et al® for the design of the dominant-
negative SCL. In these papers the basic domain of SCL was
deleted. This mutant is unable o bind to DNA, however, het-
erodimerization with E2A proteins remains intact through the
presence of the helix-loop-helix (HLH) domain, The DN-SCL
mutant used by Kunisato et al' lacks both the basic and HLH
domains. Such a mutant would be predicted to abrogate not only
DNA binding, but also the ability to interact with E2A proteins. The
remaining N- and C-terminal portions of SCL have no known
function—indeed, a truncation mutant comprising only the basic
and HLH domains could rescue hematopoiesis of SCL-null embry-
onic stem cells,? suggesting that the N- and C-terminal amino acids
are not essential. Since a dominant-negative mutant usually relies
on deletion of specific functional domains while retaining vital
protein interactions, it is difficult to understand how this mutant
could act as a dominant negative. Moreover, enforced expression of
the DN-SCL only mildly affects erythroid cell production in vitro
or in vivo (Figures 3 and 7), whereas loss of SCL by conditional
deletion has demonstrated that SCL is essential for erythroid
burst-forming units (BFU-E} and preduction of red cells in vivo.™?
Thus., there is no available data 1o positively suggest that the
DN-5CL used by Kunisato and colleagues' inhibits the function of

Response:

SCL. Nenetheless, it is possible that the N- and C-terminal portions
of SCL have an unknown function that causes the observed effects
on lineage specification. However, without the correct controls,
such as rescue of the DN-SCL effect with wild-type SCL, it is
impossible to discriminate specific from nonspecific effects. In
light of this and since the effects on myeloid and lymphoid lincage
output are subtle and transient, it is important to regard with caution
the asscrtion that the eftects are due to a dominant-negative effect
on SCL.

Mark Hall and David Curtis

Comespondence: Mark Hall, Rotary Bone Marrow Research Laboratory. Boyal
Melbourne Hospital, Parkville, Victoria 3050, Australia; e-mail:
halt @wehi edu.au.

References

1. Kunisato A, Chiba 5, Saito T, et al. Stem cell leukemia protein directs hemato-
poietic stem cell fate, Blood. 2004,103:3336-3341.

2. Aplan PD, Nakahara K, Orkin SH, Kirsch IR. The SCL gene product: a positive
regulator of erythroid differentiation. EMBO J. 1992;11:4073-4081.

3. Kros! G He G. Lefrancois M, et al. Transcription factor SCL is required for c-kit
expression and ¢-Kit function in hemopoietic cells. J Exp Med. 1998;158:439-
450,

4. Porcher C, Liao EC, Fujiwara Y, Zon LI, Orkin SH. Specification of hematopoi-
etic and vascular development by the bHLH transcription factor SCL without
direct DNAbinding. Development. 1999;126:4603-4615.

3. Mikkola HK, Klintman J, Yang H, et al. Haematopoietic stem cells retain long-
term repopulating activity and muitipotency in the absence of stem-cell leukae-
mia SCL/al-1 gene. Nature. 2003;421:547-551,

6. Hall MA, Curtis DJ, Metcalf D, et al. The critical regulator of embryonic hemato-
poiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and !in-
eage choice in CFU-512. Proc Natl Acad Sci lJ 5 A, 2003;100:992-997.

7. Curtis DJ, Hall MA, Van Stekelenburg LJ, Robb L, Jane SM, Begley CG. SCLis
required for normal function of short-term repopulating hemateopoietic stem
cefls. Blood. 2004;103:3342-3348.

Dominant-negative activity of stem cell leukemia (SCL) lacking bHLH domain

Queries from Hall and Curtis on our paper' in Blood include some
important issues. As they argue, the construct of interest (AbHLH
SCL) may not have an ability to interact with E2A proteins. Indeed.
our experiment showed that it does not interact with wild-type
(WT) stem cell leukemia (SCL) (data not shown). However, this
does not imply that AbHLH SCL consisting only of the N- and
C-terminal porttons of SCL does not have any function. Contrary to
the argument by Porcher et al.? their results could indicate that the
N- and C-terminal portions of SCL have some roles, since it
appears that the bBHLH domain alone does not completely rescue
the SCL-null phenotype. In addition, as was described in our paper
(Figure 7). we found maturation arrest in the erythroid progenitors
by intreducing AbHLH SCL. This observation is considered to be
biologic evidence of dominant-negative effect of AbHLH SCL on
wild-type SCL, given the phenotype of SCL conditional knockout
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mice.? In this regard. we are afraid that the questioners may
misunderstand our description in the paper.

To explore the proteins that interact with AbHLH SCL, we
have performed a coprecipitation analysis (Figure 1), We
transfected HEK293 peak cells with plasmids containing FLAG-
tagged WT SCL and AbHLH SCL under the cytomegalovirus
{CMV) promoter. Two days after the transfection, lysates were
prepared and immunoprecipitated with the anti-FLAG antibody-
coatcd beads {(Sigma. St Louis. MO). The samples then were
resolved through sodium dodecyl sulfate—polyacrylamide gel
clectrophoresis (SDS-PAGE). and the gel was silver-stained
(Dai-ichi Kagaku. Tokyo. Japan). We found that some proteins
coprecipitated commonly with WT SCL and AbHLH SCL (solid
arrows}. and others coprecipitated with WT SCL alone (dotted
arrows). It is possible that the commonly precipitated proteins
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