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ABSTRACT: The cytochrome P450 (CYP) isoform
CYP2C11 is specifically expressed in the liver of adult
male rats, and 5a-reductase is specifically expressed
in the liver of the adult female rats, The sexually di-
morphic expressions of these hepatlc enzymes are reg-
ulated by the sex-dependent profiles -of the circulat-
ing growth hormone (GH). However, it is not well
known whether hormonal imprinting or activation fac-
tors in the neonatal brain influence the sexually di-
morphic expression patterns of hepatic enzymes. We
therefore examined the effect of perinatal exposure
to 2,3,7, S-tetrachlorodlbenzo- p-dioxin (TCDD) on sex-
dependent expressions of hepatic enzymes. Pregnant
rats were treated with TCDD at a dose of 0, 200, or
800 ngfkg on gestation day 15, exposing the pups to
the chemical. Although the expression of CYP2C11 pro-
tein in the livers of male pups on postnatal day (PND)
49 was significantly higher than that of the controls,
but the 5a-reductase activities in the livers of female
pups were not altered by exposure to'TCDD. Focus-
ing on perinatal periods, testosterone and estrogen lev-
els significantly increased in the brain of male pups
on PND 2.-The results suggest that the alteration of
testosterone and estrogen levels affect hormonal im-
printing in the neonatal brain of male pups, and thus
induces a change in the level of male-specific hep-
atic CYP2C11. We conclude that perinatal exposure
to TCDD ‘at low doses may change the sexual differ-
entiation of the neonatal brain in male rats. © 2003
Wiley Periodicals, Inc. ] Biochem Mol Toxicol 17:278-
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INTRODUCTION -

Polychlorinated ~ dibenzo-p-dioxins  (PCDDs),
dibenzofurans (PCDFs), and coplanar polychlorinated
biphenyls (PCBs) are representative planar halo-
genated aromatic hydrocarbons (HAHs) or dioxins
and related compounds. TCDD  is the most toxic
compound among the HAHs; it produces various
toxic effects, such as body weight loss, thymic atrophy,
dermal disorders, hepatic damage, carcinogenicity, ter-
atogenicity, reproductive toxicity, immunotoxicity, and
endocrine toxicity [1,2]. The toxicity of HAHs, includ-
ing TCDD, is mediated through the aryl hydrocarbon
(Ah) receptor. Numerous studies have reported that
the Ah receptor interacts with the estrogen receptor
and inhibits its effects [3-5}. The level of expression of
CYP1A is regulated by the Ah receptor and induced by
TCDD, which has high affinity to the Ah receptor [6].

Steroid hormones are synthesized and metabolized
by the CYP monooxygenase system. CYP2C11, the pre-
dominant male-specific CYP isoform, is expressed in
the liver of adult rats [7] and regulated by the sexually
determined circulation profile of growth hormone (GH)
[8]. CYP2C11 is not expressed in the liver of immature
rats. The developmental induction of this male-specific
CYP is imprinted by exposure to testosterone-derived
estrogen during the neonatal period. The conversion of
testosterone from estrogen is mediated by aromatase,
CYP19 [7]. Testosterone metabolism is catalyzed mainly
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by CYP2C11 in the liver of male rats [9]. Therefore, the
pattern of steroid hormone metabolism in the liver of
male rats is thought to be important for the develop-
ment of the reproductive organs and the brain.

Hepatic Sa-reductase activity increases after sexual
maturation in female rats. Sa-reductase converts testos-
terone to dihydrotestosterone (DHT), which has high
affinity for the androgen receptor [10]. DHT, however,
does not affect the mature female liver, owing to the low
expression of androgen receptors. 5a-Reductase is also
regulated by the circulation profiles of GH after sexual
maturation of the femaie brain {11].

Sex differences in the GH secretion pattern follow
pituitary maturation at puberty and are imprinted by
exposure to steroid hormones in the neonatal hypotha-
lamus. The male GH pattern is characterized by a low
basal hormone level with marked peaks every 34 h
[12,13]. Female rats exhibit a higher basal hormone
level without regular marked peaks. Therefore, hepatic
steroid metabolism in the rat is sexually differentiated
by the sex-dependent GH pattern, which is imprinted
by the levels of steroid hormones in the neonatal brain.

We examined the expression of liver enzymes in-
volved in the metabolism of steroid hormones during
masculinization and feminization in rats, and hormone
levels in neonatal tissues to elucidate whether prenatal
exposure to TCDD affects hormonal imprinting in the
brain of neonatal rats.

MATERIALS AND METHODS

Animals and Administration of TCDD
to Pregnant Rats

Holtzman rats were - purchased . from Harlan
- Sprague-Dawley (USA). Rats were maintained in
individual cages and kept under a photoperiodic cy-
cle of 12 h light/12 h dark in an air-conditioned ani-
mal room, at 22 £ 3°C and 55 = 10% relative humidity.
Rats received commercial MF chow (Oriental Bio Ser-
vice Kanto Inc., Tokyo, Japan) and tap water ad libi-
tum. Male and female rats (9 weeks old) were mated
at a ratio of one male to one female overnight under
standard laboratory conditions. After confirmation of
pregnancy by observation of the vaginal plug, the fe-
males were separated.and housed in individual cages.
All animals were treated with chemicals and sacrificed
between 10:00 AM and 12:00 noon.

TCDD (Cambridge Isotope Laboratories, Andover,
MA) was dissolved in n-nonane (Sigma, St.Louis, MO)
at a concentration of 20 pig/mL. The TCDD/#n-nonane
solution was diluted in corn oil so that the desired dose
of 2.5 mL/kg could be delivered. The pregnant rats
were administered 0, 200, or 800 ng TCDD/kg body
weight by gavage on gestation day (GD) 15. Pups were
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killed on postnatal days (PNDs) 2, 5, 21, or 49. The
liver, reproductive organs, and brain were removed and
stored at —~80°C until use.

Preparations of S9 and Microsomal Proteins

The livers were homogenized in 3 volumes of 0.1 M
potassium buffer (pH 7.4). Each homogenate was cen-
trifuged at 9,000 x g for 20 min [14], and the super-
natant was then centrifuged at 105,000 x g for 1 h,
Each pellet was homogenized with 25 mL of the potas-
stum buffer, and then centrifuged at 105,000 x gforlh.
The microsomes thus obtained were homogenized with
potassium buffer, frozen in liquid nitrogen, and then
stored at —80°C until the assays for immunoblotting
and enzyme activities. The protein concentration was
determined by the method of Lowry et al. [15] using
bovine serum albumin as a standard.

Immunoblot Analysis

Sodium dodecyl sulfate/ polyécrylamide gel elec-
trophoresis (SDS-PAGE) was carried out according to
the method of Laemmli [16] using 10% polyacrylamide

- separation gel. After electrophoretic transfer onto ni-

trocellulose filters, the CYP forms were characterized
with CYP2C11-specific antibody (Daiichi Pure Chem-
icals, Tokyo, Japan) and detected with an ECL system
{Amersham Pharmacia Biotech, Tokyo, Japan). Spectral
configurations of the immunoblots were analyzed us-
ing the NIH Image computer program [17].

Determination of Testosterone :
Sa-Reductase Activity

The activity of testosterone Sa-reductase was de-

_ termined by essentially the same method as described

by Lax et al. [18]. Enzymatic activities were deter-

~mined under the linear range, including the reaction

time, substrate, and protein concentrations. The reac-
tion mixture for the assay consisted of 100 mM potas-
sium phosphate buffer (pH 7.4), 0.5 mg S9 protein,
an NADPH-generating system (final concentrations:
0.5 mM NADPH, 10 mM glucose-6-phosphate, and
4 mM magnesium chloride), and substrate (250 M
testosterone) in a final volume of 1.0 mL. The reac-
tionwas started by incubating Sa-reductase with testos-
terone in the liver microsome fraction for 5 min.

Determination of CYP2C11 mRNA
by Semi-Quantitative RT-PCR

The expression levels of CYP2C11 mRNA in the
rat liver on postnatal day 21 were determined by the
semi-quantitative RT-PCR method. Total RNA was
isolated from rat liver using Isogen (Nippon Gene,
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Toyama, Japan). For conversion of total RNA to cDNA,
a 20-p.l reaction mixture containing reverse transcrip-
tase was prepared according to the manufacturer’s in-
structions (TaKaRa, Osaka, Japan). For the PCR amplifi-
cation of cDNA, primers for CYP2C11 and cyclophillin,
as an internal standard, were purchased from TaKaRa.
PCR reactions were carried out in a Perkin-Elmer 2400
thermal cyclér (Perkin-Elmer, San Diego, CA) using de-
naturing, anhealing, and extension cycling conditions
of 94°C for:10 s, 56°C for 20 s, and 72°C for 1 min.
All amplifications were carried out for 35 cycles. Am-
plified cDNA products were separated on 1% agarose
-gel. Gels were stained with ethidium bromide and pho-
tographed on an UV transilluminator. The staining in-
tensity was determined by NIH Image software.

Determination of Steroid Hormones

Commercial ELISA kits were used to determine
the levels of steroid hormones in reproductive organs,
serum, and brain. Estrogen in serum was measured
with a 17B-estradiol ELISA kit (Takeda Health Care
Company, Tokyo, Japan). Estrogen in ovaries and brains
was determined with an estrogen ELISA kit (Takeda),
which detects estron, estriol, and estradiol. In the deter-
mination of androgen, a specific detection kit for testos-
terone (Cayman Chemical Company, Ann Arbor, MI,
USA) was used. Hormones were exiracted by adding
10 vol of diethyl ether to the serum or tissues, followed
by homogenization. Aliquots were thoroughly mixed
with a vortex mixer. The ether phase was removed by
evaporation at 37°C with a gentle stream of dry nitro-
gen. The extract was redissolved in 10% methanol, and
the sample was added to a 96-well plate. The levels
of steroid hormones were determined according to the
manufacturers’ instructions.

Statistical Analysis

The results are presented as mean values & SD.
Differences in means were assessed by analysis of vari-
ance (ANOVA), followed by Scheffé’s post-hoc and
Dunnett’s tests for immunoblotting analysis, mRNA
expression levels and determination of enzymatic ac-
tivity, and by Student’s ¢ test for steroid hormones.
P values less than 0.05 were considered statistically
significant.

RESULTS
Alterations in CYP2C11 and Testosterone
Ba~Reductase

Immunoblotting analysis using anti-CYP2C11 an-
tibody showed that the perinatal exposure to TCDD
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at a dose of 800 ng/kg produced a remarkable in-
crease in CYP2C11 in the liver of male rats (Figure 1).
No change was observed. in CYP2C11 expression on
PND 21. However, the expression level of CYP2C11
on PND 49 was three times higher than in the con-
trols. We also determined hepatic CYP2C11 mRNA
expression by semi-quantitative RT-PCR on PND 21
because the protein expression of sex-specific hepatic
enzymes in general is low in prepubertal male rats.
As shown in Figure 2, the CYP2C11 mRNA on PND
21 was expressed at higher levels in TCDD-treated
livers than in those of control animals, and was also
found to increased dose-dependently by perinatal ex-
posure to TCDD. CYP1A1 mRNA expression levels in
TCDD-treated rat liver on PND 49 were also higher
than those of controls in the present study (data not
shown). ‘ 7

We next determined the level of testosterone 5a-
reductase activity in the liver of the female off-
spring born to TCDD-exposed rats. The activity in
the livers of TCDD-exposed rat offspring tended to
be suppressed in comparison to that of the con-
trol females, although without a statistical difference
(Figure 3).

A Postnatal day 49
control  TCDD

47.5

B
% 4} DOControl
g BTCDD
5 3
g
22
2
k=
21

ND ND

0
5 21

Posinatal days-

FIGURE 1. Expression of CYP2C11 in the liver of male rats. Effects
of TCDD on the expression levels of CYP2C11 were determined by
Western blotting. Liver microsomes from male rats on PNDs 5,21, and
49 were collected and placed on acrylamide gel. Anti-rat CYP2CI11
antibody was used to detect the expression levels of CYP2C11 apo-
protein. (A) Electrophoresis of the Western blot on PND 49, (B) The
graph represents band intensities of the Western blot. Values repre-
sent the mean - 5D of three samples. Open bars: contrel; closed bars:
800 ng TCDD/kg. *: Significantly different at P < 0.05 from corte-
sponding control.
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FIGURE 2. Effects of TCDD on expression of CYP2C11 mRNA in
liver on PND 21. The expression levels of CYP2Ci1 mRNA in the
liver of male rats exposed to TCDD at 0, 200, or 800 ng/kg on PND 21
were determined by semi-quantitative RT-PCR. (A} Electrophoresis
of RT-PCR products. (B) Intensities of ethidium bromide staining of
electrophoresis. Values represent mean £ SD of four samples. ™,

*: Significantly different at P < 0.00%, P < 0.01, respectively, from -

control.

Sex-Steroid Hom‘_tdne" Levels in Serum,
Reproductivé Organs, and Brain

The levels of hormones in serum, reproductive
organs, and brain of rats on PND 5 are shown in
Figures 4, 5, and 6, respectively. The serum es-
trogen and testosterone levels were not signif-

icantly - affected by TCDD exposure (Figure 4), -

although the 17B-estradiol concentration is sup-
pressed in adult female rats by a high TCDD dose
[19,20].

In the reproductive organs and brain, we deter-
mined total estrogens including estron, estriol, and
estradiol by ELISA because the metabolism of estra-
diol is relatively fast in the ovary and the amount
of estradiol in the brain is very low. There was
no difference in ovarian estrogens between female
pups exposed to TCDD and those not exposed, but
testosterone concentrations in the testes of TCDD-
treated males were affected by TCDD treatment
(Figure 5). ,

Circulating steroid hormones reach the brain.
Testosterone is converted to estrogens in the neona-
tal brain [21]. Figure 6 presents the levels of hor-
mones in the brain on PND 2. In the females, perinatal
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FIGURE 3. Testosterone Sa-reductase activity in liver microsomes
of TCDD-exposed fernale rats. Microsomes were obtained from the
liver on PNDs 5, 21, and 49. Values represent the mean £ SD of
three samples. Open bars: control; closed bars: 200 and 800 ng
TCDD/kg.

exposure to TCDD did not significantly affect levels of
either estrogens or testosterone. In contrast, it signifi-
cantly increased the testosterone and estrogen level in
males. '
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FIGURE 4. Sex-steroid hormones in serum. The levels of steroid
hormones in the serum of TCDD-exposed rats were determined by
ELISA. The serum was collected from neonatal pups on PND3. Upper
panel: male; lower panel: female. C: control, T. 800 ng TCDD/kg.
Values represent the mean + SD of 11-13 samples.
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FIGURE 5 Sex-steroid hormones in reproductive organs. The ef-
fects of TCDD on the synthesis of steroid hormones in the testis and
ovary of rats on PND 5 were determined by ELISA. Upper panel:
testosterone; lower panel: estrogens. C: control, T: 800 ng TCDD/ kg.
Values represent the mean £ 5D of 3-5 samples. **: Significantly dif-
ferent at P < 0.01 from control.

DISCUSSION

Our previous reports have shown that exposure to
TCDD during fetal and lactational period influences
sexual dimorphism in sweet preference or the male sex-
ual behavior after sexual maturation [22,23]. CYP1Al
mRNA, a sensitive marker ifi the liver of rodents ex-
posed to TCDD, was significantly induced by the same
protocol of exposure on PND 49 [24]. Large amounts
of TCDD were also detected in livers of offspring on
PND 49 [24]. In the present study, CYP1A1 mRNA ex-
pression levels in TCDD-treated rat liver were higher
than those of controls on PND 49, as the same as re-
ported previously [24]. Thus, the effect of TCDD expo-
sure during the fetal and lactational periods continues
until sexual maturation. Therefore, we had a working
hypothesis that residual TCDD caused the overexpres-
sion of CYFP2C11 protein measured on PND 49.

Since the protein expression of sex-specific hepatic
enzymes in general is low in prepubertal male rats,
we determined hepatic CYP2C11 mRNA expression by
semi-quantitative RT-PCR on PND 21. The CYP2Cl11
mRNA was expressed at higher levels in TCDD-treated
livers than in those of control animals. The level of
CYP2C11 mRNA expression was dose-dependently in-
creased by perinatal exposure to TCDD. However, the
expression levels of CYP2C11 decreased in the liver
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FIGURE 6. Sex-steroid hormones in brain. The effects of TCDD on
the levels of steroid hormones in the brain of rats were determined by
ELISA. Brains were collected from neonatal pups on PND 2. Upper
panel: males; lower panel: females. C: control, T: 200 ng TCDD/kg.
Values represent the mean & SD of 4-6 samples. *, **: Slgnlflcantly
d1ffe1ent at P < 0.05, P < 0.01, respectively, from control.

of adult rats treated with the Ah receptor agonist 3-
methylcholanthrene, whichis a polyaromatic hydrocar-
bon (PAH), after sexual maturation [25,26]. Exposure to
another Ah receptor agonist, benzola ]pyrene, which is
alsoa PAH or TCDD, suppressed the expression level of
CYP2C11 in cultured hepatocytes [27,28]. Thus, in our
study we relinquished the above hypcthesis and spec-
ulated that the residual TCDD does not directly induce
the overexpression of CYP2C11 in liver on PND 49.
Fujita et al. [29] also reported elevation of the
CYP2C11 expression level in the liver of mature rats
treated with benzola Jpyrene, a PAH, during the necna-
tal period. However, neonatal exposure to tamoxifen
decreased expression of hepatic CYP2C11 protein in ad-
dition to reducing testicular weight [30]. Our previous
report showed that perinatal exposure to TCDD did
not alter testicular weight of male rats at 65-120 days
of age [31]. We remark that perinatal exposure to TCDD
or other Ah receptor (AhR) agonists during the neona-
tal imprinting results in the up-regulation of hepatic
CYP2C11 expression after sexual maturation. It is sug-
gested that AhR-mediated signals affect the hormonal
imbalance during the neonatal imprinting periods.
Sexual differences in the brain arise through neona-
tal exposure to steroid hormones, testosterone and es-
trogen, from the gonads. Therefore, we determined the
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levels of steroid hormones in the serum, gonads, and
brains of neonatal pups. In the females, levels of estro-
gen and testosterone were not significantly changed in
any tissue, This lack of effect on sex steroid hormones in
females, reflects the fact that Sa-reductase activity was
not affected by the perinatal exposure to TCDD in the
livers of female rats. Effects of exposure to TCDD on es-
trogencan be seen only at higher doses in adult females
{19,20].

In contrast, the levels of testosterone in the testes
of neonatal pups were significantly increased and the
serum testosterone tended to be increased, but not sig-
nificantly, by TCDD exposure in the present study. Dur-
ing PND 21-70, it was reported that elevations of serum
testosterone were not statlshcally significant in TCDD
exposed pups [32-34]. Our previous study also exam-
ined that the serum levels of pups on PND 49 was not
s1gn1f1cantly influenced by TCDD exposure [31]. Con-
trary, Haavisto et al. [35] reported that testosterone lev-
els in serum were significantly elevated and testicular
testosterone content was slightly increased (but not sig-
nificantly) in pups on PND 19.5. These controversial re-
sults in the weaning phase and after are still unclear, but
it can be speculated that there might be the specific pe-
riod when TCDD affect circular and testicular levels of
testosterone, Furthermore, we demonstrated the effects
of TCDD on expressions of 5a-reductase and androgen
receptor in the ventral prostate, and on the alterations of
the external genital organs including ventral prostates
at PND 49 and after [31,36]. Thus, effects of TCDD on
testosterone synthesis or metabolism may induce alter-
ation of sexual maturation in male rats.

To confirm that exposure to TCDD increased the
level of testosterone in the testes and then affected
testosterone imprinting, we determined the levels of
testosterone and estrogens in the neonatal brains of
males. The levels of both steroids were significantly in-
creased. Thus, this evidence suggests that the changes
of testosterone metabolism in the neonatal brain influ-
enced the hepatic CYP2C11 induction after masculin-
ization. In the present study, we used the total brain
homogenate to detect the steroid hormones. However,
the regional production and effects of steroid hormone
are important for neonatal imprinting. Further study is
needed to clarify this point.

Testosterone is synthesized from androstenedione
by 17B-hydroxysteroid dehydrogenase, and is metabo-
lized to.dihydrotestosterone by 5a-reductase or is con-
verted to 17B-estradiol by CYP19[21]. The Sa-reductase
activity in brain is high during perinatal development,
and decreases with age and distributes in the hypotha-
lamus as well as in other brain regions composed of
white matter fibers [38]. The 5a-reductase type 2ZmRNA
increases after GID 18, peaks on postnatal day 2, then
decreases gradually, suggesting that this pattern of ex-
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pression appears to be correlated with testosterone syn-
thesis in the testis [39]. CYP19 plays a critical role
in sexual differentiation in the brain of rodents. The
regional distribution of CYP19 mRNA in the preop-
tic/hypothalamic area of the perinatal brain closely reg-
ulates testosterone and estradiol levels, which leads to
sexual differentiation in the brain [38]. Therefore, we
determined Sa-reductase type 2 and CYP19 mRNA ex-
pression levels in perinatal brain on GD 20. There are
no significant differences in both gene expression levels
between the control and TCDD-treated male animals
at doses of 100, 200, and 400 ng/kg (data not shown).
Only the high dose of 1600 ng TCDD/ kg suppressed the
Sa-reductase expressmn However, our previous work
demonstrated that CYP19 expression and its aromatase
activity in the brain of rats on GD 20 or on postnatal
day 2 were décreased by prenatal exposure to TCDD
[22], suggesting that TCDD slightly influences testos-
terone metabolism in the developing brain of rats. In
addition, exposure to coplanar PCBs and PCDDs al-
tered the activity of CYP19 in endometrial carcinoma
cells and the hypothalamus [40]. This report supports
our present result. Thus, it suggests that the changes
of testosterone metabolisms in the neonatal brain cause
the overexpression of CYP2C11 in the liver of mature
male rats.

The expression of CYP2C11 in sexually matured
liver is mainly regulated by GH profiles, which are
modulated by releasing testosterone from the testes
and by conversion to estradiol in the brain during the
neonatal period: Thus, one of the possibilities suggested
is that the changes of testosterone metabolism in the -
neonatal brain cause the overexpression of CYP2C11
in the liver of mature male rats. Further studies are
needed to clarify whether or not alteration of testos-
terone metabolism or other factors directly contribute
to the disruption of the regulation of CYP2C11 expres-
sion in mature liver.

In the current study, we concluded that environ-
mental pollutants such as dioxins or other PHAHs
could influence hormonal imprinting during the fetal
and neonatal periods.
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