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Abstract

Although T cells were previously believed to recognize only peptide antigen
associated with the major histocompatibility complex (MHC), recent studies have
shown that there are unique T cells specialized for recognition of lipid or glycolipid
antigens bound to the MHC class I-like CD1 molecules (CD1a, b, ¢ or d). Among
these lipid-specific T cells, CD1d-restricted T cells, also referred to as natural killer
(NK) T cells, are of special interest as a target of drug development, since their role in
immunoregulation has been indicated in various physiological or disease conditions
including autoimmunity. They are unique in their homogeneous ligand specificity for
a-glycosylated sphingolipid and secrete large amounts of regulatory cytokines
shortly after T cell receptor (TCR) engagement. The first glycolipid identitied as an
NKT cell ligand was a-galactosylceramide («-GalCer) derived from marine sponges.
a-GalCer exhibits significant immunomodulatory effects by stimulating NKT cells.
However, we found that an altered analogue of a -GalCer with a shorter sphingosine
chain (OCH), is more useful than o -GalCer for treatment of autoimmune disease
models, because of its ability to selectively induce IL-4, a key cytokine for control of
autoimmunity. As such, altered glycolipid ligands (AGL) of «-GalCer appear to be

promising reagents for treatment of human autoimmune diseases.
Introduction

Autoimmune diseases such as multiple sclerosis (MS) and type [ diabetes mellitus
remain a major health problem in the 21" century that provide a fundamental
challenge for drug development. The list of currently available drugs for MS includes
interferon-f and copolymer 1 (Cop 1) for long-term management of the disease [1,2].
However, these drugs have only limited value at best, as they cannot halt the
progression of neurological disability in a majority of the patients with MS.

Understanding the immunological mechanisms underlying MS has been greatly
facilitated in the past two decades due to studies on an animal model for MS,
experimental autoimmune encephalomyelitis (EAE) [3,4]. In addition, clinical trials
of cytokines [5] and synthetic peptides |6] have given us deep insights into the
pathogenesis of MS. A large body of evidence now supports the view that MS is an
autoimmune disease, in which autoimmune T cells play a central role in mediating
the inflammatory process within the central nervous system (CNS) [7,8]. The
pathogenic autoimmune T cells involved in EAE/MS are known to produce

interferon-y (IFN-y), IL-2 and tumor necrosis factor (TNF)-a when properly activated
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with antigen. This pattern of cytokine production would define the pathogenic
autoimmune T cells as being T helper type 1 (Th1) cells. Of note is that Th1 cells and
Th2 cells (the latter secreting IL-4, IL-5, [L-10 and IL-13) cross-regulate each other via
secreting cytokines and that the cytokine milieu is critical for inducing Th1 or Th2
subsets from naive T cells. A previous observation that IFN-y treatment induced
exacerbation of MS [5] is now interpreted as a strong evidence for the role of Th1 cells
in MS, given that IFN-y would augment the activity of this T cell subset.

Regarding the target antigen for the Thl cells mediating MS pathology, myelin
basic protein (MBP), proteolipid protein (PLP), and myelin oligodendrocyte
glycoprotein (MOG) have been explored as the prime candidates {9,10,11].
Immunization of susceptible laboratory animals with these antigens induces
development of EAE, characterized by ascending limb paralysis with inflammatory
demyelinating lesions in the CNS. In a recent clinical trial, a peptide analogue of the
immunodominant sequence of MBP has caused clinical exacerbation in a proportion
of the patients [6], although this peptide was expected to halt disease progression.
This unsuccessful trial proved that T cells responding to the MBP mimic, that are
most probably MBP-reactive autoimmune T cells, play an important role in these
patients.

To control pathogenic Thl cells by inducing Th2 bias, infusion of Th2 cytokines
could be considered for clinical use. However, clinical trials of recombinant cytokines,
except for [FN-fi, have mostly failed because of accompanying side effects. Given a
physiological role of each cytokine in wvivo, cytokine therapy should work if an
optimal amount of the cytokine is delivered selectively to the inflammatory lesions.
To this end, non-pathogenic autoimmune T cells that can accumulate in the
inflammatory lesions are being considered as a potential vehicle for cytokine delivery.
Indeed, studies have documented that autoimmune T cells transfected with the genes
encoding anti-inflammatory cytokines can suppress autoimmune inflammation
[12,13]. However, this strategy seems to be impractical unless major technical

advances in culturing autoimmune T cells in vitro take place.
Regulatory cells as targets for drug development

Although self-reactive T cells are eliminated in the selection process in the thymus,
it is now established that the negative selection for the potentially dangerous T cells
(central tolerance) is not perfect; in fact autoimmune T cells represent a normal
component of the T cell repertoire [14]. To maintain good health and to avoid

development of autoimmune diseases, the autoimmune T cells exported from the



thymus have to be properly controlled in the periphery by a mechanism that would
protect against tissue injury mediated by autoimmune attack. Such control is referred
to as peripheral tolerance. It is now widely accepted that regulatory cells play
essential roles in peripheral tolerance. Natural killer (NK) T cells [15,16] on which we
will focus in this review are within the up-dated list of regulatory cells, along with
CD25'CD4’ T cells [17], and NK cells [18]. Because regulatory cells would control
harmful auteimmunity in a highly sophisticated manner mainly via producing
cytokines, it is an attractive therapeutic strategy to induce or strengthen the
regulatory cells and let them produce cytokines in the relevant sites. Peptides have
been exploited for inducing regulatory T cells in EAE and MS, which proves the
feasibility but has also revealed the potential problems for clinical use {6, 19].

Properties and roles of NKT celis

NKT cells are a minor subset of lymphocytes that were classically defined as
cells expressing both T cell receptor (TCR) and NK cell markers (such as NKRP1).
Studies have revealed that the majority of the NKT cells are reactive to a-
galactosylceramide (a-GalCer) bound to CD1d molecule. «-GalCer is a
glycosylceramide containing an a-anomeric sugar with a longer fatty acyl chain (C,)
and sphingosine base (C,;) (Fig 1). The a-GalCer-reactive NKT cells have been most
intensively studied in the past decade [reviewed in 15,16]. Here we focus on the
glycolipid-specific NKT cells and the term “NKT cells” will be used for this cell type
below.

As reflected by the name, NKT cells have unique properties that are intermediate
between those of innate and acquired immunity. Here we point out just two of these:
the semi-invariant TCR expression and the rapid production of large amounts of
cytokines. The TCR of NKT cells is composed of the invariant u-chain [Val4-Ja281 in
mice; Va24-JaQ in human| and the B-chain that is heterogeneous but uses a selective
gene segment [VB8.2 or VB7 segment in mice; V11 in humans]. This restricted TCR
expression is consistent with their homogeneous specificity for glycosylceramide
bound to the non-polymorphic CD1d molecule. Upon TCR engagement, the NKT
cells would rapidly produce large amounts of [L-4 and IFN-y. The immunological
role of NKT cells has been evaluated intensively, making use of NKT cell-deficient
mice (CD1d knockout or TCR Ja281 knockout) or NKT cell TCR transgenic mice.
Nowadays, it is widely recognized that they play a critical role in tumor rejection,
regulation of autoimmune diseases, protection against infection, and tolerance

induction [15,16]. Of interest, the number of NKT cells are greatly reduced in human
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autoimmune diseases, such as type I diabetes and MS [20,21], suggesting that NKT

cells can be a target for treatment of autoimmune diseases.
Glycolipid ligands for NKT cells

a-GalCer, the representative ligand for NKT cells, was first isolated from the
marine sponge Agelas Manritanius {22]. Synthetic a-GalCer [(2S, 3S, 4R)-1-O-(o-D-
galactopyranosyl)-N-hexacosanoyl-2-amino-1,3,4-octadecanetriol | and its
derivatives were later used to study glycolipid recognition by NKT cells (Fig 1). In
the pioneering work by Taniguchi and his colleagues [23], it was shown first that
ceramide itself or B-galactosylceramide ($-GalCer) do not induce proliferation of
mouse NKT cells, indicating that a-anomeric conformation of the sugar moiety is
essential for the glycolipid to act as an efficient ligand for NKT cells. It is of note that
a-linked glycosphingolipids have not been found in mammalian cells and therefore,
a-GalCer and its derivatives are not natural ligands for NKT cells. Among a-liked
glycosphingolipids examined, «-GlcCer [(2S, 35, 4R)-1-O-(a-D-glucopyranosyl)-N-
hexacosanoyl-2-amino-1,3,4-octadecanetriol] was stimulatory for NKT cell
proliferation, but «a-ManCer {(25S, 35S, 4R)-2-amino-N-hexacosanoyl-1-O-(a-D-
mannopyranosyl)-1,3,4-octadecanetriol] was not. This indicates that although the 4-
hydroxyl configuration of the sugar may not be important, the 2-hydroxyl group is
probably critical for contact with the TCR. Taniguchi et al. also proved that 3,4-
hydroxyl groups of the phytosphingosine are important. NKT cells also recognized
diglycosylated ceramides such as Galal-6Galal-1'Cer. Of note, the «-anomeric
configuration of the inner sugar was critical for NKT cell recognition, but that of the
outer sugar was not.

Comparison of a-GalCer with its derivatives having a shorter hydrophobic chain
demonstrated that truncation of the fatty acyl chain as well as that of the
sphingosine base reduces the stimulatory activity of the sphingolipid [23]. In contrast,
Brossay et al. reported that an a-GalCer derivative with a very short fatty acyl chain
(C,) was still efficient in stimulating mouse NKT cell hybridomas [24]. The
discrepancy in the results can be explained by the differences in the properties of
hybridoma cells used by Brossay et al. {24] and the freshly isolated NKT cells from
NKT transgenic mice used in the prior study [23]. Shortly after a-GalCer was
identified as a ligand for mouse NKT cells, it was found that human Va24 NKT celis
would also recognize a-GalCer bound to CD1d [25,26}. This striking conservation of
human and mouse NKT cells in recognition of the glycolipid/CD1d complex may

indicate the essential role of NKT cells in mammalian species.
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Besides a-GalCer and its derivatives, natural glycosylphosphatidylinositols (GPI)
[27] and phospholipids [28] have been reported to stimulate NKT cells. It is
interesting to postulate that GPI recognition by NKT cells may help trigger antibody
production and contribute to eradicating parasite infection. However, there are still
controversies regarding the NKT recognition of GPI or phospholipids. We need to
explore these possibilities more intensively in the future.

Treatment of EAE with a-GalCer

EAE is the prototype Th1 autoimmune disease model that helps evaluation of new
therapeutic compounds designed for autoimmune disease. Given the property of
NKT cells to produce IL-4, we speculated that a-GalCer might protect against
development of EAE by inducing IL-4 production by NKT cells. To evaluate
preventive effects of a-GalCer on EAE, we induced EAE in C57BL/6 (B6) mice by
immunizing with MOG 35-55 peptide [29]. Although we tried protocols with varying
doses of a-GalCer or different timing of injection, we did not observe any significant
effect of the synthetic glycolipid on the clinical course of EAE. Of note, a-GalCer did
strongly stimulate NKT cells and induced cell proliferation as well as IL-4 production.
However, it also induced IFN-y production by NKT cells (Fig 2, middle). We
postulated that a-GalCer could not prevent EAE because the therapeutic effect of IL-
4 was neutralized by the IFN-y simultaneously produced by NKT cells. We showed
several lines of evidence supporting this idea {29]. First, we found that a-GalCer
would inhibit EAE induced in IFN-y knockout mice whose NKT cells are unable to
produce IFN-y but could produce IL-4. Secondly, a-GalCer was found to augment the
clinical signs of EAE induced in IL-4 knockout mice, whose NKT cells would
produce IFN-y but not 1L-4. Thirdly, we showed that stimulation of NKT cells with a-
GalCer in the absence of CD28/B7.2 co-stimulation would lead to selective 1L-4
production. Injection of a-GalCer-pulsed spleen cells whose B7.2 expression was
blocked by antibody led to the suppression of EAE in wild-type mice. As such, EAE
could be prevented when ligand stimulation would lead to selective production of
IL-4 by NKT cells i1 vitro (Table).

Altered glycolipid ligands and their immunomodulatory effects
Conventional T cells are known to change their pattern of cytokine production,

when they are triggered with a suitably altered ligand. Such a ligand, referred to as
altered peptide ligand (APL), generally has an alternative residue at a critical site(s)
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responsible for TCR contact. Studies showed that APLs of MBP could change MBP-
reactive Th1 T cells into harmless and disease-protective Th2 T cells [6,30]. Given this
information, we hypothesized that there might exist an altered form of a-GalCer, or
an altered glycolipid ligand (AGL), that would change the cytokine profile of NKT
cells from ThO type (producing both IFN-y and IL-4) to Th2 type (predominantly
producing IL-4). Such a ligand could be an ideal therapeutic for EAE.

One may postulate that a modification at the TCR contact site of a-GalCer is
appropriate for obtaining such an analogue. Regarding the lipid antigen recognition
by T cells, it is currently believed that the hydrophilic cap of the sugar moiety
contacts the TCR of NKT cells and hydrophobic aliphatic chains bind to the CD1
molecule expressed by antigen presenting cells [31]. Previous studies have identified
the critical parts of a-GalCer for inducing NKT cell proliferation [23,24]. We thus
synthesized AGLs of a-GalCer with modification at the known critical sites or in the
length of the CD1d-binding aliphatic chains (Fig 1). We have so far examined three of
these AGLs in depth for their abilities to stimulate NKT cells and to modulate clinical
course of EAE.

We first noticed that the AGLs NH and 3,4D were unable to induce a proliferative
response by NKT cells in vitro. In contrast, the third AGL, OCH, possessing a shorter
sphingosine chain could induce a significant proliferation of spleen NKT cells,
although the response was about five- to tenfold lower than that induced with «-
GalCer [32]. We also measured the amounts of IFN-y and IL-4 in the culture
supernatant. We could not detect these cytokines in the supernatant of spleen NKT
cells stimulated with NH or 3,4D. Stimulation with a-GalCer and OCH were found
to induce both IFN-y and IL-4. Of interest, OCH induced less IFN-y but more 1L-4 in
vitro compared with «-GalCer. In parallel, we measured the serum levels of the
cytokines after intraperitoneal injection of the glycolipids into wild-type B6 mice (Fig
3A). Injection of a-GalCer induced a rapid elevation of IL-4 with the peak value at 2
h and a delayed and prolonged elevation of IFN-y in the mice. While NH was non-
stimulatory, injection of 3,4D induced a lower production of both IL-4 and IFN-y than
did a~GalCer injection. Most interestingly, OCH injection dissociated the production
of IL-4 and IFN-y : production of IL.-4 was unaffected but IFN-y was much lower (Fig
3A; right panel). Injection of OCH into mice deficient for NKT cells did not induce an
elevation of serum cytokines, indicating that NKT cells mediated the robust cytokine
responses in the wild-type mice.

Given that OCH would induce predominant IL-4 production by NKT cells, we
postulated that this glycolipid might prevent development of EAE by inducing Th2
bias of NKT cells. In support of this postulate, intraperitoneal or oral administration



of OCH on the day of sensitization with MOG 35-55 peptide was found to prevent
development of EAE in wild-type mice in both clinical and pathological parameters
(Fig 3B; left panel). We interpreted that the effect of OCH on EAE was mediated by
IL-4 produced by NKT cells, because OCH was not effective in EAE induced in NKT
cell-deficient or IL-4 knockout mice (Fig 3B; right) or when it was co-injected with
neutralizing antibody against IL-4 (Fig 3B; middle). Furthermore, I1gG1 antibody
against MOG 35-55 peptide (the hallmark of Th2 response) was elevated in the mice
treated with OCH, demonstrating the Th2 bias of autoimmune T cells by OCH
treatment.

Since OCH induced a weaker proliferation of NKT cells than did a-GalCer, it was
theoretically possible that a-GalCer, given at lower doses, might induce selective
induction of IL-4 by NKT cells. However, we experimentally ruled out this
possibility: lower doses of a-GalCer injected into wild-type mice induced elevation of
both IL-4 and IFN-y and did not alter the ratio of serum IFN-y to IL-4 at their peak
[32].

a-GalCer therapy for other autoimmune disease models

While we were studying the preventive effect of OCH on EAE, other laboratories
were interested to know if a-GalCer might be preventive against development of
autoimmune type 1 diabetes in NOD mice [33,34,35]. The results of these
independent studies were in basic agreement that multiple injections of a-GalCer
(twice/ week) would induce Th2 bias of NKT cells and significantly inhibit diabetes
development. We have confirmed that multiple injections of a-GalCer as well as of
OCH would suppress diabetes in NOD mice (Miyake et al. unpublished). These
results demonstrate that spontaneous autoimmune disease such as NOD diabetes can
be treated by repeated stimulation of NKT cells with glycolipid ligands. Given the
unique property of OCH as inducing Th2 bias of NKT cells, it is of interest to know if
OCH is more efficacious than a-GalCer in promoting disease protection. We would
propose that the dynamic changes of NKT cells after repeated stimulation need to be
further characterized, given that a-GalCer injection would induce a short-term
depletion of NKT cells i1 vitro .

The preventive effect of o-GalCer on EAE has recently been reported with
protocols different from ours [36,37]. In these studies, a-GalCer was injected prior to
sensitization with peptide {36] or a mixture of a-GalCer with encephalitogenic
peptide was co-immunized {37]. We have tried to reproduce these results, but to date

have been unsuccessful for unknown reasons. In any event, it seems that a singie
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