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Abstract

Effects of amino acid replacement at the channel pore mouth of P2X,
receptor/channel on multivalent cation channel block were investigated. When Asn®> was
replaced with various amino 'acid residues with neutral side chains (Gly, Ala, Val, Leu and
Ile), the block by Ca** was attenuated according to the sizes of the side chains. The block
by La® was also greatest with the Gly-substituted mutant, but this preference was not found
for the block by other multivalent cations tested. The side chain at the channel pore

mouth may interfere with the access of Ca** block by steric hindrance.

Keywords:
P2X, receptor
ion channel _
Ca2+
multivalent cation block
site-directed mutagenesis

Xenopus oocytes
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1. Introduction

P2X receptors are ion channel-forming proteins which are activated by extracellular
ATP, and its roles in excitatory -neurotransmission have been demonstrated in various
tissues (Burnstock, 1997; Khah, 2001). To date, ﬁt least seven subclasses (P2X, ) have
been cloned, and they have been shown to form homo- or heteromeric receptors which act
as functional ion channels (North and Surprenant, 2000). The analysis of the hydropathy
profiles of amino acid sequences of P2X receptors has shown that each subclass consists of
two transmembrane domains (TM1 and TM2) and one long extracellular domain between
them (El). A line of experimental evidence supports the contribution of TM2 to the
formation of the channel pore (Rassendren et al., 1997; Egan et al., 1998; Migita et al.,
2001), and recent findings have also suggested the contribution of TM1 to the pore
formation (Jiang et al., 2001; Haines et al., 2001). An aspargine residue at the position
333 in TM2 of P2X, receptor (Asns”) is believed to exist near the outer mouth of the
channel pore, and serve as a key residue which determines single chanﬁcl conductance
(Nakazawa et al., 199821) and prevents the dilation of the channel pore upon long-lasting
receptor activation (Virginio et al., 1999). Ca® and other divalelnt cations (Nakazawa and
Hess, 1993; Ding and Sachs, 1999, 2000; Negulyaev and Markwardt, 2000) and trivalent
cations (Nakazawa et al., 1997) are known to inhibit ionic current permeating through P2X
receptor/channels. In the present study, we replaced Asn®® of P2X, receptor/channel with
various amino acids, and investigated the block by Ca® and other muitivalent cations of
these mutant channels to elucidate the interaction between these ions and the channel‘ pore

mouth,



2. Materials and methods

Mutants of P2X, receptor constructed from the cloned rat P2X, receptor (Brake et
al., 1994) were kindly supplied by Prof. R. A. North, except for N333I, N333V, N333L and
N3331, which were constructed by site-directed mutagenesis in our laboratory as described
(Nakazawa et al., 1998b). Channels were expressed in Xenopus oocytes and ionic currents
permeating through them were measured as previously described (Nakazawa and Ohno,
1996; Nakazawa et al., 1998b). Oocytes were bathed in ND96 solution containing (in
mM) NaCl 96, KCl 2, CaCl, 1.8, MgCl, 1, HEPES 5 (pH 7.5 with NaOH). ATP
(adenosine 5'-triphosphate disodium salt; Sigma, St. Louis, MO, U.S.A.) was applied by
superfusion for about 6 s with a regular interval of 1 min. All the divalent and trivalent
cations used were chloride salts of reagent grade. The trivalents cations and Mn** were
dissolved in standa_rd ND96 solution. When block by Ca™ or Mg* was assessed, these
cations were dissolved in Ca*-free, Mg*-free ND96 solution. The current amplitude in
the presence of trivalent cations and Mn® was normalized to that in the absence of these
cations. Under divalent cation-free condition, Xenopus oocytes become electrically too
leaky to record current responses to ATP because of the opening of divalent cation-
sensitive non-selective cation channels (Arellano et al., 1995; Zhang et al., 1998). Thus,
for the current block by Ca* or Mg®, the current amplitude was normalized to that in the

presence of 0,18 mM Ca®* or Mg?, respectively.
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3. Results

By increasing extracellular Ca®, ionic current activated by 30 uM ATP was
decreased (Fig. 1A).  Figure 1B compares the block by Ca®: of ionic current through
P2X, receptor/channel mutants that lpossess amino acid residues with neutral side chains at
position 333 (N333G, N333A, N333V, N333L and N333I). Among these neutral mutants,
N333G was the most sensitive to Ca™, and the sensitivity was lowered almost completely
according to the size of the side chains (Gly > Ala = Val > Leu > Ile). The block by La**
was also greatest with N333G; the remaining neutral mutants uniformly exhibited lower
sensitivities (Fig. 1D).

Figure 1C compares the block by Ca® of the channels that possess amino acid
residues with negatively polarized (WT and N333Q) or charged (N333D and N333E)
residues at the position 333.  With introducing aspartic acid at the position 333, the block
by Ca®* was enhanced, suggesting that a negative charge at this position increases Ca®
sensitivity. Howefer, such enhancement was not observed with the introduction of
glutamic acid.  As for the block by La®, the block was not augmented by the introduction
of glutamic acid (Fig. 1E). The effect of La> on N333D channel was not examined
because the ATP-evoked current permeating through this channel became too small to
analyze the blocking effect quantitatively in the presence of 1.8 mM Ca®, as seen in Fig.
1C.

Tests were made to determine the size-dependence found for the Ca® block was
also found for the block by other divalent cations. Figure 2A shows the block by Mé“ of
the neutral mutéﬁts of P2X, receptor/channel. 'When the magnitude of the block by I mM
Mg* was compared, the size-dependence was found for Ala, Val, Leu and Ile, but not for
Gly; the order was Ala > Val > Leu > Gly > Ile. On the other hand, no size-dependence

X
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was found for the block by Mn*" of these neutral mutants (Fig. 2B).

The effects of various tri,va_llent cations were compared between N333G and N333L
to determine whether or not selective block of N333G channel similar to that observed with
La®* was found. Among four trivalent cations tested (AI**, Ce*, Gd** and Nd™), none of
then; preferentially blocked N333G channel; the cations rather preferentially blocked

N333L channel (Fig. 2C).



4. Discussion

By comparing the effects on the mutants possessing neutral amino acid residues at
the position 333, we have demonstrated that the size of amino acid residues at this position
affects the block by Ca* of P2X, reéeptor/channel. P2X, receptor/channel is permeable to
both Na* and Ca¥, but Ca** provides much smaller conductance than Na* does (Nakazawa
and Hess, 1993). Ca* reduces net ionic current through P2X, receptor/channel by its
competition with Na* at the channel pore. The block observed in the present study may
mainly reflect this competitive inhibition. Thus, the size-dependence of the Caz* block
indicates that larger amino acids at the channel pore mouth interferes with the access of
Ca*. For the mutants with a negative charge at the position 333, N333D, but not N333E,
exhibited higher sensitivity to Ca® than the wild type channel. Tflis difference may due to
a smaller size of aspartic acid residues than glutamic acid residues. -

The selective block of the glycine-substituted mutant was also found for La*, but
not for other multivalent cations tested, suggesting that the size-dependence is not uniform
among cation species. One possible explanation for such diversity is the sizes of cations
(or those of their hydrated forms). For example, the Shannon and Prett's ionic radius of
Ca* is 1.14 A at coordination number of 6, and this is larger than that of Mg? (0.86 A) or
Mn? (0.81 A) (Cotton et al., 1995). Similarly, the ionic radius of La* of 1.06 A is larger
than those of other trivalent cations tested in the present study (Al*, 0.68; Ce*, 1.03; Gd*,
0.94; Nd*, 0.99; in ,Z\). Large multivalent cations may be more readily affected by steric
hindrance at the position 333.

In additiAon to size, negative polarity or charge at the position 333 is also a
determinant of the magnitude of the Ca* block because, when comparing among amino

acid residues of similar s}zes (Val, Asn and Asp; Chothia, 1975), the sensitivity was
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increased according to negativity (Val < Asn < Asp; Fig. 1B and C). The sensitivity order
of Val < Asn was also found for the block by Mg, Mn? (not shown) and La®™ (Fig. 1D
and E), and thus, negétive polarity at this position may attract multivalent cations regardless
of cation species.

The present findings of the roles of the amino acid residue at the position 333 for
multivalent cation block may further supports the importance of this position as the
entrance of the channel pore, and may provide useful information about the relatio_nship

between the channel structure and functions including ion selectivity.
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Figure legends

Fig. 1.

A. Ionic currrent activated by 30 uM ATP in a Xenopus cocyte expressing the wild type
P2X, receptor/channel in the presence of 0.18 (left) or 5.4 mM Ca™ (right). The oocyte
was held at =50 mV and stepped for 400 ms to —80 mV every 2 s.

B-E. .Concentration-response curve for Ca* (B, C) and La®* (D, E) block on channels
with neutral (B, D) or negatively polarized and charged (C, E) amino acid residues at the
position 333. Current was measured as in A, and responses at -80 mV were normalized to
those in the presence of 0.18 mM Ca®™ or in the absence of the La** (see Materials and
methods). Each symbol and bar represent the mean and S.E. obtained from 4 to 6 oocytes

tested.

Fig. 2. Block by various multivalent cations of N333 neutral mutants. Current was
measﬁred as in Fig. 1A. Each symbol and bar represent the mean and S.E. obtained from
4 to 5 oocytes tested.

A, B. Concentration-response curve for Mg* (A) and Mn®* block (B) on channels with
neutral amino acid residues at the position 333. Current responses at -80 mV were
normalized to those in the presence of 0.18 mM Mg* (A) or in the absence of Mn™ (B).
C. Effects of AP*, Ce*, Gd* and Nd®* on N333G (filled symbols) and N333L (open
symbols) mutant channels. Current responses at -80 mV were normalized to those in the

absence of trivalent cations.
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