

厚生科学研究費補助金(生活安全総合研究事業) 分担研究報告書

分子生物学的手法によるヒト型エストロゲン受容体異種細胞発現系 に関する研究

分担研究者 中澤 憲一 国立医薬品食品衛生研究所・薬理部第2室室長

各種エストロゲン様化学物質のヒトに対する影響を評価する目的で、昨年度までに確立したヒト型受容体を分子生物学的手法により異種細胞に発現させた系を用いて検討を行なった。エストロゲン様化学物質の標的であるヒト型ニコチン様アセチルコリン受容体をアフリカツメガエル卵母細胞を発現させ、エストロゲン様物質の作用の特性を検討した。その結果、作用は受容体を構成するサブユニットに依存し、抑制作用が主作用であるが抑制/増強の両者が現われる場合もあること、その作用はアセチルコリンの結合に対する競合的なものではないこと等が判明した。また、ヒト型 ATP 受容体で同様の試験を行ない、この受容体もエストロゲン様化学物質の標的となるが、作用はアセチルコリン受容体に比べて顕著ではないことが判明した。

A. 研究目的

各種エストロゲン様化学物質のヒトへの影響を評価する系の開発を目的とし、ヒト型受容体を分子生物学的手法により異種細胞に発現さる.3年度である本年度は、では、1年度までにエストロゲン様化学が対策では、1年度までになることをアフリカツトをアフリカの特性をアフリカン受容体とは構造が大きないます。

きく異なり、かつ相互作用する可能性があることが指摘されているヒト型 ATP 受容体に対する作用を比較検討することを目的とした.

B. 研究方法

ヒト型受容体を発現させる細胞としては、大きく、扱いやすく、安価であるアフリカツメガエル卵母細胞を用いた.ヒト型受容体 cDNA は哺乳動物発現型プラスミドに組み込み、大腸菌を用いて増幅させた.これを鋳型として RNA を in vitro 転写によ

り合成した. ヒト型受容体としては 古典的な神経伝達物質であるアセチ ルコリンのニコチン様受容体, おるこ とが広く認知された細胞外 ATP の P2X7 受容体を用いた. アフリカッコラ ゲナーゼ処理によりろ胞細胞を実体 した. 第 IV, V 期の卵母細胞を実体 顕微鏡下で選別し, これに RNA を注 入した. 18℃で2-5日間の培養後, 電気生理学的手法により受容体に対 する各種化合物の影響を検討した.

(倫理面への配慮)

1回に作製する卵母細胞標本の数は 通常 20 個以上であり、また、同一の アフリカツメガエルより 5 回程度の 卵母細胞の摘出が可能である. よっ て、1 匹のアフリカツメガエルより多 数(100 以上)の標本を作製でき、使 用する動物の数を大幅に制限できる. 動物を死亡させる際には当研究所の 実験動物倫理委員会の規定に従い、 与える苦痛が最小限となる方法を用 いた.

C. 研究結果

ヒト型アセチルコリン受容体を α 3 + β 4 というサブユニットの組み合わ せで発現させた場合,この受容体を 介するイオン電流は 17β -エストラジ オール, 17α -エストラジオール,17

 α -エチニルエストラジオール,ジエ チルスチルベストロール, ビスフェ ノール A, p-ノニルフェノール, p-オ クチルフェノールにより抑制された. 受容体のサブユニット構成を α 4+ β 2に替えた場合、ジエチルスチルベス トロール, ビスフェノール A, p-ノニ ルフェノール, p-オクチルフェノー ルは抑制作用を示したが、17β-エス トラジオール、17α-エストラジオー ルは抑制を示さなかった. また, こ のサブユニットの組み合わせにおい て 17α-エチニルエストラジオール は低濃度で抑制、高濃度で増強とい う 2 相性の作用を示した、核内エス トロゲン受容体の阻害薬であるタモ キシフェンはこれらの作用を阻害せ ず、自らアセチルコリン受容体抑制 作用を示した、抑制、増強のいずれ の場合でもアセチルコリン受容体の 濃度-作用曲線は平行移動せず最大値 が変化した. サブユニットの組み合 わせで作用が大きく変化した化合物 についてサブユニット交換 (α 3+ β 2、 $\alpha 4+\beta 4$) の影響を調べた結果, 作用を決定するのは単独のサブユニ ットではないことが判明した. ヒト 型 ATP 受容体(P2X7)を発現させた 場合、これを介するイオン電流は 17 β-エストラジオールおよびビスフェ ノール A で抑制されたが、抑制の程 度はアセチルコリン受容体で認めら

れたものに比べて顕著ではなかった.

D. 考察

ヒト型アセチルコリン受容体に対 してエストロゲン様物質が影響する ことは、このアセチルコリン受容体 が近年注目されている細胞膜エスト ロゲン受容体の一種であることを示 唆している. エストロゲン様物質の 作用はアセチルコリン受容体を構成 するサブユニットに依存するが、こ れは単独のサブユニットに帰するも のではなくサブユニットにより受容 体が構成された後に現われる性質で あると考えられた. 作用態度は非競 合的であり、アセチルコリンの結合 に対して直接的に影響するものでは ないと推察される。また、エストロ ゲン様物質の結合部位は核内エスト ロゲン受容体と異なるものであると 考えられる. ヒト型 ATP 受容体に対 しては影響が認められたものの、ア セチルコリン受容体に比べると顕著 ではなかった. このことはエストロ ゲン様物質の作用はアセチルコリン 受容体に対して選択的であることを 示している. ATP 受容体がアセチル コリン受容体と構造が大きく異なる ことを考慮すると、アセチルコリン 受容体と類似した構造を有する他の 受容体 (例えばグルタミン酸受容体, γ-アミノ酪酸受容体) に対する影響

の可能性も考えられ、脳、神経系に 対する広い影響も懸念される.

E. 結論

本年度の研究により、ヒト型アセチルコリン受容体に対してエストロゲン様物質が非競合的抑制あるいは ATP 受容体に対する作用に比べ選択的であることが示された。また、これらの研究を通じてアフリカツメガエル卵母細胞がこのようなヒトに対する作用を予見するのに有用であることが示唆された。

F. 研究発表

1. 論文発表

- 1) Nakazawa, K. and Ohno, Y. Modulation by Estrogens and Xenoestrogens of Recombinant Human Neuronal Nicotinic Receptors. Eur. J. Pharmacol. 430, 175-183
- 2) 中澤憲一, "ATP 受容体の構造と 機能", 生体の科学 52: 152-157 (2001)
- 3) Nakazawa, K. ATP receptors. In: "Encyclopedia of Molecular Medicine" (T. Creighton ed.), pp. 282-284, John Wiley & Sons (2001)

- 4) Nakazawa, K. Purinergic receptors. In: "Encyclopedia of Molecular Medicine" (T. Creighton ed.), pp. 2693-2695, John Wiley & Sons (2001)
- 5) Nakazawa, K., Ojima, H. and Ohno, Y. A Highly Conserved Tryptophane Residue Indispensable for Cloned Rat Neuronal P2X Receptor Activation. *Neurosci. Lett.* (2002), in press
- 6) Nakazawa, K., Sawa, H., Ojima, H., Ishii-Nozawa, R., Takeuchi, K. and Yasuo Ohno. Size of Side-Chain at Channel Pore Mouth Affects Ca²⁺ Block of P2X2 Receptor. *Eur. J. Pharmacol.* (submitted)

2. 学会発表

1) 澤英明,中澤憲一,野沢玲子, 竹内幸一,大野泰雄 "ATP 受容体 チャネルの多価カチオン感受性"第75回日本薬理学会総会(2002.3)

2) K. Nakazawa, Sawa, H., Ojima, H, and Y. Ohno, "Effects of amino acid substitution at external channel pore mouth on multivalent cation block of P2X2 recptor"

Purines 2000: Biochemical,
Pharmacological and Clinical
Perspectives (2002. 5)

- 3) 中澤憲一, 大野泰雄 "エストロゲン様物質のヒト型ニコチン様アセチルコリン受容体への影響" 第106回日本薬理学会関東部会(発表予定)
- G. 知的所有権の取得状況

なし

(資料1)

Short communication

Size of Side-Chain at Channel Pore Mouth Affects Ca²⁺ Block of P2X₂ Receptor

Ken Nakazawa¹, Hideaki Sawa^{1, 2}, Hiloe Ojima^{1, 2}, Reiko Ishii-Nozawa², Koichi Takeuchi² and Yasuo Ohno³

¹Cellular and Molecular Pharmacology Section,

^{1. 3}Division of Pharmacology, National Institute of Health Sciences,

1-18-1 Kamiyoga, Segataya, Tokyo 158-8501, Japan

and

²Department of Clinical Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan

All the corresponds should be addressed to:

Ken Nakazawa, Ph.D.

Division of Pharmacology,

National Institute of Health Sciences,

1-18-1 Kamiyoga, Setagaya,

Tokyo 158-8501, Japan

phone: +81-3-3700-9704

FAX: +81-3-3707-6950

E-mail: nakazawa@nihs.go.jp

Abstract

Effects of amino acid replacement at the channel pore mouth of P2X₂ receptor/channel on multivalent cation channel block were investigated. When Asn³³³ was replaced with various amino acid residues with neutral side chains (Gly, Ala, Val, Leu and Ile), the block by Ca²⁺ was attenuated according to the sizes of the side chains. The block by La³⁺ was also greatest with the Gly-substituted mutant, but this preference was not found for the block by other multivalent cations tested. The side chain at the channel pore mouth may interfere with the access of Ca²⁺ block by steric hindrance.

Keywords:

P2X₂ receptor

ion channel

Ca2+

multivalent cation block

site-directed mutagenesis

Xenopus oocytes

1. Introduction

P2X receptors are ion channel-forming proteins which are activated by extracellular ATP, and its roles in excitatory neurotransmission have been demonstrated in various tissues (Burnstock, 1997; Khah, 2001). To date, at least seven subclasses (P2X_{1.7}) have been cloned, and they have been shown to form homo- or heteromeric receptors which act as functional ion channels (North and Surprenant, 2000). The analysis of the hydropathy profiles of amino acid sequences of P2X receptors has shown that each subclass consists of two transmembrane domains (TM1 and TM2) and one long extracellular domain between them (E1). A line of experimental evidence supports the contribution of TM2 to the formation of the channel pore (Rassendren et al., 1997; Egan et al., 1998; Migita et al., 2001), and recent findings have also suggested the contribution of TM1 to the pore formation (Jiang et al., 2001; Haines et al., 2001). An aspargine residue at the position 333 in TM2 of P2X₂ receptor (Asn³³³) is believed to exist near the outer mouth of the channel pore, and serve as a key residue which determines single channel conductance (Nakazawa et al., 1998a) and prevents the dilation of the channel pore upon long-lasting receptor activation (Virginio et al., 1999). Ca2+ and other divalent cations (Nakazawa and Hess, 1993; Ding and Sachs, 1999, 2000; Negulyaev and Markwardt, 2000) and trivalent cations (Nakazawa et al., 1997) are known to inhibit ionic current permeating through P2X receptor/channels. In the present study, we replaced Asn³³³ of P2X₂ receptor/channel with various amino acids, and investigated the block by Ca2+ and other multivalent cations of these mutant channels to elucidate the interaction between these ions and the channel pore mouth.

2. Materials and methods

Mutants of P2X₂ receptor constructed from the cloned rat P2X₂ receptor (Brake et al., 1994) were kindly supplied by Prof. R. A. North, except for N333I, N333V, N333L and N333I, which were constructed by site-directed mutagenesis in our laboratory as described (Nakazawa et al., 1998b). Channels were expressed in Xenopus oocytes and ionic currents permeating through them were measured as previously described (Nakazawa and Ohno, 1996; Nakazawa et al., 1998b). Oocytes were bathed in ND96 solution containing (in mM) NaCl 96, KCl 2, CaCl₂ 1.8, MgCl₂ 1, HEPES 5 (pH 7.5 with NaOH). ATP (adenosine 5'-triphosphate disodium salt; Sigma, St. Louis, MO, U.S.A.) was applied by superfusion for about 6 s with a regular interval of 1 min. All the divalent and trivalent cations used were chloride salts of reagent grade. The trivalents cations and Mn²⁺ were dissolved in standard ND96 solution. When block by Ca2+ or Mg2+ was assessed, these cations were dissolved in Ca2+-free, Mg2+-free ND96 solution. The current amplitude in the presence of trivalent cations and Mn²⁺ was normalized to that in the absence of these cations. Under divalent cation-free condition, Xenopus oocytes become electrically too leaky to record current responses to ATP because of the opening of divalent cationsensitive non-selective cation channels (Arellano et al., 1995; Zhang et al., 1998). Thus, for the current block by Ca2+ or Mg2+, the current amplitude was normalized to that in the presence of 0.18 mM Ca²⁺ or Mg²⁺, respectively.

3. Results

By increasing extracellular Ca^{2+} , ionic current activated by 30 μ M ATP was decreased (Fig. 1A). Figure 1B compares the block by Ca^{2+} of ionic current through $P2X_2$ receptor/channel mutants that possess amino acid residues with neutral side chains at position 333 (N333G, N333A, N333V, N333L and N333I). Among these neutral mutants, N333G was the most sensitive to Ca^{2+} , and the sensitivity was lowered almost completely according to the size of the side chains (Gly > Ala \cong Val > Leu > Ile). The block by La³⁺ was also greatest with N333G; the remaining neutral mutants uniformly exhibited lower sensitivities (Fig. 1D).

Figure 1C compares the block by Ca²⁺ of the channels that possess amino acid residues with negatively polarized (WT and N333Q) or charged (N333D and N333E) residues at the position 333. With introducing aspartic acid at the position 333, the block by Ca²⁺ was enhanced, suggesting that a negative charge at this position increases Ca²⁺ sensitivity. However, such enhancement was not observed with the introduction of glutamic acid. As for the block by La³⁺, the block was not augmented by the introduction of glutamic acid (Fig. 1E). The effect of La³⁺ on N333D channel was not examined because the ATP-evoked current permeating through this channel became too small to analyze the blocking effect quantitatively in the presence of 1.8 mM Ca²⁺, as seen in Fig. 1C.

Tests were made to determine the size-dependence found for the Ca^{2+} block was also found for the block by other divalent cations. Figure 2A shows the block by Mg^{2+} of the neutral mutants of $P2X_2$ receptor/channel. When the magnitude of the block by 1 mM Mg^{2+} was compared, the size-dependence was found for Ala, Val, Leu and Ile, but not for Gly; the order was Ala > Val > Leu > Gly > Ile. On the other hand, no size-dependence

was found for the block by Mn²⁺ of these neutral mutants (Fig. 2B).

The effects of various trivalent cations were compared between N333G and N333L to determine whether or not selective block of N333G channel similar to that observed with La³⁺ was found. Among four trivalent cations tested (Al³⁺, Ce³⁺, Gd³⁺ and Nd³⁺), none of them preferentially blocked N333G channel; the cations rather preferentially blocked N333L channel (Fig. 2C).

4. Discussion

By comparing the effects on the mutants possessing neutral amino acid residues at the position 333, we have demonstrated that the size of amino acid residues at this position affects the block by Ca²⁺ of P2X₂ receptor/channel. P2X₂ receptor/channel is permeable to both Na⁺ and Ca²⁺, but Ca²⁺ provides much smaller conductance than Na⁺ does (Nakazawa and Hess, 1993). Ca²⁺ reduces net ionic current through P2X₂ receptor/channel by its competition with Na⁺ at the channel pore. The block observed in the present study may mainly reflect this competitive inhibition. Thus, the size-dependence of the Ca²⁺ block indicates that larger amino acids at the channel pore mouth interferes with the access of Ca²⁺. For the mutants with a negative charge at the position 333, N333D, but not N333E, exhibited higher sensitivity to Ca²⁺ than the wild type channel. This difference may due to a smaller size of aspartic acid residues than glutamic acid residues.

The selective block of the glycine-substituted mutant was also found for La³⁺, but not for other multivalent cations tested, suggesting that the size-dependence is not uniform among cation species. One possible explanation for such diversity is the sizes of cations (or those of their hydrated forms). For example, the Shannon and Prett's ionic radius of Ca²⁺ is 1.14 Å at coordination number of 6, and this is larger than that of Mg²⁺ (0.86 Å) or Mn²⁺ (0.81 Å) (Cotton et al., 1995). Similarly, the ionic radius of La³⁺ of 1.06 Å is larger than those of other trivalent cations tested in the present study (Al³⁺, 0.68; Ce³⁺, 1.03; Gd³⁺, 0.94; Nd³⁺, 0.99; in Å). Large multivalent cations may be more readily affected by steric hindrance at the position 333.

In addition to size, negative polarity or charge at the position 333 is also a determinant of the magnitude of the Ca²⁺ block because, when comparing among amino acid residues of similar sizes (Val, Asn and Asp; Chothia, 1975), the sensitivity was

increased according to negativity (Val < Asn < Asp; Fig. 1B and C). The sensitivity order of Val < Asn was also found for the block by Mg²⁺, Mn²⁺ (not shown) and La³⁺ (Fig. 1D and E), and thus, negative polarity at this position may attract multivalent cations regardless of cation species.

The present findings of the roles of the amino acid residue at the position 333 for multivalent cation block may further supports the importance of this position as the entrance of the channel pore, and may provide useful information about the relationship between the channel structure and functions including ion selectivity.

Acknowledgements

The authors are grateful to Profs. R. Alan Norh and Annmarie Surprenant for the supply of the mutant clones and helpful suggestions. This work was partly supported by a Health Science Research Grant for Research on Environmental Health and a "Nano-medicine" project grant from the Ministry of Health, Labour and Welfare, Japan awarded to Y. O. and K. N. and a grant-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan awarded to K.N.

References

Arellano, R.O., Woodward, R.M., Miledi, R., 1995. A monovalent cationic conductance that is blocked by extracellular divalent cations in *Xenopus* oocytes. J. Physiol. 484, 593-604.

Brake, A.J., Wagenbach, M.J., Julius, D., 1994. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519-523.

Burnstock, G., 1997. The past, present, and future of purine nucleotides as signalling molecules. Neuropharmacology 36, 1127-1139.

Cotton, F.A., Wilkinson, G., Gauss, P.L., 1995. Basic Organic Chemistry, third ed. John Wieley & Sons, Inc., New York, NY.

Chothia, C., 1975. Structural invariants in protein folding. Nature 254, 304-308.

Ding, S., Sachs, F., 1999. Ion permeation and block of P2X(2) purinoceptors: single channel recordings. J. Membrane Biol. 172, 215-223.

Ding, S., Sachs, F., 2000. Inactivation of P2X₂ purinoceptors by divalent cations. J. Physiol. 522, 199-214.

Egan, T.M., Haines, W.R., Voigt, M.M., 1998. A domain contributing to the ion channel of ATP-gated P2X₂ receptors identified by the substituted cysteine accessibility method. J.

Neurosci. 18, 2350-2359.

Haines, W.R., Voigt, M.M., Migita, K., Torres, G.E., Egan, T.M., 2001. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor. J. Neurosci. 21, 5885-5892.

Jiang, L.H., Rassendren, F., Spelta, V., Surprenant, A., North, R. A., 2001. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J. Biol. Chem. 276, 14902-14908.

Khah, B.S., 2001. Molecular physiology of P2X receptors and ATP signalling at synapses. Nat. Rev. 2, 165-174.

Migita, K., Haines, W.R., Voigt, M.M., Egan, T.M., 2001. Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor.

J. Biol. Chem. 276, 30934-30941.

Nakazawa, K., Hess, P., 1993. Block by calcium of ATP-activated channels in pheochromocytoma cells. J. Gen. Physiol. 101, 377-392.

Nakazawa, K., Ohno, Y., 1996. Dopamine and 5-hydroxytryptamine selectively potentiate neuronal type ATP receptor channels. Eur. J. Pharmacol. 296, 119-122

Nakazawa, K., Liu, M., Inoue, K., Ohno, Y., 1997. Potent inhibition by trivalent cations of ATP-gated channels. Eur. J. Pharmacol. 325, 237-243.

Nakazawa, K., Inoue, K., Ohno, Y., 1998a. An aspargine residue regulating conductance through P2X₂ receptor/channels. Eur. J. Pharmacol. 347, 141-144.

Nakazawa, K., Ohno, Y., Inoue, K., 1998b. An aspartic acid residue near the second transmembrane segment of ATP receptor/channel regulates agonist sensitivity. Biochem. Biophys. Res. Commun. 244, 599-603.

Negulyaev, Y.A., Markwardt, F., 2000. Block by extracellular Mg²⁺ of single human purinergic P2X₄ receptor channels expressed in human embryonic kidney cells. Neurosci. Lett. 279, 165-168.

North, R.A. and Surprenant, A., 2000. Pharmacology of cloned P2X receptors. Annu. Rev. Pharmacol. Toxicol. 40, 563-580.

Rassendren, F., Buell, G., Newbolt, A., North, R.A., Surprenant, A., 1997. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446-3454.

Virginio, C., MacKenzie, A., Rassendren, F. A., North, R.A., and Surprenant, A., 1999.

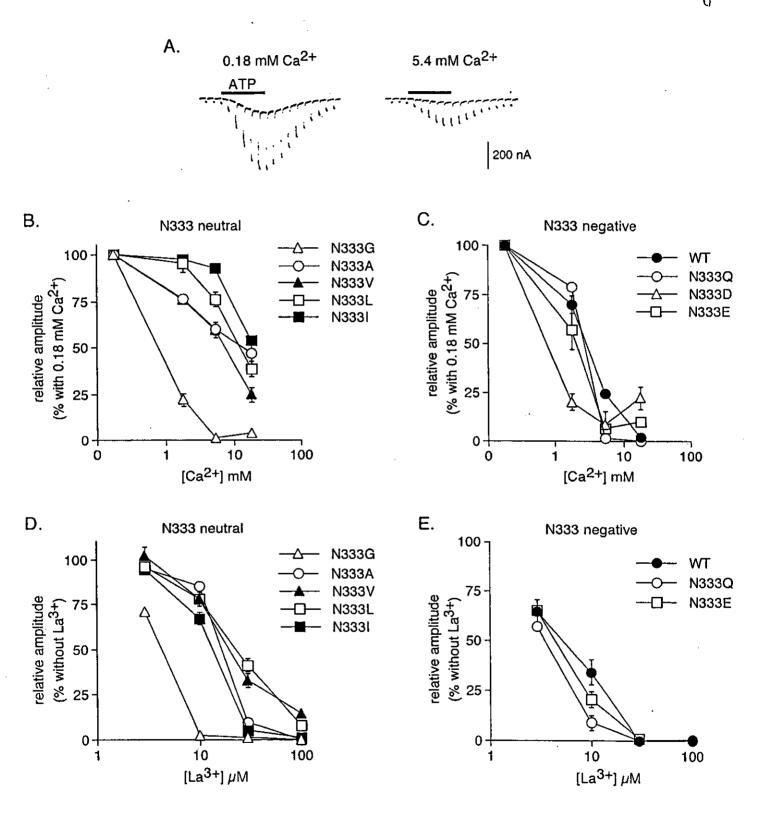
Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 2, 315-321.

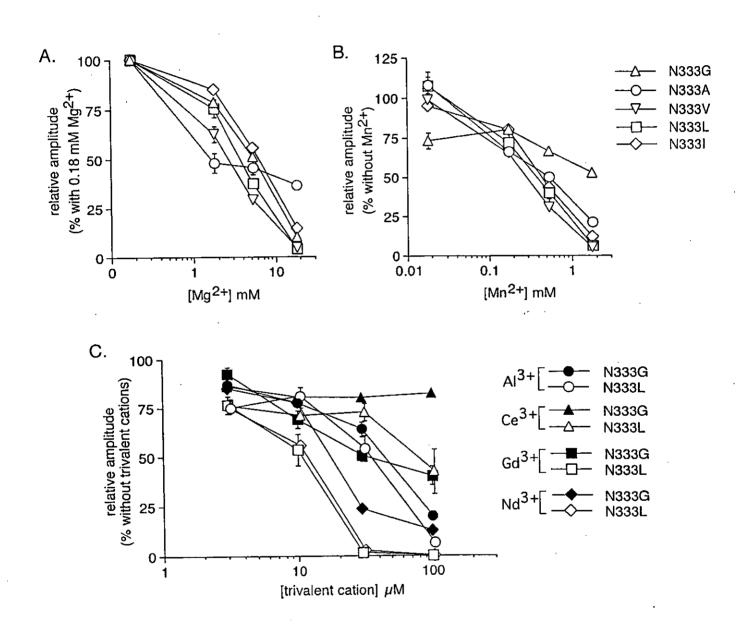
Zhang, Y., McBride, Jr., D.W., Hamill, O.P., 1998. The ion selectivity of a membrane conductance inactivated by extracellular calcium in *Xenopus* oocytes. J. Physiol., 763-76.

Figure legends

Fig. 1.

A. Ionic current activated by 30 μ M ATP in a *Xenopus* oocyte expressing the wild type P2X₂ receptor/channel in the presence of 0.18 (left) or 5.4 mM Ca²⁺ (right). The oocyte was held at -50 mV and stepped for 400 ms to -80 mV every 2 s.


B-E. Concentration-response curve for Ca²⁺ (B, C) and La³⁺ (D, E) block on channels with neutral (B, D) or negatively polarized and charged (C, E) amino acid residues at the position 333. Current was measured as in A, and responses at -80 mV were normalized to those in the presence of 0.18 mM Ca²⁺ or in the absence of the La³⁺ (see Materials and methods). Each symbol and bar represent the mean and S.E. obtained from 4 to 6 oocytes tested.


Fig. 2. Block by various multivalent cations of N333 neutral mutants. Current was measured as in Fig. 1A. Each symbol and bar represent the mean and S.E. obtained from 4 to 5 oocytes tested.

A, B. Concentration-response curve for Mg²⁺ (A) and Mn²⁺ block (B) on channels with neutral amino acid residues at the position 333. Current responses at -80 mV were normalized to those in the presence of 0.18 mM Mg²⁺ (A) or in the absence of Mn²⁺ (B).

C. Effects of Al³⁺, Ce³⁺, Gd³⁺ and Nd³⁺ on N333G (filled symbols) and N333L (open symbols) mutant channels. Current responses at -80 mV were normalized to those in the absence of trivalent cations.

Natazawa et al. Fig. 1

