

自覚症状状 態	瞳孔(右、左) 明暗	眼球運動		眼底		神経反射、正 常		個人、室內 血清		個人、室內 血清		トルエン (室內) M+P+O		キシレン (室內) M+P+O		ベキサ (室內)	
		個人	室內	個人	室內	個人	室內	個人	室內	個人	室內	個人	室內	個人	室內	個人	室內
微熱、だるい	3.0/3.0	階段波形(±1)	正常	脛蓋腱反射 (++)	2	26	26	なし	13.00	16.00	3.20	21.00	24.00	5.70	8.10	4.80	
	4.0/4.0	階段波形(+1)	正常	正常	なし	13	なし	17.00	17.00	1.00	3.20	1.80	なし	なし	なし	なし	1.90
		階段波形(+1)	正常	正常	施行せず	64	40	なし	12.00	2.10	なし	4.10	4.20	5.70	1.67	5.30	
	3.5/3.5	正常	正常	正常	なし	19	22		16.00	19.00	なし	5.10	4.40	7.20	1.53	2.20	
	3.5/3.5	正常	正常	正常	なし	1	なし	なし	1.70	4.70	なし	4.50	1.50	7.50	1.26(個)	0.87	
		階段波形(±1)	施行せず	施行せず	13	29	なし	160.00	100.00	なし	4.70	3.80	なし	1.34	3.10		
	3.5/3.5	階段波形(+1)	(+)	右乳頭耳側 褐色	正常	1	なし	20	なし	51.00	32.00	5.40	16.00	16.00	6.80	8.00	2.60
		階段波形(±1)	正常	施行せず	22	31	なし	なし	なし	なし	36.00	6.70	6.90	2.32	20.00		
		正常	正常	施行せず													
	3.5/3.5	正常	正常	正常	2	23	21		3.00	1.50	なし	9.40	16.00	5.40	0.85(個)	3.80	
		上方注視不全まひ (+1)	視神經耳側 蒼白軽度	しびれ、筋痛	施行せず	24	25	なし	6.40	0.28	なし	11.00	9.00	なし	1.97	1.50	
		水平階段様波形追従 (±1)	正常	正常	施行せず	20	18	なし	1.10	0.62	なし	17.00	2.20	7.30	2.55(個)	1.40	
		水平階段様波形追従 (±1)	正常	後頭部痛、 脛蓋腱反射 (+), A(-)	施行せず	20	18	なし	0.77	0.62	1.70	16.00	2.20	7.00	2.02(個)	1.40	
発汗		水平階段様波形追従 (±1)	正常	しびれ、筋痛	施行せず	25	23		4.50	1.30	なし	4.00	2.40	7.60	0.72	5.70	
	3.0/3.0	正常	正常	正常	1	なし	なし	なし	0.51	なし	なし	8.20	4.40	なし	なし	2.40	
	2.0/2.0	正常	正常	正常	しびれ	11	15	なし	13.00	5.70	4.00	8.60	13.00	7.30	2.34	4.90	
めまい		水平階段様波形追従 (+1)	正常	しびれ	施行せず	なし	なし	なし	1.50	1.00	なし	10.00	6.60	5.90	3.48	6.80	
	2.0/2.0	水平階段様波形追従 (±1)	正常	縮瞳	施行せず	なし	なし	なし	1.4	12	なし	15.00	9.60	1.00	8.90	6.00	
筋肉痙攣		階段様波形追従(+2)	正常	しびれ	施行せず										2.24	5.50	

測定	視力と屈折・乱視						角膜						MTF		瞳孔						
	右	左	Sph	Phr	左	Sph	内柱	内柱	右正	右-角膜	左-角膜	屈折	右/左no	D1	CR	T1	T5	T8	Td		
			1.2				1.2						normal	7.1	0.29	250	2516.6	4.6	2.7	63	
13	15	1.2	-3.25		1.2	-2.5			-0.25	159	-0.5	38	normal	5.5	0.28	133.3	1750	2.7	2.2	54	
12	8	1.2	-0.5	90	1.2	-0.5	90		-0.25	47	-0.25	58	normal	5.7	0.27	250	1100	4.3	1.8	36	
14	15	1.2	-1.5		1.2	-1.5			-0.75	5	-1	21	normal	5.6	0.35	233.3	1616.6	4.6	2.1	45	
12	13	1.2	-0.5		1.2	-0.75	180		-0.75	11	-1.5	176	normal	5.4	0.42	283.3	1550	4.3	2.1	63	
	12				1.2				hard cl				normal	6	0.28	266.6	1166	4.5	2.5	54	
14	14	1.2	-0.8	160	1.2	-0.5	20		-1.5	167	-1.5	12	normal	6.5	0.31	283.3	1116.6	5.5	2.1	63	
9	11	1.2	-1.25		1.2	-1.25			-0.25	5	-0.25	39	normal	6.4	0.32	283.3	981.3	4.5	2.5	81	
	12				1.2				hard cl				normal	6.3	0.32	266.6	1116.6	5.4	2.4	90	
17	15	1.2	0.5		1.2	0.5			-0.5	15	-0.75	25	normal								
15	14	1.2	0.5	-0.5	90	1.2	0.75	-1	80	-1.25	175	-0.75	18	normal	6.2	0.35	283.3	1333.3	3.3	3.3	135
14	11	1.2	-2		1.2	-2			-0.5	28	-0.75	16	normal	6.4	0.23	300	866.6	3.4	2.1	45	
10	12	1.2	-4		1.2	-4.5			-1	160	-1.25	13	normal	5	0.34	266.6	1283.3	5.1	2.1	63	
15	15	1.2	-4.75	-0.5	180	1.2	-5		-0.5	179	0	0	normal	5.6	0.29	283.3	1100	2.2	0.9	54	
16	17	1.2	0.75		1.2	0.75			-0.75	4	-1	1	normal	6.8	0.28	233.3	183.3	5.2	2.2	63	
14	15	1	1.5	-1	135	1.2	5	-1.5	60	-1.75	2	-1	55	normal	4.7	0.4	250	1266.6	5.4	2.2	81
17	17	1.2	0.75		1.2	1.5			-0.25	98	-0.5	13	normal	7.5	0.21	250	1566.6	4.6	2.1	63	
10	14	1.2	0	0	0	1.2		-0.5	90	-0.5	169	-0.25	60	normal	5.4	0.31	266.6	1183.3	3.3	1.9	45
11	12	1.2	2.75	-1	180	1.2	2.5	-1	15	-0.75	179	-1	20	normal	4.2	0.29	266.6	1216.6	3.4	2.7	144

1.アピール

2001年1月12-13日、東京

化学物質による室内汚染の現状とヘルシー・ハウス実現のための
国際シンポジュームでの採択された宣言

翻訳者及び文責 石川 哲、宮田 幹夫（北里研究所臨床環境センター）

出席者：Miller, Spengler, Wolkoff, Sundell, Levin, Molhaeve, Rea, Shaw---米国、カナダ、デンマーク、スエーデンの代表的学者による国際会議。日本側：村上周三、柳沢幸雄、石川 哲、他で組織され、室内化学物質空気汚染調査研究委員会（JAPOC）-----科学技術庁、厚生省、環境庁他後援

International Symposium on
Current Status of Indoor Air Pollution by Organic Compounds and
Countermeasures for Healthy Housing

There is a growing concern that human exposure to chemicals at levels once considered safe or presenting insignificant risk could be harmful. Exposures in utero, during infancy or over a lifetime are now suspected to have adverse biological effects on the central nervous system development affecting cognition, immune system as well as physical development. Disorders associated with chemical exposures are called by many names such as 'sick building syndrome', 'sick house syndrome', 'sick school syndrome', 'multiple-chemical sensitivity', 'chemical sensitivity', 'toxicant-induced loss of tolerance (TILT)' and 'chronic fatigue syndrome.' This indicates that we know there are many suffering from these disorders not only in developed countries but also in less developed countries, but we do not know the specific biological mechanisms involved. The lack of clear biomarkers and the time lag between initiating exposures and ultimate symptoms make it technically, and increasingly politically, difficult to develop an extensive body of evidence needed to regulate many chemicals and industrial processes or to compensate the chemically injured. The emerging science associated with low-level chemical exposures requires that we examine both the way we think about chemicals and health, and the solutions we devise to prevent chemically-caused injury.

We, as scientists and citizens assembled in this International Symposium on Current Status of Indoor Air Pollution by Organic Compounds and Countermeasures for Healthy Housing, appeal to everyone living in the 21st Century to address these serious problems by applying the principles stated in The Right to Healthy Indoor Air (WHO,

2000). Integrated approach to this multi-disciplinary issue is essentially needed to live in a healthy house.

The Right to Healthy Indoor Air (WHO, 2000):

- P1 Under the principle of the human right to health, everyone has the right to breathe healthy indoor air
- P2 Under the principle of respect for autonomy ("self-determination"), everyone has the right to adequate information about potentially harmful exposures, and to be provided with effective means for controlling at least part of their indoor exposures.
- P3 Under the principle of non-maleficence ("doing no harm"), no agent at a concentration that exposes any occupant to an unnecessary health risk should be introduced into indoor air.
- P4 Under the principle of beneficence ("doing good"), all individuals, groups and organizations associated with a building, whether private, public, or governmental, bear responsibility to advocate or work for acceptable air quality for the occupants.
- P5 Under the principle of social justice, the socio-economic status of occupants should have no bearing on their access to healthy indoor air, but health status may determine special needs for some groups.
- P6 Under the principle of accountability, all relevant organizations should establish explicit criteria for evaluating and assessing building air quality and its impacts on the health of the population and on the environment.
- P7 Under the precautionary principle, where there is a risk of harmful indoor air exposure, the presence of uncertainty shall not be used as a reason for postponing cost-effective measures to prevent such exposure.
- P8 Under the "polluter pays" principle, the polluter is accountable for any harm to health and/or welfare resulting from unhealthy indoor air exposure(s), and is responsible and accountable for correcting the condition.
- P9 Under the principle of sustainability, health and environmental concerns cannot be separated, and the provision of healthy indoor air should not compromise global or local ecological integrity, or the rights of future generations.

Name & signature 各人サイン済み

ヒトの化学物質への暴露に関して、以前は安全と考えられていた低濃度でも有害な影響が出る可能性があるという懸念が広がっている。胎内、乳幼児期、あるいは生涯の期間に亘る化学物質への暴露がもたらす健康影響の可能性は、認識作用に影響を与える中枢神経系の発達、免疫機構、および体の発達に対する有害な影響などである。化学物質への暴露に起因する不調は数多くの名前で呼ばれている。シックビルディング症候群、シックハウス症候群、シックスクール症候群、多種類化学物質過敏症、化学物質過敏症、有毒物質誘導不耐性症候群、持続的疲労症候群などである。このような多数の名前がついているということは、先進国、途上国の両方に多くの不調を訴える人々が存在するにも拘わらず、生物学的なメカニズムが未だ不明であることの反映である。明確な生物学的な指標の欠如と原因となる暴露から症状が発現するまでの時間の隔たりが、十分な証拠の集積を困難にしている。その故、化学物質自身や製造プロセスへの規制や化学物質暴露による被害者への補償が技術的にも政治的にも困難な状態にある。このような低濃度の化学物質への暴露影響に関する最新の研究知見は我々に再考を促している。すなわち化学物質と健康の関係についての認識と化学物質に起因する被害の予防法を再考することを求めている。

科学者として、一市民として「化学物質による室内汚染の現状とヘルシーハウス実現のための国際シンポジューム」に参加した我々は、世界保健機関(WHO)が「健康的な室内空気を吸う権利」で宣言した原則に基づき、21世紀に生きる全ての人々がこの深刻な問題に取り組むことを訴える。ヘルシーハウスに住むためには、この学際的な問題に対して統合的なアプローチが不可欠である。

The Right to Healthy Indoor Air (WHO, 2000):要点のみ下記する。

P1 健康な室内空気を吸う権利:

P2 有害化学物質の関する情報を得る権利:

P3 化学物質による障害が起こってはならない:

P4 快適な仕事実施可能な職場の設定

P5 社会経済的見地から健康住宅維持は保障されるべきである。

P6 快適なる室内の空気質の確保

P7 経済的理由よりも人体優先に

P8 シックハウスと考えられた場合単純に経済的理由で否定出来ないこと。

P9 健康と環境条件は分けて考えられない

2. 世界の化学物質による過敏反応の研究 1997-2000

2000 年代、9 月までに出版された化学物質過敏症、シックビルディング・ハウス症候群に関する重要な論文の抄録を記す。日本では入手しにくいものがあるため、短い抄録しかつれられなかつた論文がある。通覧すると、1999 年以前にはかなり、過激な MCS に対する反論が主に心理学者、例えば Kipen,、Staudenmayor 化学会社の研究室から出版された文献があったが最近はこれらが減り、如何に MCS を診断しあつ治療するか、化学物質過敏症と化学物質との用量依存関係を如何に求めて行くかが中心になっている。特に大切なのはニューヨーク州における殺虫剤使用告知義務に関する問題で 2000 年 8 月に、ニューヨーク近隣告知法が行政担当者によりサインされた。州全体にわたる託児所は、使用 48 時間前に、ハッキリした殺虫剤使用公示をするとしたものである。2001 年 7 月 1 日から、学校は殺虫剤使用に関する報告と事前告知システムが法的に義務付けられた。個人的な家屋所有者が屋外に殺虫剤を散布する時には注意を告知すべきとする条項は、それを受け入れた州・郡では効力を發揮する。しかし、州および郡当局が西ナイルウイルスの媒介者である蚊の駆除のような使用に際しての地域的な使用はこの新法の除外規定となることが明記されている。更に Mattina らは新鮮な野菜への昔のクロルデンの残留は極めて長く数十年前のクロルデンの使用の影響が植物に吸収されて影響を發揮している。野菜によっては、全体が汚染していることもあるが、一部が汚染していることもある。大根、ジャガイモ、人参は可食部に蓄積している。レタス、ほうれん草では葉の部分に残留している。これらは空中からの吸収ではなく、土中からの吸収と考えられる。これに近い物質の長期残留を報告している。以下順に解説する。

I. Mitchell CS. Donnay A. Hoover DR. Margolick JB.

Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA.

Immunologic parameters of multiple chemical sensitivity. [Review] [42 refs]

Occupational Medicine. 15(3):647-65, 2000.

Immunologic abnormalities have long been advanced as a potential mechanism for multiple chemical sensitivity (MCS). An immunologic mechanism is supported in part by the systemic nature of the symptoms reported, the complex interactions known to exist between the immune system and other systems, and limited experimental evidence.

However, there are both theoretical grounds for doubting an immunologic mechanism in MCS and methodological constraints in many of the studies that have been conducted in humans. The authors discuss the structure and function of the immune system as it potentially applies to MCS, the uses and limitations of immunologic testing, and the evidence for immunologic theories of MCS. They describe recent work to validate some of the immunologic tests used in MCS and consider opportunities for further research.

多種類化学物質過敏症の免疫学的パラメーター

多種類化学物質過敏症の発症機序に免疫学的な異常が存在するのではないかとの研究がこれまで続けられてきている。この免疫異常にあるとする考え方の基礎は、報告されている症状の系統的な特徴、免疫系と他の系との相互作用、および数が少ないが実験的な結果からである。多種類化学物質過敏症の発症に免疫系が関わっていること、ヒトのこれまでの研究結果からの結果とから、多種類化学物質過敏症に免疫系が関わっていることは間違いない。著者は多種類化学物質過敏症に適用できる免疫系の機構と機能、免疫検査の利用と限界、および多種類化学物質過敏症への免疫系の説に対する証明されてきた点について論議を加えた。その中には、多種類化学物質過敏症に使用されている免疫テストの有用性を確認する作業や、将来への発展性についての議論も含まれている。

2. Bolla KJ.

Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
Use of neuropsychological testing in idiopathic environmental testing. [Review] [14 refs] Occupational Medicine. 15(3):617-25, 2000.

Individuals with idiopathic environmental intolerance (IEI) report fatigue, headaches, weakness, malaise, decreased attention/concentration, memory loss, disorientation, confusion, and psychological disturbances. These neurobehavioral symptoms may be a sign of possible alterations in the central nervous system (CNS). The evaluation of neurobehavioral functioning using standardized testing provides a surrogate measure of integrity of the CNS. However, the interpretation of neuro-psychological test results must be made cautiously since this technique is extremely sensitive, but not specific. Abnormal test results could be due to a neurological disorder, a medical disorder, or a neuro-psychiatric disorder. Therefore, when evaluating patients who present with symptoms of IEI, abnormal neurobehavioral results should not be attributed routinely to environmental chemical exposure until other causes are systematically ruled out.

特発性環境不耐性検査における神経精神学的テスト

特発性環境不耐性の患者は疲労、頭痛、弱り、困憊、注意力の低下、記憶力低下、指南力低下、混乱、および精神的な障害を訴える。これらの神経行動学的症状は中枢神経系の変化を示しているかも知れない。標準的な神経行動学的機能テストは中枢神経系の障害を明らかにし得るかも知れない。しかし、神経精神的なテストは、非常に反応しやすく、しかも特異性が低いために、その結果の判定には十分な注意が必要である。テストの異常結果は、神経学的な異常、医学的な異常、神経精神的な異常でも引き起こされる可能性がある。そのために、本態性環境不耐性の患者の診察において、神経行動学的な異常が得られても、すぐ環境化学物質曝露とすべきではなく、他の原因も組織だって除外していく必要がある。

3. Waxman AD.

Cedars-Sinai Medical Center, Imaging-Nuclear Medicine, Los Angeles, CA 90048, USA. Functional brain imaging in the assessment of multiple chemical sensitivities. [Review] [14 refs] Occupational Medicine. 15(3): 611-6, 2000.

The author provides a brief overview of single photon emission computed tomography in the assessment of multiple chemical sensitivities.

多種類化学物質過敏症の診断のための脳機能画像

著者は SPECT の多種類化学物質過敏症診断の有用性につき簡略に展望した。

4. Sparks PJ.

Occupational and Environmental Medicine and Clinical Toxicology, Mercer Island, WA 98040, USA Diagnostic evaluation and treatment of the patient presenting with idiopathic environmental intolerance.

Occupational Medicine. 15(3):601-9, 2000.

This chapter addresses the diagnostic evaluation and treatment of the patient presenting with idiopathic environmental intolerance (IEI). Clinicians with different views about the pathogenesis of IEI may agree on clinical management programs aimed at improved symptom control and functional ability.

特発性環境不耐性を有する患者の診断

本症患者の診断と治療について述べた。本症発症機序に関して異なった視点を有する臨床医も症状の改善と機能かいふくのためのプログラムについては同意できるものと思われる。

5. Proctor SP.

Boston Environmental Hazards Center, Boston University, Boston, MA, USA.
Chemical sensitivity and gulf war veterans' illnesses. Occupational Medicine.
15(3):587-99, 2000.

Dr. Proctor summarizes the current research literature describing Gulf War (GW) veterans' health issues, particularly as they pertain to chemical sensitivity (CS) and multiple chemical sensitivity (MCS) syndrome. In several studies of GW veterans, using differing criteria and varying assessment measures for CS and MCS, the prevalence rates for CS are reported to be 36-86% in Department of Veterans' Affairs patient populations and 0.8-20% in general cohorts of GW veterans. The rates of MCS are 2-6%. Targeted research is needed to adequately evaluate GW veterans' health concerns and MCS.

化学物質過敏症と湾岸戦争退役軍人の疾患

著者は湾岸戦争症候群と化学物質過敏症および多種類化学物質過敏症との関わりに関する文献をまとめた。湾岸戦争症候群に関しては異なった診断基準が、化学物質過敏症についても異なった診断が行われているが、退役軍人局での有病率の集計では36%～86%であり、一方一般湾岸従軍者では0.8%～20%であった。一般市民では2%～6%である。湾岸戦争従軍者のけんこうを化学物質過敏症および多種類化学物質過敏症との関連で適切な研究を進めることが望まれる。

6. Hodgson M.

National Institute of Occupational Safety and Health, Washington DC 20201, USA.

Title :Sick building syndrome.

Occupational Medicine. 15(3):571-85, 2000.

Dr. Hodgson summarizes what is known about human symptoms and discomfort in the built environment, and formulates several critical hypotheses that show striking parallels to the questions arising from discussions of the IEI/MCS syndrome.

シックビルディング症候群

著者は建築環境での症状と不快性について述べ、化学物質過敏症の議論から発生してくる問題点と平行して種々な仮説について論議を加えた。

7. Dalton P. Hummel T.

Monell Chemical Senses Center, Philadelphia, PA 19104, USA.

Title :Chemosensory function and response in idiopathic environmental intolerance.

Occupational Medicine. 15(3):539-56, 2000.

This chapter reviews the current literature on the possible role of olfactory and trigeminal chemosensory function in idiopathic environmental intolerances (IEI). Two general points emerge from the review. First, studies of chemosensory function in IEI patients indicate that, despite their self-reported "heightened sensitivity" and enhanced responsivity to environmental odors, when compared to healthy controls they generally are found to be equally or even less sensitive to odors as measured by objective psychophysical and electrophysiological measures of olfactory function. These studies point towards alterations in the cognitive processing of olfactory information as the major characteristic of IEI. Second, studies of the role of sensitivity and bias in olfactory and trigeminal chemosensory functioning indicate that nonsensory factors (e.g., attention, bias, personality) can dramatically alter the self-reported impact of exposure to volatile chemicals. Together, these general points suggest a perspective on IEI that views many symptoms of the disorder to primarily reflect the influence of nonsensory, cognitive processes on responses to environmental odors.

本態性環境不寛容症の化学物質受容器の機能と反応

本論文では化学物質過敏症の嗅覚機能および三叉神経の化学物質受容器の果たす役割に関する論文を展望する。二つの大きな点が認められる。その第一は、患者は嗅覚の過敏を訴えるにも関わらず、対照者に比べて、一般に感度が同じかむしろ低下していることが、他覚的な精神身体的な検査や、電気生理的な検査で証明されていることである。この事実は、本症の発症の主要な機構には嗅覚情報の認識処理の段階の変化が起こっていることを示唆している。第2は、過敏性の役割の研究と嗅覚と三叉神経の化学物質受容器にかかるバイアスの研究は、感覚器以外の要素（すなわち、注意力、バイアスおよび個人的な性格）が揮発性の化学物質により引き起こされるとする自己の申告する症状に劇的に影響を及ぼし得ることである。これらを含めて考えると、本態性環境不寛容症の、環境臭により引き起こされるとする非感覚器的な、認識能力の低下からの症状には大きな示唆を与えるものと思われる。

8. Nawab SS. Miller CS. Dale JK. Greenberg BD. Friedman TC. Chrousos GP. Straus SE. Rosenthal NE.

Section on Biological Rhythms, National Institute of Mental Health, Bethesda, MD 20892-1390, USA. ssnawab@hotmail.com

Self-reported sensitivity to chemical exposures in five clinical populations and healthy

controls.

Psychiatry Research. 95(1):67-74, 2000.

Two hundred and twenty-five subjects, including normal volunteers and patients with previously documented seasonal affective disorder (SAD), chronic fatigue syndrome (CFS), Cushing's syndrome, Addison's disease and obsessive-compulsive disorder (OCD), completed a self-rated inventory of reported sensitivity to various chemical exposures. Patients with CFS, Addison's disease and SAD self-reported more sensitivity to chemical exposures than normal controls. In addition, women reported more sensitivity than men. This report suggests that chemical sensitivity may be a relevant area to explore in certain medical and psychiatric populations. A possible relationship between reported chemical sensitivity and hypothalamic-pituitary-adrenal (HPA)-axis functioning is discussed.

5種類の臨床疾患患者と対照健常者の化学物質に対する過敏性の自己申告

健常ボランティア、および季節性健康障害 (SAD)、慢性疲労症候群 (CFS)、カッシング症候群、アディソン病、強迫障害 (OCD)の 5 疾患患者の 2 百 2 5 名について、自己申告による種々な化学物質に対する反応性の目録を作成した。CFS、アディソン病、および SAD 患者は健常者に比べて化学物質曝露に敏感であった。さらに女性が男性よりも敏感であった。本論文は、化学物質過敏症は一定の医学的および精神科的な疾患として探求すべきことを示している。今回の化学物質に対する敏感性と視床下部一下垂体—副腎一系に焦点を絞り論議を加えた。

9. McKeown-Eyssen GE. Sokoloff ER. Jazmaji V. Marshall LM. Baines CJ.
Institution : Department of Public Health Sciences, University of Toronto, Ontario, Canada.

Reproducibility of the University of Toronto self-administered questionnaire used to assess environmental sensitivity.

American Journal of Epidemiology. 151(12):1216-22, 2000.

Environmental sensitivity patients report symptoms provoked by low-level exposure to a wide range of substances. Features of published case definitions include nature of onset, chronicity, symptom provocation by multiple substances, symptom provocation by an escalating number of exposures, involvement of multiple body systems including the nervous system, provocation by unrelated substances, and addictive behaviors. This

study assessed the reproducibility of a Canadian self-administered questionnaire, the University of Toronto Health Survey, designed to determine the prevalence of the features described in these case definitions. A total of 191 eligible respondents aged 16-70 years who attended several types of medical practices in 1994 were invited to complete a second questionnaire 5-7 months after the first; 134 (70.2%) complied. Total agreement on whether patients satisfied each of seven case definitions ranged from 80% to 90%. After adjustment for chance, major agreement was observed for three of the seven case definitions ($\kappa = 0.69, 0.68, \text{ and } 0.78$). The survey achieved good reproducibility regarding self-report of symptoms described in published case definitions of environmental sensitivity.

環境過敏症（化学物質過敏症）を評価するためにトロント大学自己管理問診票の結果の再現性について

環境過敏症の患者は広範囲の微量化学物質により症状が誘発されると報告している。これら患者の概要是すでに報告されているが、発症の状況、慢性の経過をたどること、症状、症状を引き起こす物質が増加していくこと、神経系を含んだ多種類の器官が含まれること、構造的にまったく関係ない物質により誘発されるようになること、そして加算的効果が認められることが含まれている。本研究は、上記特徴を記録するためのトロント大学健康調査の自己記入式の問診票により、カナダ人の患者の問診票上での再現性を確認するために行われた。1994年に16～70歳までの、種々な治療に訪れた患者191名について、最初の問診票記入後5～7ヶ月後に2回目の記入をしてもらった。134名(70.2%)が応じた。前記項目に一致する患者は80～90%であった。補正後、上記7項目のうちの特に3項目にほとんど合致していた($\kappa = 0.69, 0.68, 0.78$)。本研究は、これまでに報告されている本症例の定義に、自己記録方式により、よく再現をもって一致していることを示し得た。

1.0 Ross PM.

The American Health Foundation, New York, USA.

Chemical sensitivity and fatigue syndromes from hypoxia/hypercapnia. Medical Hypotheses. 54(5):734-8, 2000.

The multiple chemical sensitivities syndrome (MCS) and other chronic syndromes causing fatigue, headache and other protean CNS symptoms without observable signs, are proposed to result from hypoxia/hypercapnia (H/H) due to disturbed breathing. The concept is explained in terms of sleep apnea (SA), although H/H could result from

causes other than SA. Reasons for considering this etiologic linkage are as follows: 1. MCS symptoms resemble those of SA. 2. The only physical signs associated with MCS (upper airway inflammation and obstruction) can aggravate SA. 3. The only neuropsychiatric finding common among MCS symptomatics, reduced verbal recall, is associated with SA. 4. Many MCS symptomatics attribute onset of their condition to a pesticide or solvent exposure. Solvent neurotoxicity may cause cacosmia, a symptom of MCS and SA. 5. Improved upper airway patency, a first-line therapy in SA, may improve symptoms in some MCS-like conditions. Implications for diagnosis and treatment of MCS are discussed. Copyright 2000 Harcourt Publishers Ltd.

化学物質過敏症と疲労症候群を低酸素と高炭酸ガス症から考える

疲労、頭痛、変化する中枢神経症状を引き起こし、しかも特別な疾患もない、多種類化学物質過敏症や他の慢性疾患は呼吸の障害による低酸素状態や高炭酸ガス状態からの結果であるとされている。この概念は、睡眠性無呼吸の用語で説明されている。しかし、睡眠性無呼吸以外の原因でも、低酸素／高炭酸ガスは引き起こされ得る。この問題と本症の病因との関係を示す理由には下記のものがある。1.多種類化学物質過敏症と睡眠性無呼吸の症状の類似性。2.多種類化学物質過敏症の唯一の生理的異常である上部気道の炎症と閉塞は睡眠性無呼吸を増悪する。3.多種類化学物質過敏症にしばしば認められる神経心理学的異常である言語の思い出しの減退が睡眠性無呼吸にも認められる。4.多種類化学物質過敏症は殺虫剤や有機溶媒に曝露後に発症してくるが、有機溶媒の神経毒性は cacosmia や、多種類化学物質過敏症の症状や、睡眠性無呼吸の症状を引き起こす。5.睡眠性無呼吸の最初の治療である上部気道の通過性の改善は多種類化学物質過敏症類似の症状を改善する。多種類化学物質過敏症の診断や治療に対する議論を含めた。

11. Nisenbaum R. Barrett DH. Reyes M. Reeves WC.

Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
.Deployment stressors and a chronic multisymptom illness among Gulf War veterans.

Journal of Nervous & Mental Disease. 188(5):259-66..

Unusual health problems have been reported by Gulf War (GW) veterans, but no single etiology has been linked to these illnesses. This study was conducted to determine the association between self-reported GW deployment stressors and an illness

defined by a combination of fatigue, mood-cognition, and musculoskeletal symptoms. A total of 1002 GW veterans from this cross-sectional survey of four Air Force units completed a self-administered questionnaire that asked about symptoms, demographic and military characteristics, and stressors during deployment. Severe and mild-moderate illness was positively associated with self-reports of pyridostigmine bromide use, insect repellent use and belief in a threat from biological or chemical weapons. Injuries requiring medical attention were only associated with severe illness. These results suggest a link between self-reported chemical, emotional, and physical exposures, and GW veterans' illness. Further research is needed to determine physiological and psychological mechanisms through which such stressors could have contributed to this symptom complex.

湾岸戦争退役軍人の展開時のストレスと慢性の多種類の症状

湾岸戦争に際して、通常とは異なる健康問題が報告されたが、これらの疾患に一つの疾患概念を結びつけることは出来ていない。本研究は自己申告による湾岸戦争展開時のストレスと、疲労、気分—認識能力、それと筋肉関節症状との間の関係を明らかにするために行われた。4空軍単位の1002名の退役軍人に、症状、人口動態学的と軍勤務の特徴、それと作戦展開時のストレスを自己申告形式で問診票に記入させた。重症および軽度から中等度の病状は、ピリドスチグミンの使用、虫の忌避剤の使用、および生物化学兵器の脅威感との間に陽性の相関が認められた。医学的な治療適応となったのは、重症の疾病を伴った時のみであった。これらの結果は、自己申告の化学的、情緒的、および身体的な曝露が湾岸戦争退役疾患に多いに結びついていると考えられた。そのようなストレスが、このような症状群の引き金になっていることを明らかにするために、さらなる研究が必要である。

12. Black DW, Doebbeling BN, Voelker MD, Clarke WR, Woolson RF,

Barrett DH, Schwartz DA.

Department of Psychiatry, University of Iowa College of Medicine, Iowa City

Multiple chemical sensitivity syndrome: symptom prevalence and risk factors in a military population.

Archives of Internal Medicine. 160(8):1169-76, 2000.

OBJECTIVE: To assess the prevalence of and risk factors for self-reported symptoms suggestive of multiple chemical sensitivities/idiopathic environmental intolerance (MCS/IEI) in Persian Gulf War (PGW) veterans from Iowa and a comparison group of

PGW-era military personnel. METHODS: A population-based sample of Iowa military personnel was surveyed using a cross-sectional telephone interview. Study participants were randomly drawn from 1 of 4 domains: PGW active duty, PGW National Guard/Reserve, non-PGW active duty, and non-PGW National Guard/Reserve. A complex sample survey design was used selecting participants from the following substrata: age, sex, race, rank, and military branch. The criteria for MCS/IEI were developed using expert consensus and the medical literature. RESULTS: A total of 3695 study participants (76% of those eligible) completed the telephone survey. The prevalence of symptoms suggestive of MCS/IEI in all participants was 3.4%. Veterans of the PGW reported a significantly higher prevalence of symptoms suggestive of MCS/IEI than did non-PGW military personnel (5.4% vs 2.6%); greater sensitivity to organic chemicals, vehicle exhaust, cosmetics, and smog; and more lifestyle changes. The following risk factors for MCS/IEI were identified with univariate analysis: deployment to the Persian Gulf, age (>25 years), female sex, receiving a physician diagnosis of MCS, previous professional psychiatric treatment, previous psychotropic medication use, current psychiatric illness, and a low level of preparedness. Multiple logistic regression analysis identified several independent risk factors for MCS/IEI, including deployment to the Persian Gulf, age, sex, rank, branch of service, previous professional psychiatric treatment, and current mental illness. CONCLUSIONS: Self-reported symptoms suggestive of MCS/IEI are relatively frequent in a military population and are more common among PGW veterans than comparable controls. Reported chemical sensitivities and accompanying behavioral changes were also frequent. After adjusting for age, sex, and training preparedness, previous professional psychiatric treatment and previous psychotropic medication use (before deployment) showed a robust association with symptoms suggestive of MCS.

多種類化学物質過敏症：軍人における症状の有病率と危険因子

目的：アイオワ在住湾岸戦争退役軍人と、対照としての湾岸戦争時代の軍人の自己申告による多種類化学物質過敏症の有病率と危険因子を調査することである。方法：アイオワ軍人人名から電話でのインタビューを行った。以下の4群から、ランダムに対象者を抽出した。湾岸戦争の実際の従軍者、湾岸戦争国家警備およびその予備役、湾岸戦争以外の実務軍人、湾岸戦争以外の国家警備および予備役。研究デザインは、年齢、性、人種、階級、および業務名を加