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considerations may explain the large differences among five
independent FOB/ transformants that were derived from the
same strain (e.g., mutant B) and had undergone the same
transformation and subsequent subcultures (Fig. 4B, mutant
B).

In connection with the selective advantage of cells with in-
creased rDNA repeat numbers, we note that rDNA repeat
numbers {which are still less than 10) which are attained by the
limited increase through the FOBI-independent mechanism
are not sufficient for cell growth. We found that the vector
transformants of the control strain were unable to form colo-
nies on glucose plates after 45 generations of subculture while
FORI transformants of control strains were able to form col-
onies on glucose (and to lose the helper plasmid, pNQY353).
On the other hand, as emphasized previously (18), control cells
with ~40 rDNA repeats had growth rates identical to those
with normal (i.e., ~150) {DNA repeat numbers. Thus, expan-
sion beyond ~4{ copies appears to be achieved not because of
selective advantage but presumably because of the stability of
a nucleolar structure(s) carrying tDNA repeat numbers close
to ~150.

In passing, we note that transformants of mutant G, which
received FORI, were able to expand rDNA repeats, although
apparently not to the same extent as the control FOBI trans-
formants. The resultant strain lacks segment G, which was
originally defined as the Pol I enhancer (6), in the expanded
tDNA repeats except for the single copy at the lefimost end.
However, this strain was able to form colonies on glucose
plates and to lose the helper plasmid. Such a strain with rDNA
repeats carrying mutation G and without the helper plasmid
showed only a small decrease in growth rate in glucose medium
compared to the control strain with the intact enhancer in all
the tDNA repeats. The role of the enhancer element in Pol T
transcription is a separate subject under current study.

Relationship between rDDNA repeat expansion and recombi-
nation by HOTI. The HOTI element stimulates recombination
between two nearby repeat sequences at a chromosome site
outside the rDNA locus. HOTI consists of two elements, the [
element, which corresponds to the Pol I promoter, and the E
element, which comprises segments F and G studied here. It
bas been assumed that HOTI activity is responsible for recom-
binational events within rDNA. repeats. The discovery that
FORBI is required for both HOTT activity (20} and rDNA re-
peat expansion and contraction (18) has appeared to support
this assumption. However, HOTI activity requires active tran-
scription by Pol 1 (15, 35) whereas recombinational events
within TDNA repeats take place in the absence of their tran-
scription (18). In addition, the present work has demonstrated
clear differences in the cis ¢lements required for stimulation of
recombination between the two systems. First, segments C, D,
and E are required for IDNA repeat expansion (see above) but
not for HOTI activity (33). Second, deletion (or substitution)
of segment G abolishes HOTT activity nearly completely (35)
but reduces the extent and presumably the rate of rDNA re-
peat expansion only weakly (see above). (It should be noted
that there is one copy of the intact G segment at the left border
in mutant G used in the expansion experiments described in
this paper. Thus, although we think it rather unlikely, we can-
not eliminate the possibility that this single copy might play a
role in recombination events responsible for repeat expan-
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sion.) The main features shared by the two systems are the
requirement of segment F, which contains the RFB site, and
the requirement of the intact FOBI gene as mentioned above.
Thus, the previous assumption may be incorrect and elucida-
tion of the mechanisms of rIDNA sequence homogenization as
well as rDNA repeat expansion and contraction may have to
depend on the use of systems designed within the native rDNA
repeat locus. In addition to the present FOBI-induced repeat
expansion system, we have previously described experimental
systems in which the effects of various factors on the expansion
and contraction of rDNA repeats can be studied (18, 25).
These systems should be useful in studies not only of the
mechanism but also of the physiological significance of IDNA
repeat expansion and contraction.

After completion of the present work, a paper by Ward et al.
(37) appeared, which has demonstrated that HOTT activity can
occur in the absence of replication fork blocking, even though
both HOTI and RFB activities requires FOBI. These workers
also carried out mutational analysis within the F and G seg-
ments and found that some DNA elements are shared but
others are required for one activity but not for the other. Thus,
their conclusion that the FOB/ function is involved in two
clearly different activities, HOTI and RFB activities, is related
to our conclusion that it Is also required for two clearly sepa-
rable activities, HOT] and rDNA repeat expansion. Elucida-
tion of the function(s) of the FOB/! gene product appears to be
a key to solving the intrigning problem of relationships among
these three activities, In addition, consideration of these new
observations made by Ward et al. (37) and by the present study
raises the question whether our previous proposal is really
correct, that is, whether replication fork blocking is really the
first step in IDNA expansion and contraction. Although avail-
able experimental results support this proposal, they have not
proven it. Detailed mutational analysis of DNA sequence ele-
meants within the F segment may be helpful to settle this ques-
tion. Regardless of the answer to this question, however, the
discovery of the new DNA elements that are uniquely involved
in rfDNA repeat expansion (and presumably also in contrac-
tion) indicates the presence of an unexplored aspect(s) of
recombinational mechanisms used in TDNA repeat structures
that constitute the structurally and functionally essential com-
ponent cf the nucleolus.
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ADDENDUM IN PROOF

We replaced the G segment, still Jocated at the left border of
tDNA repeats in mutant G. In this mutant, the FOBI-depen-
dent expansion of TDNA took place as well. Therefore, the G
segment was not required for the expansion.
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