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Abstract

Background: Axonal transport plays a critical role in supplying materials for a variety of
neuronal functions such as morphogenetic plasticity, synaptic transmission, and cell survival.
In the present study, we investigated the effects of the analgesic agent lidocaine on axonal
transport in neurites of cultured mouse dorsal root ganglion (DRG) neurons. In relation to
their effects, the effects of lidocaine on the growth rate of the neurite were also examined.
Methods: Isolated mouse DRG cells were cultured for 48 h until full growth of neurites.
Video-enhanced microscopy was used to observe particles transported within neurites and to
measure the neurite growth under control condition and in the presence of lidocaine.

Results: Application of 30 (M lidocaine immediately reduced the number of particles transported
in anterograde and retrograde axonal directions. These effects were persistently seen during
the application (26 min} and were reversed by lidocaine wash-out. The inhibitory effect was
dose-dependent at concentrations from 0.1 to 1000 (M (IC50: 10 (M). In Ca2+free extracellular
medium, lidocaine failed to inhibit axonal transport. Calcium ionophore A23187 (0.1 (M)
reduced axonal transport in both directions. The inhibitory effects of lidocaine and A23187
were abrogated by 10 (M KN-62, a Ca2+/calmodulin-dependent protein kinase 1I (CAM 11
kinase) inhibitor. Application of such low concentration lidocaine (30 (M) for 30 min reduced
the growth rate of neurites, and this effect was also blocked by KN-62.

Conclusions: Low concentration lidocaine rapidly inhibits axonal transport and neurite growth
via activation of CAM II kinase.



Introduction

Axonal transport plays a critical role in supplying materials for a variety of neuronal functions
such as morphogenetic plasticity,1-3 synaptic transmission,3-6 and cell survival.7,8 Lidocaine,
as an analgesic agent, is known to have direct neuronal actions such as inhibition of Na+
action potential generation9-11 and conduction,12 and depression of synaptic
transmission.13,14 There have been also some reports with regard to the lidocaine effect on
axonal transport. While axonal transport of catecholamine-synthesizing enzymes in vivo has
been reported to be unaffected by lidocaine even at high concentrations (0.5-1% = 18.5-37
mM),15 this local anesthetic has shown to inhibit fast axonal transport of labeled proteins
both in vivo and in vitro preparations.16-20 The latter also used high concentrations (0.1-0.6%
= 4-22 mM),17-20 and thus such an inhibitory effect on axonal transport has been recognized
as neurotoxic side effect of nerve blocking.18 In the present study, we focused on assessing
the effect of low concentration lidocaine on axonal transport in cultured sensory neurons by
using video-enhanced microscopy that allow us to observe the real-time dynamics of axonal
transport. In relation to their effects, the effects of lidocaine on the growth rate of the neurite
were also examined.

Materials and Methods

Cell Culture

Animal use in this study was approved by the Animal Experimentation and Ethics
Committee of Kitasato University School of Medicine, Sagamihara, Japan. Adult male ¢57BL/6
mice (8-week old) were sacrificed with ether and the dorsal root ganglia were removed. The
ganglia were immersed immediately in Hams' F-12 culture medium (GOBCO BRL, Grand

Island, NY), and incubated for 90 min at 37 C in Hams' F-12 medium containing 2 mg/ml
collagenase (Worthington Biochemical, Freehold, NJ). Subsequently, the ganglia were

incubated for 15 min at 37 C in Ca2+- and Mg2+-free Hanks' balanced salt solution (g/1:
KCl, 0.4; KH2PO4, 0.06; NaCl, 8; Na2PO4/7H20, 0.09; glucose, 1; phenol red, 0.01; HEPES,
3.6; and NaOH, 0.3) containing 2.5 mg/ml trypsin (Sigma Chemical Co., St. Louis, MO).
Trypsin activity was then inhibited by the addition of 0.125 mg/ml trypsin inhibitor (Sigma).
After a rinse with enzyme-free Hams' F-12 medium, the ganglia were triturated using fire-
polished pipettes (inner diameter: 0.2-0.5 mm). The isolated cells were plated onto polylysine-

coated coverglasses and cultured for 48 h at 37° C in Hams' F-12 medium containing 10%
fetal bovine serum and penicillin (100 units/ml)-streptomycin (100 (g/ml) under 5% CO2 (pH
7.4).

Experimental Cell Preparation

The coverglass on which cells were cultured was attached with waterproof tape to the
underside of a 0.5-mm-thick stainless plate (50 x 80 mm) with a lozenge-shaped hole (25 x
35 mm). The topside of the steel plate was covered with another coverglass, leaving small
opening on both sides to inject solutions. The culture medium was then replaced with

physiological salt solution {PSS; see below) (37" C). The plate was mounted onto the stage
of an inverted Zeiss Axiomat microscope (Carl Zeiss, Oberkochen, Germany), with an oil-

immersed planapochromat 64x Sbjective (Carl Zeiss). The stage was maintained at 37 C.
The drug-containing solution was injected into one opening using a Pasteur pipette, and the
solution spilling from the other opening was removed by a suction pump.

Solutions and Prugs

The composition of PSS (pH 7.4) was 135 mM NaCl, 5 mM KCI, 1 mM CaCl2, 1
mM MgCl2, 10 mM HEPES, and 5.5 mM glucose (all from Wako Pure Chemical, Osaka,
Japan). Calcium (Ca2+)-free solution was prepared by excluding Ca2+ from PSS and adding
2 mM EGTA (Wako Pure Chemical). Lidocaine hydrochloride (Research Biochemical
International, Natick, MA) was directly dissolved in PSS (pH 7.4). Calcium ionophore A23187
(Sigma) and KN-62 (Biomol, Plymouth Meeting, PA) were each dissolved in dimethyl sulfoxide
(DMSO, Sigma) and then diluted with aqueous solution. The DMSO concentration was
0.01% and DMSO at this concentration had no effect on axonal transport and neurite growth.



Observation of Axonal Transport

Nomarski images of neurites (length > 100 (m, width > 1 (m) obtained by inverted
microscopy were transformed into video images with enhanced contrast by using a video
camera (Harpicon, Hamamatsu Photonics, Hamamatsu, Japan) and a video image enhancement
system (DVS-20, Hamamatsu Photonics). Serial video images were displayed on a video
monitor (C1864, Hamamatsu Photonics) and stored on a video recorder (PVW-2800, Sony,
Tokyo). This processing allowed observation of living cells magnified approximately 10,000
times on the video monitor. Axonal transport was estimated on the video monitor by counting
the number of particles (diameter > 50 nm) crossing the line drawn perpendicular to the long
axis of the neurites. Counts were made for 2 min at 3-min intervals during periods before and
after the injection of drugs.

Measurements of Neurite Growth Rate
Dorsal root ganglion (DRG) cells cultured for 48 h were prepared for measurements
of neurite growth rate as described above. The chamber was filled with PSS and maintained

at 37° C. Length of neurites (width > 1.0 (m) was measured just before and 30 min after

treatment with drugs under video-enhanced microscopy at >X3,000 magnification. In control
cells, PSS was applied.

Statistical analysis

Data from experiments on axonal transport are expressed as mean + SD and reported
as percentage of the control value (before drug application). Analysis of variance (ANOVA)
was used to evaluate the statistical significance of fluctuations over time. Differences between
the control and values obtained during application of test agents were examined for statistical
significance by Student's paired t-test. Neurite growth rates are expressed as mean + SD. The
statistical significance of difference in the growth rate between control (non-treated cells) and
treated cells was determined by Student's t-test.

Results

Video-enhanced microscopy displayed the movement of particles toward the axon
terminal (anterograde) and back to the cell body (retrograde) (video 1). Some of the transported
particles appeared to be mitochondria and lysosomes according to their microscopic

morphology. In the control extracellular medium (PSS, pH 7.4, 37 C), the mean numbers of

particles (per minute) transported in anterograde and retrograde directions were 68.3 + 17.9
(mean + SD, n = 40) and 68.7 + 18.2 (n = 40), respectively. Length of the neurites used for

the experiments on axonal transport was ranging from 100 to 360 xm.

Effects of Low Concentration Lidocaine on Axonal Transport

Application of lidocaine at a low concentration (30 (M) for 10 min resulted in an
immediate but reversible decrease in the number of particles transported in both the anterograde
and retrograde directions (fig. 1). Application of lidocaine at the same concentration (30 (M)
but for a longer period (26 min) resulted in a significant decrease in the number of transported
particles during the application (video 1A, fig. 2A). Maximum inhibition of particle transfer
amounted to 60% of the control at 8 min after the start of application, reaching a plateau for
the remaining period of the experiment (fig. 2A). Application of lidocaine at concentrations

ranging between 0.1-1000 M indicated that the effect of the drug on axonal transport was

dose-dependent (fig. 3). The median inhibitory concentration (IC50) was 10 (M for both the
anterograde and retrograde axonal transport.

Effects of Low Concentration Lidocaine on Axonal Transport in Ca2+-Free Extracellular
Medium

In Ca2+-free extracellular medium (with 2 mM EGTA), 30 (M lidocaine failed to
decrease the number of particles in either anterograde or retrograde direction (video 1B, fig.
2B). These results suggest that extracellular Ca2+ is required for the inhibition of axonal
transport induced by lidocaine.

Effects of Activation of CAM II Kinase on Axonal Transport



Failure of lidocaine to inhibit axonal transport in the absence of extracellular Ca2+
suggests that accumulation of Ca2+ inside the cell might be involved in lidocaine-induced
inhibition of axonal transport. Ca2+/calmodulin-dependent protein kinase II (CaM II kinase),
which is activated by intracellular Ca2+, has been implicated in regulating the organization of
neuronal cytoskeleton21 and neurite growth.22-24 We therefore hypothesized that CaM 11
kinase activity is involved in the lidocaine-induced inhibition of axonal transport. First, we
investigated the effect of activation of CaM II kinase by Ca2+ ionophore on axonal transport.
The Ca2+ ionophore A23187 (0.1 (M) decreased the number of particles transported in
anterograde and retrograde directions (video 1C, fig. 4A). These inhibitory effects were
blocked by the presence of CaM II kinase inhibitor KN-62 (10 (M) in the extracellular
medium (video 1D, fig. 4B), whereas KN-62 alone did not have any effect on axonal transport
(data not shown, n = 4) as described in our previous study.25 These results indicate that the
activation of CaM II kinase leads to inhibition of axonal transport in cultured DRG neurons.

Effects of Low Concentration Lidocaine in the Presence of CAM II Kinase Inhibitor

In the presence of the CaM II kinase inhibitor KN-62 (10 (M) in extracellular medium, 30 (M
lidocaine failed to suppress axonal transport in either anterograde or retrograde direction
(video 1E, fig. 2C). Thus, the inhibitory effect of low concentration lidocaine seems to be
mediated by activation of CAM II kinase.

Effects of Low Concentration Lidocaine on Neurite Growth

Axonal transport is known to relate to morphogenetic plasticity.1-3 Therefore, we
further attempted to examine the effects of low concentration lidocaine on neurite growth. As
indicated in table 1 treatment of DRG neurons with 30 (M lidocaine for 30 min resulted in a
significant reduction in the growth rate of neurites, relative to the control. This effect of
lidocaine was also abrogated by the addition of 10 (M KN-62, while KN-62 alone did not
affect neurite growth (table 1).

Discussion

Using video-enhanced microscopy, we show that lidocaine at low concentrations

(0.1-1000 uM: IC50 = 10 uM) resulted in a rapid decrease in the number of particles in
both anterograde and retrograde directions. Previous studies in which labeled proteins were
measured showed that lidocaine inhibited axonal transport when used at high concentrations
of 0.1-0.6% (3.7-22 mM) but not at lower concentrations.17-20 Such high concentrations of
lidocaine are also known to cause destruction of microtubules, thus resulting in an irreversible
arrest of axonal transport.18,19 The present study shows for the first time that lidocaine, even
at low concentrations, significantly and reversibly inhibits axonal transport.

We next investigated the mechanisms mediating the inhibitory action of low
concentration lidocaine. Here we demonstrated that inhibition of axonal transport induced by
lidocaine was completely blocked when we used Ca2+-free extracellular medium. Therefore,
extracellular Ca2+ may be a requisite for inhibition of axonal transport. In addition, we
demonstrated here that Ca2+ ionophore A23187 inhibited axonal transport. These results
suggest that the lidocaine-induced inhibition of axonal transport may result from the
accumulation of Ca2+ inside the cell. This hypothesis needs to be supported by further
studies on intracellular signaling mechanisms triggered by an increase in [Ca2+}i. Previous
biochemical studies have shown that CAM II kinase phosphorylates microtubule-associated
proteins (MAPs), MAP? and tau protein, leading to microtubule disassembly,21 and that the
latter causes inhibition of fast axonal transport.1 In turn, CAM II kinase is activated by
intracellular Ca2+. Therefore, we postulated that activation of CAM II kinase might result in
inhibition of axonal transport. In fact, we found that the inhibitory effect of Ca2+ ionophore
A23187 was abrogated by CAM 11 kinase inhibitor KIN-62. The effect of low concentration
lidocaine was also blocked by KN-62. Thus, the lidocaine-induced inhibition of axonal transport
appears to be mediated by activation of CAM II kinase. However, our findings are likely to
be inconsistent with previous [Ca2+]i measurement and electrophysiological studies on DRG
cells. The Ca2+ indicator fura-2-determined [Ca2+]i in rat DRG cells has shown to increase
in response to lidocaine, but this increase can be detected at lidocaine concentrations > 3 mM
(EC50: 21 mM),26 which are much higher than those used in the present study. Moreover,
lidocaine has been demonstrated to inhibit Ca2+ current in frog DRG cells at a threshold



concentration of 10 xM.27 Therefore, lidocaine at low concentration is likely to reduce the
influx of Ca2+ through Ca2+ channel mechanism. One possibility to explain the inconsistency
between their findings and ours is that lidocaine might affect Ca2+ pump or passive Ca2+
influx through cell membrane to modulate intracellular Ca2+ signaling. Garcia-Martin and
Gutierrez-Merino?28,29 and Garcia-Martin et al. 30 have demonstrated that lidocaine acutely
inhibits Ca2+ pump in synaptosomal plasma membrane, and thus suggested that lidocaine
can increase the Ca2+ level of neuronal cytosol. They also mentioned that the lidocaine
concentration needed to produce ~50% inhibition of Ca2+ pump activity (K0.5) is 0.44 mM,
but that, due to the dependence of local anesthetic-lipid membrane interaction on membrane
potential, this K0.5 value should be lower at the cell resting membrane potential. 30 Therefore,
it might be possible that lidocaine at low concentrations induces the accumulation of intracellular
Ca2+ by inhibiting Ca2+ pump activity under normal extracellular Ca2+ concentration
condition. However, further studies are required to address this issue.

We further discuss here the relationship between Ca2+ and axonal transport. A number
of studies have shown that fast axonal transport in a variety of neuronal types is reduced
under the Ca2+-free extracellular condition.31-37 The intraneuronal injection of Ca2+ chelater
has also shown to exhibit the same effect.38 Curiously, the intraneuronal injection of Ca2+
blocks axonal transport, also.38 Furthermore, it has been reported that axonal transport is
inhibited by Ca2+ ionophores39-41 and by chemical agents that raise concentrations of
intracetlular Ca2+,42 which is similar to our results. Taken together, not only reduction but
also elevation in intraceilular Ca2+ levels appears to be a factor to inhibit axonal transport.
Thus, the elevation of intracellular Ca2+ levels could be the acceptable mechanism in mediating
inhibitory action of lidocaine on axonal transport. *

In order to know the relevance of lidocaine-induced axonal transport to neurite growth,
we also investigated the effects of low concentration lidocaine on neurite growth. We found
that treatment of lidocaine at a low concentration (30 (M) for 30 min inhibited the growth
rate of neurites. These results are similar to our previous findings that lidocaine at low
concentrations reduces sprouting DRG cells in the process of culture.43 Here, we further
show that lidocaine is also effective to inhibit the growth of neurites already present, implying
that the inhibition of neurite growth is related to prevention of axonal transport. Furthermore,
we demonstrated that the inhibitory effect of lidocaine on neurite growth was blocked by
KN-62 (10 (M). This is supported by previous studies showing that the overexpression of
CAM 1I kinase inhibits neurite growth.22-24 QOur present findings suggest that the lidocaine-
induced inhibition of neurite growth is mediated by activation of CAM II kinase, which is
similar to its inhibition of axonal transport. Thus, lidocaine may simultaneously inhibit axonal
transport and neurite growth by activating CAM II kinase in sensory neurons.

In summary, we demonstrated in the present study that lidocaine at low concentrations
inhibited axonal transport and neurite growth. These inhibitory actions are mediated through
activation of CAM II kinase.
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Inhibitory Effects of Pentobarbital on Axonal Transport in Sensory Neurons

Hiroshi Maruyama, Hiromi Hiruma*, Akifumi Kanai, Tadashi Kawakami®,
Sumio Hoka

Departments of Anesthesiology and Physiology*
Kitasato University School of Medicine

The effects of pentobarbital, a general anesthetic, on axonal transport in cultured mouse
sensory neurons were examined using video-enhanced microscopy. Application of
pentobarbital decreased the number of particles being transported in anterograde and retrograde
directions. The inhibition of axonal transport to pentobarbital wasprevented by bicuculline, a
GABAA receptor antagonist and by removal of Cl- from extracellular medium.
Electrophysiological experiments revealed that pentobarbital increased Cl- permeability in
cultured sensory neurons. These results suggest that pentobarbital inhibits axonal transport in
sensory neurons via Cl- influx through Cl- channels that are homogenous to GABAA
receptors.

B D FiEH

Fig. 1. Effects of a transient application (10 min) of pentobarbital on axonal transport in
cultured mouse dorsal root ganglion cells.

The graph plots the changes in nurnbers of transported particles in anterograde and retrograde
directions induced by 100 # M pentobarbital. )

Fig. 2. Effects of a prolonged application (26 min) of pentobarbital on axonal transport.

The graph plots the percent changes in the number of transported particles evoked by 100 4 M
pentobarbital. Each point illustrates the mean (£ S.D.) of the values observed in five dorsal
root ganglion cells.

*p<0.05, **p<0.005.

Fig. 3. Effect of pentobarbital on axonal transport in the presence of bicuculline.

The graph plots the percent changes in the number of transported particles after the addition of
100 u M pentobarbital in the presence of 100 1 M bicuculline, a GABAA receptor antagonist.
Each point illustrates the mean(3-S.D.) of the values observed in five dorsal root ganglion
cells.

Fig. 4. Effect of pentobarbital on axonal transport in low Cl-- extracellular medium.

The graph plots the percent changes in the number of transported particles after the addition of
100 z« M pentobarbital in low Cl-- extracellular medium. Each point illustrates the mean( =+



S.D.) of the values observed in five dorsal root ganglion cells.

Fig. 5 Effects of pentobarbital on membrane potential and resistance in cultured mouse dorsal
root ganglion cells. _
Whole-cell current-clamp recordings were obtained from cultured mouse dorsal root ganglion
cells. Low Cl- (2 mM)-patch pipettes (pH 7.2: 150 mM K-gluconate; 1 mM MgCI2; 1 mM
EGTA,; 10 mM HEPES) were used. Recordings were made in extracellular medium containing
144 mM Ci- or 2 mM Cl-. Traces show the voltage responses to 100 (M pentobarbital.

Downward deflections are electrotonic voltage responses to the application of fixed 100 pA-
current pulses.
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Fig. 1 Effeets of a transient application (0 min) of pentobarhital
on axonal transpert in cultured mouse dorsal root ganglion
cells.

", The graph plots the changes In numbers of transported
particles in antercgrade and retrograde directions induced
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