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ABSTRACT

DNA vaccines encoding a viral structural protein have been shown to induce
antiviral immune responses and provide protection against subsequent viral
challenge. In the present study we show that DNA immunization with a plasmid
expressing the hepatitis E virus ORF2 structural protein (pcDNA-ORF2)
induced low levels of long lasting antibody responses in the murine model. The
use of plasmids expressing interleukin-2 (IL-2) and granulocyte-macrophage-
colony-stimulating-factor (GM-CSF) in conjunction with pcDNA-ORF2
enhanced the antibody responses generated by pORF-2. We further show that
the immune responses .generated by plasmid pcDNA-ORF2 can be boosted with
virus-like-particles composed of the ORF2 protein expressed through a

baculovirus expression system.
INTRODUCTION

Hepatitis E virus (HEV) is the major etiologic agent of enterically transmitted non-A,
non-B hepatitis, now called hepatitis E (19). It is transmitted primarily by the fecal-oral
route, fecally contaminated drinking water being the most commonly documented vehic_le
of transmission. Although hepatitis E occurs in large outbreaks, HEV infection also
accounts for about 30% of all acute sporadic hepatitis in children and adults in India and
other endemic area (26). Virtually all cases of acute hepatitis E in non-endemic areas have
been reported among travelers returning from high HEV-endemic areas. Outbreaks of
hepatitis E have occurred over a wide geographic area, primarily in developing countries
with inadequate environmental sanitation (26). In most hepatitis E outbreaks, the highest
rates of clinically evident disease have been in young to middle age adults. Though

protracted viremia upto 3 months has been observed, no evidence of chronic infection has
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been detected in long-term follow-up of patients with hepatitis E (26). The mortality
rates are about 1%, except in pregnant women (18) and in case of co-infection with other
hepatitis viruses' (1) where fulminant liver disease leading to high rates of mortality have
been reported.

Hepatitis E virus is a spherical, non-enveloped virus with a positive-stranded RNA
genome that has been cloned and sequenced from a number of geographically distinct
isolates (2,4,14,28,29). The genome shows a high degree of nucleotide and amino acid
sequence conservation and includes three open reading frames (ORFs) (28). The N-
terminal ORF1 of about 5 kb is predicted to code for the putative nonstructural proteins
and the C-terminal region of about 2.4-kb carries ORF2 and ORF3. Of these ORF2
encodes the major capsid protein of HEV and ORF3 encodes a small protein of undefined
function.

A vaccine against HEV, besides preventing sporadic hepatitis and seasonal epidemics in
endemic areas, will be of much utility to pregnant women and travelers. Because of its
poor growth charactenistics in cell culture systems, traditional approaches such as a killed
or live attenuated HEV vaccine are not feasible. Human B-cell responses to HEV in
acutely infected humans are directed to the nonstructural as well as the structural proteins
(16) and immunodominant epitopes have been mapped to the ORF2 and ORF3 protein
(17). It has been shown that vaccination of monkeys with recombinant proteins that
include either the full-length ORF2 protein (27) or only its C-terminal half (30) is capable
of generating high titer antibodies. Subsequent challenge of those immunized animals with
HEV appeared to protect them from disease, but not infection. Despite some degree of
sequence heterogeneity and at least four genotypes of HEV present around the world
(33), there appears to be a single serotype as evidenced from cross-neutralization assay
(22). These studies suggest that a subunit vaccine based on the ORF2 protein could

potentially provide protection against hepatitis E in humans.
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Naked DNA or genetic immunization is a new technique in which plasmid DNA
encoding either individual or a collection of antigens is directly administered to the host.
Such immunization leads to expression of the delivered gene in host cells and its
presentation to the immune system. This results in the induction of humoral as well as
cytotoxic immune responses (11,21,31). DNA immunization has been shown to generate
an immune response against several proteins derived from viruses, parasites and bacteria
(11) as well as induce protection against several infectious disease and cancer experimental
model systems (31). It has also been reported that use of immunomodulatory molecules,
such as cytokines, is effective in enhancing immune responses against proteins expressed
in situ by DN A vaccination (32).

A DNA-based immunization strategy has previously been reported for HEV (13) in
which inoculation of mice with a plasmid expressing ORF2 from the Burmese strain of
HEV resulted in the generation of anti-ORF2 antibodies. In this study we report on the
DNA immunization of mice with ORF2 from an Indian HEV isolate and modulation of
the immune response by co-injection with expression vectofs for two immunomodulatory
cytokines, interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor
(GM-CSF). We also report results from a DNA prime-protein boost strategy for HEV

ORF2 immunization.

MATERIALS AND METHODS

Construction of expression vectors. The ORF2 of HEV was cloned in the EcoRV
site of the polylinker region of plasmid pcDNAT neo (Invitrogen, San Diego, California).
This eukaryotic expression vector contains the cytomegalovirus early promoter/enhancer
sequence and the polyadenylation and 3'-splicing signals from bovine growth hormone.

Expression of the full-length ORF2 protein from this vector was established (S. Jameel,
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unpublished data) in transfected COS-1 cells followed by metabolic labeling and
immunoprecipitation as described elsewhere (15). The pS2-S-IL2 clone, expressing
mouse interleukin 2 (provided by M-H Tao, Taiwan} was digested with EcoR1 (to delete
 the pS2-S sequence) and religated to produce the pIL-2 expression vector. The GM-CSF
clone expressing mouse granulocyte-macrophage-colony-stimulating factor (in plasmid
pcDNA3) was kindly provided by Dr. O. Burrone (ICGEB, Trieste, Italy). Plasmid
DNA was purified from transformed Escherichia coli DH50 cells by anion-exchange
chromatography (Qiagen, Hilden, Germany). For expenmental use, the DNA was
reconstituted in sterile saline at a concentration of 1 pg/ul.

DNA-lﬁediated immunization of mice. BALB/c female mice aged 6-8 weeks were
obtained from National Institute of Nutrition (Hyderabad, India). The number of mice
used per group ranged from 4 to 5. All mice were bled before injection for collection of
pre-immune sera. They were injected with 100 pg (or indicated amounts) of plasmid
DNA in sterile saline into the left or right quadriceps. The DNA was injected using a 27-
gauge needle fitted with a collar of polyethylene tubing that limited penetration to 2 mm.
In some cases the animals were boosted with an additional dose of DNA or given an
injection of virus-like particles (VLPs) in saline. These VLPs were composed of the HEV
ORF?2 protein expressed in Tn5 insect cells using the baculovirus expression system (20).

Measurement of in vive antibody production. Sera were collected by retroorbital
bleeding at various times following DNA injection and analyzed for the presence of anti -
ORF2 antibodies. For anti-ORF2 detection, VLP coated plates were used. Plates were
coated overnight at 4° C with 100 ul of a 1 pg/ml solution of VLPs in carbonate buffer
(pH 9.6). The plates were blocked with 200 ul of 5% powdered non-fat milk in
phosphate buffered saline (PBS) for 1 h at 37°C. After washing, the primary antibodies
(100 pl) were added at appropriate dilution (1 in 10 or 1 in 50) to the wells and
incubation continued for 1 h at 37°C. Same dilution of the pre-immune sera served as the

negative control. After washing with PBS containing 0.1% Tween 20, bound antibodies
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were detected with horseradish peroxidase conjugated secondary antibodies. Color
development was done with o-phenyienediamine and the absorbance was measured at 492
nm. A serum sample was considered to be positive for anti-HEV when the optical
density value was at least two times greater than that of pre-immune sera with a cut-off
value of 0.05.

For detecting isotype breakdown of the IgG antibody response, the reaction with test
serum was followed by incubation at 37°C for 1 h with goat antibodies to the appropriate
murine isotypes. The dilution of serum was adjusted to obtain a comparable value for
anti-ORF2 specific total IgG antibody. Color development and absorbance measurements
were as described above. All the antibodies were obtained from Sigma Chemical

Company.

RESULTS

Effect of DNA dose on antibody responses. To determine the optimal amount of
DNA necessary for vaccination, animals were given a single injection of 1, 10, 50 or 100
ug of pcDNA-ORF2 and the anti - ORF2 antibody levels were assayed at weekly
intervals thereafter. The antibodies at week 3 post-immunization were of IgM isotype
and at week 4 or thereafter were mainly of the IgG isotype. The antibody responses
elicited by the plasmid DNA were dose dependent, with higher doses of DNA producing
an apparent increase in the anti-ORF2 antibody responses (Fig. 1A). Though lower
doses of pcDNA-ORF2 (1 ug and 10 pg) produced some anti-ORF2 antibodies in the
immunized animals, the absorbance values were very low (Fig. 1A). Therefore for further
studies, a 100 pg dose of pcDNA-ORF2 was used for immunization.

The longevity of the antibody response was determined after pnmary immunization

with 100 ug of DNA followed by an equal booster dose after 4 weeks of initial injection.
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The mice were bled at regular intervals and the anti-ORF2 levels were determined. The
antibody titers increased slightly after the boost and were maintained at peak levels for at
least 24 weeks (Fig. 1B).

Effect of IL-2 co-expression on the anti-ORF2 response. An IL-2 expression
plasmid was used to investigate the effects of this cytokine on the immune response
elicited by ORF2 plasmid immunization. Three groups of mice (A, B and C) were
inoculated with 100 pg of pcDNA-ORF2. Group B was co-injected with 100 pg of IL-2
plasmid at the same time as pcDNA-ORF2 while group C was injected with 100 pg of
the [L-2 plasmid on day 4 following the injection of pcDNA-ORF2. Anti-ORF2
antibodies were detectable after 4 weeks of the primary injection in all three groups at
which time the mice were boosted with the respective plasmids 1.e. group A received
pcDNA-ORF2 and group B and C received same amounts of pcDNA-ORF2 and IL-2
expression plasmid (Fig. 2A). It was necessary to boost the animals with both‘the
plasmids i.e. pcDNA-ORF2 and pIL2 in group B and C, since boosting with pIL2 alone
had no significant effect on the antibody titers. For four weeks after the first injection,
the antibody levels in all three groups were similar. However, after six weeks of the first
injection (i.e. two weeks after the boost), antibody titers in the mice co-immunized with
pIL-2 started increasing as compared to mice immunized with pcDNA-ORF2 alone. Sera
samples from immunized mice were analyzed serially for upto 24 weeks. Antibody
levels in Group C immunized with plL-2 at day 4 after pcDNA-ORF2 immunization
peaked around 10 to 12 weeks while in Group B which received pIL-2 along with
pcDNA-ORF?2 at day 0, the titers peaked around 16 weeks (Fig. 2A). It was interesting
to note that the time of injection of the pIL-2 expression plasmid modulated the immune
response. It was observed that augmentation of the response occurred when the 1L-2
expression plasmid was administered 4 days after the ORF2 expression plasmid (Fig.

24).
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The anti-ORF2 IgG subclasses in the immune antiserum collected at 12 weeks post-
immunization were determined for animals in Group C. As shown in figure 2B, the ratio
of IgG1 and IgG2a antibodies was almost equal, suggesting that co-administration of an
IL-2 expression plasmid enhanced both IgG1 and 1gG2a antibodies (Fig. 2B). It was not
possible to determine the IgG subclasses in the immune antiserum for animals injected
with pcDNA-ORF?2 alone (Group A) because the titers were very low.

Effect of GM-CSF co-expression on the anti-ORF2 response. To study the effect of
GM-CSF on antibody responses, 100 pg of the plasmid-encoding mouse GM-CSF was co-
injected with pcDNA-ORF2. The control group received only plasmid pcDNA-ORF2. The
sera were analyzed after four weeks of injection and antibodies to pORF2 were detectable in
both the groups. At this time the two groups were boosted with the respective plasmids and
the sera analyzed every two weeks thereafter for upto sixteen weeks (Fig. 3A). After two
weeks of the booster, anti-ORF2 titers in animals receiving both pcDNA-ORF2 and pGM-
CSF increased sharply and substantially as compared to the control group receiving only
pcDNA-ORF2 (Fig. 3A). A boost with pGM-CSF alone had no effect on the antibody titers
but when animals were boosted with both the plasmids i.e. pcDNA-ORF2 and pGM-CSF,
the increase in antibody responses was observed. The effect of co-injection of GM-CSF
though very pronounced was short lived, decreasing substantially 10-16 weeks post-
immunization (Fig. 3A).

The anti-ORF2 IgG isotypes in the immune antiserum collected at 8 weeks post-
immunization were measured in mice co-inoculated with GM-CSF. As shown in figure 3B,
although the response was of a mixed type, there were more anti-ORF2 antibodies of the
IeG1 isotype compared to the IgG2a isotype.

Boosting of humoral response. As shown earlier, boosting with DNA four weeks
after the primary immunization resulted in a slight increase in antibody titers (Fig. 1B). It
has been shown in other studies that antibody responses elicited after DNA

immunization can be augmented by administration of the antigenic protein (8). In order to
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study the effects of a protein boost on antibody responses, groups of mice were
inoculated with pcDNA-ORF2 and given a booster of the same after 4 weeks of the first
injection. Antibody titers were still low after the boost with DNA. These mice were
then boosted, after 2 weeks of the DNA booster, with 10 pg of the ORF2 VLPs
expressed using a baculovirus system. It was observed that the titers remained almost
unchanged for two weeks after the boost with protein but after four weeks there was a
sharp increase in these titers (Fig. 4A). The titers reached peak levels after twelve weeks
of the initial inoculation followed by a sharp decline. The antibody levels were about half
of the peaic level at sixteen weeks and decreased slowly after this time (Fig. 4A). In a
control group of ten animals, each immunized with only 10 pg of the ORF2 VLPs (in
saline), the antibody response was weak and was observed for only six weeks. The
optical density mean values after four weeks of immunization were 0.25 and the range of
the value was 022 to 029. On the other hand, the antibody titers obtained after
immunization of animals with 50 ug of VLPs in complete Freunds adjuvant were
comparable to the titers obtained with DNA priming and protein boosting (data not
shown).

The anti-ORF2 specific IgG subclasses in the immune antiserum collected at 12 weeks
post-immunization were determined for animals primed with pcDNA-ORF2 and boosted
with VLPs. As shown in figure 4B, the ratio of IgG1 and IgG2a antibodies was almost
equal in the sera suggesting that boosting with protein enhanced both IgG1 and 1gG2a

antibodies (Fig. 4B).

DISCUSSION

The remarkable ability of DNA immunization to induce humoral and cytotoxic immune

responses against viral, bacterial and parasitic pathogens has led to the widespread
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application of this technology to vaccine development (11,31). However, the efficacy of
different DNA vaccines has varied widely.

In this study, we have shown that mice vaccinated with plasmid DNA expressing the HEV
ORF?2 protein develop long lasting antibody responses against the protein. It has previously
been shown that immunization with a plasmid encoding the ORF2 gene of the Burmese HEV
strain cloned into the eukaryotic expression vector produced long-term humoral immune
responses in mice (13). The titers obtained in that study were variable. We show here that
co-inoculation of plasmids expressing cytokine genes along with HEV ORF2 results in
increased antibody responses, which are long-lived. We further show that these antibody
responses elicited after DNA immunization can be boosted further with protein.

It is well established that cytokines can be used to enhance or redirect immune responses
elicited by a DNA vaccine, but the level of enhancement varies widely with different vaccines
(3,7,12). IL-2 has previously been characterized as a factor that augments specific immune
responses and has been shown to be an effective adjuvant for subunit and inactivated virus
vaccines (23,34). While in most studies the cytokine expression plasmids have been used, in
some cases soluble protein also has been used (7). The effect of administration of soluble
protein was not very significant because of brief circulafory half-life as compared to the
protein produced in vivo by the expression plasmid (7). We therefore used cytokine
expression plasmids in conjunction with a plasmid expressing HEV ORF2 for immunization
of mice. It was observed that co-expression of [L-2 increased the anti-ORF2 titers several
folds and these were maintained for longer times. The IL-2 expression iz vive may be the
reason for increase in antibody responses since I[L-2 directly activates macrophage functions
and also stimulates the release of other secondary mediators such as GM-CSF, which may
also contribute to macrophage activation (25). The days immediately following the priming
of the immune response appear to be an optimal window for augmentation of the immune

response.  Since it was observed that IL-2 administered at day 4 after ORF2 plasmid

—_ 40._.
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inoculation provided maximum stimulation, it appears necessary to first prime the immune
system with DNA encoding the antigen and then amplify the response with this cytokine.

Granulocyte-macrophage colony stimulating factor (GM-CSF) has been reported to
enhance antibody response (10) and plasmids expressing GM-CSF has been used previously
for this purpose. Co-inoculation of a plasmid expressing GM-CSF with a rabies virus DNA
vaccine increased the rabies-specific antibody responses in mice (35). It has been shown that
co-administration of GM-CSF and HIV-1 expression plasmids enhanced both Thl and Th2
type responses (24). “For a hepatitis B vaccine also both responses were affected by co-
expression of GM-CSF (6). Using DNA encoding the hepatitis C virus core protein, it has
been reported that cellular and humoral responses were enhanced by GM-CSF expressing
plasmids (12). This cytokine may substantially enhance the ability of the host to respond to
viral structural proteins by expanding the numbers of antigen-presenting cefls as well as
augmenting the antigen presenting ability of mature macrophages. In the present study we
show that co-expression of GM-CSF resulted in an amplification of the antibody responses
to the HEV ORF2 protein significantly. This favored the generation of Th2 cells as
evidenced by an increase in the IgG1 1sotype fraction.

The antibody responses generated after DNA immunization can be augmented by
administration of the antigenic protein as shown in the case of hepatitis B surface antigen
(8,9). The data presented here using hepatitis E virus ORF2 gene also are in agreement with
those findings. In the present study a lag period was observed between the protein boost and
the stimulation of immune response. Since DNA immunization relies on low numbers of
transfected, antigen expressing cells to raise immune responses, it possibly generates fewer
memory cells that require time for activation and clonal expansion. AIthough stmilar anttbody
titers were obtained on immunization with protein only, the amounts of protein required
were at least five fold higher than the amounts required to boost the response after priming

with DNA.
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With a DNA vaccine for hepatitis B it has been shown that a recombinant protein boost
givento a DNA primed chimpanzee induced a rapid and strong elevation of anti-hepatitis B
antibody titers (9). Further in rhesus macaques immunized with HIV/HBsAg fusion
proteins, injection of a HBsAg expressing plasmid three years later was immediately followed
by a rise in anti-HBs titers (5). These studies suggest that a combinatioﬁ of DNA
priming/proteir boosting can be followed to induce strong and broad-based antibody
responses.

The present studies show that the HEV ORF2 gene can be used to generate long lasting and
elevated immune responses in the murine model when used in combination with cytokines.
Cytotoxic immune responses are also important in clearing viral infections through virus-
specific CD8" T cells (CTLs) which recognize and kill virally infected cells. The ability of
HEV ORF2 DNA vaccination to generate virus-specific CTLs in addition to a humoral

response, and the evaluation of these approaches in a thesus monkey model of HEV infection

remain to be carned out in future.
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