patients.

Opportunistic infections as a resuit of the transient immune suppression are
usually not so serious in ordinary measles patients as in AIDS patients.
Therefore, some host defense rnéchanism(s) is expected to be in action in
measles patients. We found an enhanced expression of CD16/CD56 molecules,
a surface marker of NK cells, in the surviving PBMC of measles patients (Fig. 4).
Just after onset of rash, the number of NK cells was markedly increased, and in
tum, they were decreased within 7 days. It was therefore suggested that the NK
cells were activated and compensating for the immune suppression resulted
from the extended deaths of non-infected immune cells. This was supported by
the result that INF-y was also increased in the NK cells (data not shown).
However, the mode of NK cell proliferation was similar among all age groups
(Fig. ‘4), although for the older groups, the severe lymphopenia persisted for a
long period, even after the recovery of NK cells to the normal level (Fig. 1).
Taking together, it is suggeéted that NK cells played a roll in compensating for
the lymphocyte deficient in the age group of 1-3 years old, whereas in the age
group of 10 years or older, such compensation by NK cells could not be retained
until the lymphopenia was restored. This might explain, at least partly, why the
immunosuppression is severer in aged groups.

All measles viruses isolated from the present cases were of genotypes D3
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and D5 [22], and there was no particular relationship between the genotype and
the data presented (data not shown). The question whether or not the results
obtained in this paper can be generalized to all other genotypes of wild-type
virus is left to be answered.

A critical question has been asked as to whether it is proper to immunize
AIDS children, especially in developing countries, with live attenuated measles
vaccines [1]. It is necessary to reexamine its safety and efficacy to promote the
Expanded Programme on Immunization (EPI} by WHO. We are also
investigating the immune state of vaccinees after inoculation with live measles

vaccines, compared with wild measles patients.
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Legends for Figures

Fig. 1. Time-dependent changes in the absolute number of lymphocytes and
their subsets in the peripheral blood of measles patients. Blood samples were
collected at the indicated days after onset of rash. The number of total
lymphocytes (a), CD4*T cells (b), CD8*T cells (¢), and B cells (d). Grey zones
represent the normal levels of each item in age-matched healthy subjects..
Each closed square () indicates the average of 3 to 73 samples, and vertical
bars indicate standard deviation when the sample number was more than 4.
(A) Total 20 patients aged lower than one year old. (B) Total 73 patients aged 1-
3 years old. (C) Total 18 patients aged 4-6 years old. (D) Total 16 patients aged
10-15 yeas old. (E) Total 7 patients aged higher than 15 years to adults. Note
that the scales of the vertical and horizontal axes are different among the

figures.

Fig. 2. Expression of CD95(Fas) on the surface of lymphocytes. Ratios of
CD95-expressing cells to total lymphocytes are shown in percentage from 35
measles patients aged 1-3 years old (a), and 4 patients aged 10 years old to

adults (b). Grey zones indicate the normal level in age-matched healthy controls.
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Fig. 3. Apoptosis inducing activity of PBMC. PBMC obtained from measles
patients at the indicated days after onset of rash were incubated in vitro for 24 hr
and fragmentation of the chromosomal DNA was quantified by flowcytometry as
a marker of apoptosis. Total 35 cases of measles patients aged 1-3 yéars old
(a), and from 4 cases aged 10 years old to adults (b). Figures are expressed in
percentage. Grey zones indicate the nomal levels in age-matched healthy

controls.

Fig. 4. Ratios of NK cells to total surviving PBMC obtained from 73 cases of
measles patients aged 1-3 years old (a), and from 23 cases aged 10 years old to
adults (b). Grey zones indicate the normal levels in age-matched healthy

controls,
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